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SUMMARY 1 

The development of high-throughput single-cell RNA-sequencing (scRNA-Seq) methodologies 2 
has empowered the characterization of complex biological samples by dramatically increasing the 3 
number of constituent cells that can be examined concurrently. Nevertheless, these approaches 4 
typically recover substantially less information per-cell as compared to lower-throughput microtiter 5 
plate-based strategies. To uncover critical phenotypic differences among cells and effectively link 6 
scRNA-Seq observations to legacy datasets, reliable detection of phenotype-defining transcripts 7 
– such as transcription factors, affinity receptors, and signaling molecules – by these methods is 8 
essential. Here, we describe a substantially improved massively-parallel scRNA-Seq protocol we 9 
term Seq-Well S^3 (“Second-Strand Synthesis”) that increases the efficiency of transcript capture 10 
and gene detection by up to 10- and 5-fold, respectively, relative to previous iterations, surpassing 11 
best-in-class commercial analogs. We first characterized the performance of Seq-Well S^3 in cell 12 
lines and PBMCs, and then examined five different inflammatory skin diseases, illustrative of 13 
distinct types of inflammation, to explore the breadth of potential immune and parenchymal cell 14 
states. Our work presents an essential methodological advance as well as a valuable resource 15 
for studying the cellular and molecular features that inform human skin inflammation. 16 
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INTRODUCTION 17 

Although a nascent technology, single-cell RNA-sequencing (scRNA-Seq) has already 18 

helped define, at unprecedented resolution, the cellular composition of many healthy and 19 

diseased tissues (Klein et al., 2015; Macosko et al., 2015; Montoro et al., 2018; Ordovas-20 

Montanes et al., 2018; Vento-Tormo et al., 2018). The development of high-throughput 21 

methodologies has been crucial to this process, empowering the characterization of increasingly 22 

complex cellular samples. Unfortunately, current scRNA-Seq platforms typically demonstrate an 23 

inverse relationship between the number of cells that can be profiled at once and the amount of 24 

biological information that can be recovered from each cell. As a result, one must choose between 25 

quantity and quality – and thus comprehensiveness and fidelity – or alternatively employ two 26 

distinct approaches in parallel (Tabula Muris Consortium et al., 2018). Indeed, inefficiencies in 27 

transcript capture among massively-parallel methods have limited our ability to resolve the distinct 28 

cell states that comprise broad cell types (Braga et al., 2019), as well as their essential molecular 29 

attributes and often lowly-expressed molecular features, such as transcription factors, affinity 30 

receptors, and signaling molecules (Figure 1A).  31 

Improving the fidelity of these methodologies is particularly important for resolving 32 

differences within heterogeneous populations of immune cells like lymphocytes and myeloid cells 33 

(Villani et al., 2017). Here, subtle differences in surface receptor, transcription factor and/or 34 

cytokine expression can profoundly impact cellular function, particularly in the setting of human 35 

pathology (Puel et al., 1998). Enhancing data quality in high-throughput scRNA-Seq would 36 

facilitate a greater appreciation of the underlying molecular features that describe such cellular 37 

variation. Similarly, it would ease integration with legacy datasets that often rely on lowly-38 

expressed biomarkers, such as transcription factors, that are false-negative prone to discriminate 39 

subsets of cells. 40 
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Most high-throughput scRNA-Seq methods currently rely on early barcoding of cellular 41 

contents to achieve scale. Typically, these techniques recover single-cell transcriptomes for 42 

thousands of cells at once by leveraging reverse-emulsion droplets or microwells to isolate 43 

individual cells with uniquely barcoded poly-dT oligonucleotides which can then capture and tag 44 

cellular mRNAs during reverse transcription (Prakadan et al., 2017). Afterward, an additional 45 

priming site is added to the 3’ end of the synthesized cDNA to enable PCR-based amplification 46 

of all transcripts using a single primer (whole transcriptome amplification, WTA). A number of 47 

techniques have been described to add this second priming site (Sasagawa et al., 2013; Shishkin 48 

et al., 2015). The most common uses the terminal transferase activity of certain reverse 49 

transcription enzymes to facilitate a “template-switch” from the original mRNA to a second defined 50 

oligonucleotide handle (Picelli et al., 2013). While simple to implement, this process has the 51 

potential to be highly inefficient, leading to the loss of molecules that have been captured and 52 

converted to cDNA but not successfully tagged with a secondary PCR priming site (Figure 1A 53 

and S1A) (Islam et al., 2012; Kapteyn et al., 2010; Zajac et al., 2013).  54 

To overcome these limitations, we have developed a new massively-parallel scRNA-Seq 55 

protocol we call Seq-Well S^3 (for “Second-Strand Synthesis”). Seq-Well S^3 increases the 56 

efficiency of the second PCR handle addition by amending it through a randomly-primed second-57 

strand synthesis after reverse transcription (Figure 1A). Working with cell lines and peripheral 58 

blood mononuclear cells (PBMCs), we demonstrate that Seq-Well S^3 enables significant 59 

improvements in transcript and gene capture across sample types, facilitating studies of complex 60 

immune tissues at enhanced resolution (Figures 1, S1, and S2). 61 

To illustrate the utility of S^3, we apply it to generate a resource of single-cell 62 

transcriptional states spanning multiple inflammatory skin conditions. Skin represents the largest 63 

barrier tissue in the human body and is comprised of numerous specialized cell-types that help 64 

maintain both immunological and physical boundaries between our inner and outer worlds 65 
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(Kabashima et al., 2019). The dermis and epidermis – the two primary compartments of human 66 

skin – play complementary roles in tissue structure and function (Figure 2A) (Kabashima et al., 67 

2019). The epidermis consists primarily of keratinized epithelial cells, which provide a physical 68 

barrier to the outside world; the dermis, meanwhile, provides structural support for the skin, with 69 

fibroblasts producing collagen and elastin fibrils along with the other components of the 70 

extracellular matrix. Crucially, within the cellular ecosystem of human skin, there are numerous 71 

tissue-resident immune and parenchymal cells essential to homeostatic barrier function. Using 72 

Seq-Well S^3, we examine the cellular composition of normal skin and altered cellular phenotypes 73 

in multiple inflammatory skin conditions, including acne, alopecia areata, granuloma annulare, 74 

leprosy and psoriasis. With conditions that span autoimmune (alopecia), autoinflammatory 75 

(psoriasis), reactive (acne), and granulomatous (granuloma annulare and leprosy) inflammation, 76 

we uncover a diverse spectrum of immune and parenchymal cellular phenotypes, as well as their 77 

molecular features, across multiple inflammatory skin conditions. Overall, our work presents an 78 

essential methodological advance as well as a critical resource for understanding how diverse 79 

inflammatory responses can impact a single tissue and the range of cellular phenotypes that are 80 

possible upon perturbation. 81 

 82 

RESULTS 83 

Second-Strand Synthesis (S^3) Leads to Improved Transcript Capture and Gene Detection 84 

We hypothesized that use of “template-switching” to append a second PCR handle during 85 

reverse transcription might limit the overall recovery of unique transcripts and genes from 86 

individual cells in some massively-parallel scRNA-Seq methods such as Seq-Well and Drop-Seq 87 

(Gierahn et al., 2017; Macosko et al., 2015). Thus, we incorporated a randomly primed second-88 

strand synthesis following first-strand cDNA construction (Figures 1A and S1A). Briefly, after 89 

reverse transcription, barcoded mRNA capture beads are washed with 0.1 molar sodium 90 
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hydroxide to remove attached RNA template strands and then a random second-strand synthesis 91 

is performed to generate double-stranded cDNA labeled on one end with the SMART sequence 92 

and its reverse complement on the other (Figure 1A and S1A) (Picelli et al., 2013, 2014). 93 

To examine the effectiveness of Seq-Well S^3 and optimize its performance, we first 94 

tested a number of conditions using cell lines (Figure S1B). In these experiments, we observed 95 

that S^3 led to marked improvements in library complexity (Seq-Well V1: 0.22 transcripts/ aligned 96 

read, Seq-Well S^3: 0.68 transcripts/ aligned read) and was able to function in the absence of a 97 

template switching oligo (TSO); Seq-Well V1, meanwhile, failed to generate appreciable product 98 

without a TSO (Figure S1B-D). In species-mixing experiments using HEK293 (human) and NIH-99 

3T3 (mouse) cell lines, the use of the S^3 protocol resulted in significant increases in the numbers 100 

of unique transcripts captured and genes detected per cell compared to our original protocol for 101 

Seq-Well (P < 0.05, Mann-Whitney U Test; Figure S1C).  102 

To fully understand how S^3 would perform on more challenging primary cells, we next 103 

applied it to human PBMCs (Figure S1C and S2), benchmarking against our original Seq-Well 104 

protocol as well as a commercial technology (10X genomics, V2 chemistry; hereafter 10x v2). For 105 

these comparisons, we down-sampled all resulting data to an average of 42,000 reads per cell to 106 

account for differences in sequencing depth across technologies. Critically, Seq-Well S^3 resulted 107 

in significant improvements in the complexity of our sequencing libraries compared to 10x v2 as 108 

determined by the number of transcripts and genes detected at matched read depth (P < 0.05, 109 

Mann-Whitney U Test & Linear Regression; Figure 1B-C). To confirm that these overall 110 

improvements were not driven by changes in the relative frequencies of different cell types 111 

captured by each technology, we also examined each subset independently (Figure S2A-B). For 112 

each cell type detected, we observed significant increases in the numbers of transcripts captured 113 

and genes detected using S^3 for each pairwise comparison between techniques (P < 0.05, 114 

Mann-Whitney U Test; CD4+ T cells, Seq-Well V1: 1,044 ± 62.3  UMIs/cell; 10x v2: 7,671 ± 103.9 115 
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UMIs/cell; Seq-Well S^3: 13,390 ± 253.4 UMIs/cell; Mean ± Standard Error of the Median (SEM); 116 

Figure S2). Both Seq-Well S^3 and 10x v2 displayed increased sensitivity for transcripts and 117 

genes relative to Seq-Well v1, but Seq-Well S^3 showed the greatest efficiency (defined as genes 118 

recovered at matched read depth) to detect genes for each cell type (Figure 1D-E; Figure S2).  119 

We sought to further understand whether these improvements resulted in enhanced 120 

detection of biologically relevant genes typically under-represented in high-throughput single-cell 121 

sequencing libraries (Tabula Muris Consortium et al., 2018). Importantly, genes that were 122 

differentially detected (i.e., higher in S^3) within each cell type include numerous transcription 123 

factors, cytokines and cell-surface receptors (Figure 1D-E). For example, among CD4+ T cells, 124 

we observe significantly increased detection of cytokines (e.g., TGFB1 and TNF), surface 125 

receptors (e.g., TGFBR and CCR4) and transcription factors (e.g., STAT6, and IRF4) (P< 0.05, 126 

Chi-Square Test, Figure 1H and S2).  127 

Finally, we performed an additional comparison of enriched human CD4+ T cells profiled 128 

using Seq-Well S^3 and 10X v2, as well as by Smart-Seq2, a commonly implemented microtiter 129 

plate-based approach (Figure 1F-G) (Picelli et al., 2013). Integrated analysis of aggregate gene 130 

detection revealed that Seq-Well S^3 detects more genes per cell than 10x v2 and nearly as many 131 

genes per cell as Smart-Seq2 in pairwise comparison of techniques (10x v2: 2,057 ± 18.7 132 

genes/cell , Seq-Well S^3: 3,514 ± 36.2 genes/cell , SS2: 3,975 ± 74.0 genes/cell; mean ± SEM; 133 

P < 0.05, Mann-Whitney Test; Figure 1F). Further, comparing the frequency of gene detection 134 

between methods revealed crucial differences for transcription factors, cytokines and 135 

receptors/ligands. Surprisingly, we observe similar rates of gene detection between S^3 and 136 

Smart-Seq2 for a large number of biologically informative genes (Figure S2F). Critically, while 137 

comparable numbers of genes were detected across methods, Seq-Well S^3 detected more 138 

genes per aligned read than either 10x v2 or SS2 in pairwise comparisons (P<0.05, Mann-139 

Whitney U Test; Figure 1G).  140 
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A Resource of Cellular States Across Healthy and Inflamed Skin  141 

To demonstrate the utility of Seq-Well S^3 to comprehensively describe cellular states 142 

across human pathology at unprecedented resolution, we applied it to profile human skin samples 143 

spanning multiple, complex inflammatory skin conditions (Figure 2) – including acne, alopecia 144 

areata, granuloma annulare, leprosy, psoriasis – as well as normal skin (Figure 2A-B and S3A-145 

C). In total, we processed nine skin biopsies by S^3 and, after data quality filtering, retained 146 

20,308 high-quality single-cell transcriptomes (Figure 2A-B).  147 

To examine similarities and differences among these cells across the high-dimensional 148 

gene expression space, we selected variable genes, performed UMAP dimensionality reduction, 149 

and identified 33 clusters through Louvain clustering in Scanpy (Wolf et al., 2018) (Figure 2 and 150 

S3A-C). To collapse clusters to cell-types, we performed enrichment analyses to identify cluster-151 

defining genes (Figure S3B) and then manually assigned cell-type identities based on the 152 

expression of known lineage markers (Figure 2C). We also generated aggregate gene 153 

expression profiles and performed hierarchical clustering using a combined list of the top 50 154 

cluster-defining genes for each cluster to further support our annotations and groupings (Figure 155 

S3C). Ultimately, we recovered a total of 16 primary cell-types, within which there was 156 

considerable heterogeneity. The identified cell types include: B cells (marked by expression of 157 

MS4A1 and CD79A), dendritic cells (FCER1G and CLEC10A), endothelial cells (SELE and 158 

CD93), fibroblasts (DCN and COL6A2), hair follicles (SOX9), keratinocytes (KRT5 and KRT1), 159 

macrophages (CD68 and CTSS), mast cells (CPA3 and IL1RL1), muscle (NEAT1 and 160 

KCNQ1OT1), plasma cells (IGHG1), Schwann cells (SCN7A), and T cells (CD3D and TRBC2) 161 

(Figure 2 and S3A-D). We next sought to define nuanced cell states within these immune, stromal 162 

and parenchymal populations – including T cells, myeloid cells, endothelial cells, dermal 163 

fibroblasts, and keratinocytes – across the spectrum of skin inflammation. 164 

 165 
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Seq-Well S^3 describes T cell states across inflammatory skin conditions 166 

To determine the range of biological diversity that can be captured using Seq-Well S^3, 167 

we first focused on further characterizing T cells across the inflammatory skin conditions 168 

examined since each is known to significantly skew T cell phenotypes (Figure 3) (Diani et al., 169 

2015; Lowes et al., 2014). We performed dimensionality reduction and sub-clustering across T 170 

cells alone (Figure 3A-B). Our analysis revealed nine sub-clusters that closely correspond to NK 171 

cells and CD8+ T cells, as well as several known CD4+ T-helper cell (Th) subsets. As before, we 172 

used the enhanced sensitivity of S^3 for lineage defining transcripts to help annotate the identity 173 

of each sub-cluster; for example, in T cell sub-clusters 5 and 6, respectively, we detected distinct 174 

expression of canonical regulatory T cell and Th-17 T cell transcription factors (e.g., FOXP3 and 175 

RORC, respectively) and immune receptors (e.g. TIGIT and CXCR6 respectively) (Figure 3C-E 176 

and S4). Additionally, we cross-referenced each sub-cluster’s marker genes against a series of 177 

curated signatures in the Savant database (Lopez et al., 2017) to confirm our assignments. This 178 

analysis highlighted similarity to previously characterized T cell and NK cell populations (Figure 179 

S4C).  180 

We next examined T cell phenotypes across inflammatory skin conditions to explore 181 

variability in T cell subset composition by skin pathology (Figure 3B). This analysis revealed 182 

potentially varied contributions to different classes of cutaneous inflammation. For example, sub-183 

cluster 6 is enriched for expression of canonical Th-17 genes including RORC, which encodes 184 

the Th-17 lineage-defining transcription factor ROR𝛾t (Ivanov et al., 2006) and is observed 185 

predominantly within the leprosy sample. While either Th1 or Th2 responses are typically thought 186 

to predominate in the immune response to leprosy, a role for Th-17 cells in controlling disease 187 

has been previously demonstrated (Saini et al., 2013, 2016). We further found that sub-cluster 1, 188 

which express NR4A1, a transcription factor that is a marker of dysfunctional T cells (Liu et al., 189 

2019), and sub-cluster 3, enriched for genes involved in nuclear organization (ANKRD36, XIST, 190 
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and NEAT1), were over-represented in both patients from psoriasis (Figure 3B-C). In alopecia 191 

areata, we detected a unique population of T cells (sub-cluster 7) that overexpress PDE4D, which 192 

has been shown to plays a role in TCR-dependent T cell activation (Figure 3D) (Peter et al., 193 

2007).  194 

We also uncovered considerable variation across cytotoxic T cells and NK cells. Directed 195 

analysis within CD8+ T cells (sub-cluster 0) revealed a sub-grouping of activated CD8+ T cells that 196 

express elevated levels of several inflammatory cytokines (TNF, CCL4, and XCL1), as well as 197 

specific affinity receptors (FASLG and TNFRSF9) and transcription factors (KLF9 and EGR2); 198 

this phenotypic skewing was observed primarily in a patient with granuloma annulare (Figure 3F 199 

and S4B). Meanwhile, we found the highest degree of cytotoxic gene expression (GNLY, GZMB, 200 

and PRF1) among cells in sub-cluster 8, suggesting that this sub-cluster may represent a diverse 201 

set of NK cells, gd T cells, and activated cytotoxic T cells. Indeed, further analysis of sub-cluster 202 

8 revealed 3 distinct component sub-groups of cytotoxic cells: a sub-group of CD8+ T cells (T.8.1; 203 

TNFSF8, SLAMF1, CLEC2D, CD5) expressing various TCR genes; a second sub-group of CD16+ 204 

cells (T.8.2) expressing cytotoxic effector molecules (GNLY, PRF1, GZMB) and NK surface 205 

receptors, consistent with either NK cell or tri-cytotoxic CTL (Balin et al., 2018); and a third sub-206 

group of NK cells (T.8.3) enriched for expression of c-KIT, RANKL (TNFSF11) and GITR 207 

(TNFSFR18) (Figure 3H and S4B) (Söderström et al., 2010).  208 

Profiling of T cell receptor expression is critical to understand T cell antigen specificity 209 

(Zhang et al., 2018). Importantly, among CD4+ T cells obtained from peripheral blood, we 210 

recovered most TCR-V and TCR-J genes at a higher frequency using Seq-Well S^3 as compared 211 

to 10x v2 (P< 0.05, Chi-square Test; Figure S4C). Among CD4+ T cells from peripheral blood, we 212 

observed paired detection of TRAC and TRBC in 1,293 of 1,485 CD4+ T cells (87.1%  Paired 213 

Detection Rate, Figure S4C). In the setting of skin inflammation, we explored TCR detection rates 214 

across a range of sequencing read depths. Overall, we detected TRAC in 54.5%, TRBC in 75.5%, 215 
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and paired detection in 46.4% of T cells (Figure 3G). Among T cells with at least 25,000 aligned 216 

reads, we recovered paired a and b chains in 66.7%. Among cells from sub-cluster 8, we observe 217 

expression of g and d constant genes (TRGC and TRDC), while remaining T cell clusters 218 

exclusively express a and b TCR constant genes (Figure S4C). These data further suggest that 219 

sub-cluster 8 represents a diverse population of gd, NK, and cytotoxic CD8+ T cells that share 220 

common gene expression features and, potentially, roles in inflammation.  221 

 222 

Spectrum of Myeloid Cell States in Skin Inflammation 223 

In the setting of cutaneous inflammation, myeloid cells play a key role in maintaining tissue 224 

homeostasis, wound healing and response to pathogens (Malissen et al., 2014). Using Seq-Well 225 

S^3, we were able to identify numerous myeloid cell subpopulations defined by a combinations 226 

of surface markers, cytokines and lineage-defining transcription factors. Specifically, we 227 

independently analyzed 2,371 myeloid cells and identified nine sub-clusters representing 4 228 

primary myeloid cell types based on expression of canonical lineage markers and comparison to 229 

cell-type signatures in the Savant database: dendritic cells (CLEC10A), Langerhans cells (CD207 230 

and CD1A), macrophages (CD68 and CD163), and mast cells (CPA3 and TPSAB1) (Figure 4A 231 

and S4D-E) (Lopez et al., 2017).  232 

Among the macrophages, our data reveal two distinct sub-clusters (Figure 4A-B). One 233 

macrophage sub-cluster spans normal skin as well as multiple types of skin inflammation and is 234 

characterized by elevated expression of previously characterized markers of dermal 235 

macrophages (CD163, STAB1, and CEPP) (Fuentes-Duculan et al., 2010). The second sub-236 

cluster, meanwhile, is observed uniquely in leprosy and defined by genes involved in extracellular 237 

proteolysis (LYZ, CHIT1, and CHI3L1) (Di Rosa et al., 2013). 238 
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Skin functions as both a physical and immunologic barrier, and is the primary site of 239 

exposure to environmental antigens. As such, multiple types of antigen-presenting cells (APCs) 240 

are distributed in both the dermis and epidermis. In the epidermis, there is a specialized population 241 

of antigen-presenting cells known as Langerhans cells. We initially identified Langerhans cells on 242 

the basis of expression of canonical markers (CD207, CD1A; Figure 4C-D) (Romani et al., 2003). 243 

For biopsies obtained from normal skin and leprosy, we performed MACS enrichments from the 244 

epidermal section and loaded Langerhans cells as 5% of the total amount to increase recovery. 245 

When we directly compared Langerhans cells from leprosy and normal skin, we observed 246 

elevated expression of IDO1, STAT1, HCAR3 and MHC class I molecules (HLA-A, HLA-B and 247 

HLA-F) in Langerhans cells in leprosy infection, which may suggest a role for Langerhans cells in 248 

priming CD8+ T cell responses in this disease (Figure 4E) (Hunger et al., 2004; Pinheiro et al., 249 

2018). 250 

Additionally, we found a large sub-group of dermal dendritic cells (Figure 4A). Further 251 

analysis of the CD207- dendritic cell sub-cluster revealed multiple sub-groupings of dermal 252 

dendritic cells across skin biopsies. Consistent with previous observations from peripheral blood 253 

(Villani et al., 2017), we saw a sub-group of dendritic cells that corresponds to cDC1 (CLEC9A, 254 

IRF8, and WDFY4) (P<0.05, Permutation Test, Figure S4H). We further report another sub-group 255 

that represents cDC2 cells (IRF4, SOCS2, SLCO5A1, CD1B, CD1E) (Figure 4B-C and Figure 256 

S4F-H) (Guilliams et al., 2016). Importantly, we detect expression of IL12B, a subunit of the IL-23 257 

cytokine, within the sub-group of IRF4+ cDC2 cells (Figure S4I-J), which have previously been 258 

shown to promote mucosal type 17 inflammation via secretion of IL-23 (Schlitzer et al., 2013). 259 

Further, this sub-grouping of cDC2 cells express high levels of CCL17 and CCL22, chemokines 260 

involved in T cell chemotaxis (Figure S4J) (Stutte et al., 2010). 261 

We further identified three sub-groups of dermal dendritic cells that are broadly 262 

distinguished from conventional dendritic cell clusters by expression of CLEC10A (Figure S4J), 263 
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which has been shown to influence T cell cytokine responses in skin (Kashem et al., 2015; 264 

Kumamoto et al., 2013). Cells from dermal DC sub-group 1 show elevated expression of CD44, 265 

IL8 and SOD2 (Figure S4I). Cells from dermal DC sub-group 2 display elevated expression of 266 

pro-inflammatory chemokines up-regulated during DC maturation (CXCL3, CCL2 and CCL4) (Jin 267 

et al., 2010) and soluble mediators (EREG and INHBA). Finally, a third sub-grouping of dermal 268 

DCs (Dermal DC3) was distinguished by expression of FCER1A, FCGR2A, and FCGR2B, which 269 

are important for interfacing with humoral immunity (Figure S4I) (Guilliams et al., 2014).  270 

In the skin, mast cells are most commonly associated with allergic responses, but mast 271 

cell proteases serve additional roles in inflammation and pathogen defense (Pejler et al., 2010). 272 

Among skin mast cells, we detect core expression of HDC (Histidine decarboxylase), HPGD, and 273 

TPSAB1 (Tryptase a/b 1) (Figure 4F) (Dwyer et al., 2016). Importantly, we observe variable 274 

expression of mast cell proteases TPSD1 (Tryptase D1) and CMA1 (Chymase A1), which are 275 

primary mast cells effector molecules (Pejler et al., 2010), which may have functional 276 

consequences. By performing analysis across inflammatory conditions and patients, we identify 277 

a distinct pattern of mast cells with elevated expression of proteases (TPSD1, Tryptase D1 and 278 

PRSS27, serine protease 27), SCG2 (secretogranin 2), and CCL2 in a patient with granuloma 279 

annulare (Figure 4F).  280 

 281 

Detection of Endothelial Heterogeneity and Vascular Addressin Expression 282 

Multiple types of endothelial cells exist within the dermis of the skin. As in most tissues, 283 

arterioles shuttle oxygenated blood to tissues terminating in a capillary bed that gives rise to post-284 

capillary venules. Importantly, DARC+ post-capillary venules are the primary site of egress of 285 

immune cells from circulation into tissues (Schön et al., 2003). Using the improved sensitivity of 286 

Seq-Well S^3, we sought to understand the spectrum of endothelial cell diversity and vascular 287 

addressin expression across multiple instances of skin inflammation (von Andrian and Mempel, 288 
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2003). We performed sub-clustering and dimensionality reduction across 4,996 endothelial cells 289 

(Figure S5A-B) and identified three primary sub-clusters of dermal endothelial cells defined by 290 

distinct expression patterns: vascular smooth muscle (TAGLN), endothelial cells (CD93) and 291 

lymphatic endothelial cells (LYVE1) (Figure S5C). Importantly, we found multiple sub-clusters of 292 

CD93+ endothelial across normal and inflamed skin biopsies (Figure S5A-B).  For example, we 293 

observe two distinct populations of endothelial cells: a population of DARC-, CD93+ endothelial 294 

cells (Venule sub-cluster 3) that displays elevated expression of SLC9A3R2, which is involved in 295 

endothelial homeostasis (Bhattacharya et al., 2012), and another cluster of proliferating 296 

endothelial cells (Venule sub-cluster 4) (Figure S5D).  297 

Further, we sought to understand the distribution of vascular addressins expressed by 298 

DARC+ endothelial sub-populations, the site primary site of lymphocyte egress into tissues 299 

(Figure S5E) (Thiriot et al., 2017). Notably, across sub-populations of CD93+ endothelial cells 300 

(Venule sub-clusters 1-4), we observe variation in expression of vascular addressins (Figure 301 

S5E). Among post-capillary venules, we observe broadly elevated expression of ITGA5, ITGA6, 302 

ITGB4, ICAM2, and ITGA2, while arterioles express higher levels of ITGA7, ITGA8, and ITGB5. 303 

Further, we observe the highest expression of ITGA4, ITGA9, ITGB2 and ITGB8 among lymphatic 304 

endothelial cells (Figure 5E). 305 

 306 

Altered Dermal Fibroblast Identities in Skin Inflammation  307 

Dermal fibroblasts provide structural support and are the primary source of extracellular 308 

matrix components within the skin. Previous studies have demonstrated significant variation 309 

among dermal fibroblasts based on their relationship to anatomic features of the skin (Driskell 310 

and Watt, 2015; Driskell et al., 2013). To deeply catalogue diverse fibroblast cell states across 311 

inflamed skin, we performed dimensionality reduction and sub-clustering within the 4,189 312 

fibroblasts identified across all samples and conditions (Figure S5F-G). In comparison to inflamed 313 
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biopsies, fibroblasts from normal skin display enrichments in LTBP4, IGFBP5, and TCF4. 314 

Consistent with previous single-cell studies of dermal fibroblasts, we observe a sub-population of 315 

fibroblasts (Cluster 6) that express COL11A1, DPEP1 and RBP4, where these cells were 316 

suggested to have a role in connective tissue differentiation (Figure S5H) (Tabib et al., 2018).  317 

Fibroblasts from GA patient 1 (sub-cluster 2) express elevated levels of SPOCK1, CRLF1, 318 

and COMP, a cartilage protein that is upregulated in matrix-producing fibroblasts following 319 

myocardial infarction (Fu et al., 2018) (Figure S5H-I). Further, fibroblasts from GA patient 2 (sub-320 

cluster 0) display elevated expression of protease inhibitor 16 (PI16), which inhibits the function 321 

of MMP2 (Hazell et al., 2016), and ITIH5, a protease inhibitor important for maintenance of dermal 322 

hyaluronic acid that is overexpressed in skin inflammation (Figure S5H-I) (Huth et al., 2015). 323 

Finally, among fibroblasts from acne patients, we observed elevated expression of multiple 324 

metallothioneins (Figure S5H-I). Specifically, the expression levels of MT1E and MT2A are 325 

highest in fibroblasts and endothelial cells in acne (Figure S5H). As seen among endothelial cells, 326 

fibroblast expression patterns in acne are consistent with a wound healing response (Iwata et al., 327 

1999). 328 

Keratinocyte Differentiation Trajectories 329 

Within the epidermis, keratinocytes undergo a stereotyped differentiation process in which 330 

cells acquire altered morphology and phenotype as they mature (Figure 5A) (Fuchs, 1990). 331 

Under physiologic conditions, basal keratinocytes are characterized by expression of KRT14 and 332 

TP63, and continuously divide to give rise to the remaining cells of the epidermis (Fuchs and 333 

Raghavan, 2002). Using keratinocytes from normal skin, we performed pseudo-temporal analysis 334 

to reconstruct the differentiation process of normal epidermal keratinocytes (Figure 5D). More 335 

specifically, in normal skin, we first identified a population of keratinocytes enriched for expression 336 

of TP63 and KRT14, markers of basal keratinocytes (Figure S6B) (Pellegrini et al., 2001). We 337 

then used known patterns of cytokeratin expression to infer localization of keratinocytes along a 338 
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supervised differentiation trajectory (Figure 5E and S6A) (Ordovas-Montanes et al., 2018). Our 339 

trajectory analysis revealed patterns of transcription factor and cytokeratin expression that closely 340 

correspond to previously established signatures of keratinocyte maturation (Cheng et al., 2018). 341 

Consistent with immunohistochemical staining from the Human Protein Atlas (Figure 5E) (Uhlén 342 

et al., 2015), we observed enrichment of filaggrin (FLG), a protein in the outer layers of the 343 

epidermis (Sandilands et al., 2009), mRNA among keratinocytes that lie at the terminal points in 344 

the pseudo-temporal ordering (Figure 5E and Figure S6B).  345 

Having established a trajectory for normal keratinocyte differentiation, we next examined 346 

patterns of keratinocyte differentiation across pathologic conditions. To identify conserved and 347 

unique patterns across conditions, we constructed a combined diffusion map using the 5,141 348 

keratinocytes recovered across all samples (Figure 5C). While keratinocytes from most 349 

conditions closely align with normal differentiation, we observe marked deviation in the 350 

differentiation trajectory of psoriatic keratinocytes (Figure 5C). Consistent with previous 351 

observations, differential expression analysis reveals significant up-regulation of antimicrobial 352 

peptides (S100A7, S100A8, S100A9) and pro-inflammatory cytokines (IL36G, IL36RN) in 353 

psoriatic keratinocytes (Li et al., 2014).  354 

Based on increased sensitivity of Seq-Well S^3 to detect transcription factors observed in 355 

peripheral lymphocytes, we hypothesized that our data might enable identification of novel 356 

transcriptional regulators of psoriatic keratinocytes. To identify potential drivers of the psoriatic 357 

disease process within the epidermis, we performed differential pseudo-time correlation analysis 358 

between psoriatic and normal keratinocytes. Specifically, we separately constructed pseudo-time 359 

trajectories for normal and psoriatic keratinocytes, calculated correlation values between diffusion 360 

pseudo-time and gene expression levels, and examined the difference in correlation values 361 

between psoriatic and normal keratinocytes (Figure 5F and S6A-B). Notably, we observed 362 

positive correlation of FOSL1, an AP-1 transcription factor, with diffusion pseudo-time in psoriatic 363 
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keratinocytes, implying that FOSL1 is preferentially expressed along the differentiation trajectory 364 

of psoriatic keratinocytes. To validate this observation, we performed immunofluorescence 365 

staining for FOSL1 protein, and measured increased levels of FOSL1 in psoriatic skin (Figure 366 

5G). We further validated the distribution of additional genes overexpressed or differentially 367 

correlated with diffusion pseudo-time in psoriatic keratinocytes (including TNFAIP3, IL36G, and 368 

APOBEC3) at the protein level (Figure 5G and S6A).  369 

To further define differences in gene expression patterns between normal and psoriatic 370 

keratinocytes, we scored the expression levels of known cytokine response signatures using a 371 

series of reference signatures gene lists derived from population RNA-Seq of cultured 372 

keratinocytes exposed to IL-17A (Figure S6C). While IL-17 has been previously implicated in the 373 

pathogenesis of psoriasis, here we infer the identity of cells that dominate the IL-17 response, 374 

localizing the expression of IL-17 responsive genes to spinous keratinocytes (Ordovas-Montanes 375 

et al., 2018). To validate this observation, we performed immunofluorescent staining for IL-17R 376 

protein and measured the highest staining within spinous keratinocytes exclusively within psoriatic 377 

skin (Figure 5H). Collectively, these data provide novel insights into the localization IL-17 378 

response in psoriatic keratinocytes.  379 

 380 

DISCUSSION  381 

Here, we present an enhanced technique for high-throughput scRNA-Seq – Seq-Well S^3 382 

– that affords improved sensitivity for transcript capture and gene detection. Through use of a 383 

templated second-strand synthesis, S^3 recovers information typically lost in bead-based high-384 

throughput scRNA-Seq protocol such as Seq-Well or Drop-Seq. Specifically, S^3 reclaims mRNA 385 

molecules that are successfully captured and reverse transcribed but not labeled with a second 386 

primer sequence through template switching (Figure 1 and S1). Using Seq-Well S^3, we obtain 387 

a 5-10 fold increase in the number of unique molecules captured from cells at similar sequencing 388 
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depth relative Seq-Well v1 (Figures 1, S1 and S2) (Gierahn et al., 2017). Beyond aggregate 389 

increases in the number of transcripts recovered per-cell, the improvements in sensitivity made 390 

possible by Seq-Well S^3 enable enhanced detection, and thus deeper examination, of lineage-391 

defining factors in immune and parenchymal cells – such as transcription factors, cytokines, and 392 

cytokine receptors among lymphocytes (Figure 1 and S2) – which are often transiently or lowly 393 

expressed (Zhu et al., 2010). Among CD4+ T cells isolated from PBMCs, for example, we 394 

observed rates of gene detection similar to those observed in Smart-Seq2, a best-in-class 395 

microtiter plate-based method (Figure 1F-G and S2F).  396 

Similarly, using Seq-Well S^3, we report improved paired detection of a and b TCR 397 

sequences from T cells in peripheral blood and tissue biopsies (Figures 3G and S4C). Among 398 

CD4+ T cells from PBMCs, we recover paired TCR a and b constant genes in 87.1% of cells. 399 

Together with targeted enrichment, amplification and sequencing, we anticipate that Seq-Well 400 

S^3 will enable improvements in TCR reconstruction and deep characterizations of clonotype-401 

phenotype relationships at scale (Zhang et al., 2018). Collectively, our validation experiments 402 

show that Seq-Well S^3 significantly augments the amount of information that can be recovered 403 

in massively-parallel scRNA-seq experiments, enabling high-resolution profiling of low-input 404 

biopsy samples at scale. 405 

With this enhanced method, here, we move towards a draft atlas of human skin 406 

inflammation by creating a compendium of cell-types and states for the broader research 407 

community (Regev et al., 2018). Through use of Seq-Well S^3, we survey, at unprecedented 408 

resolution, the diversity of cell-types and states – e.g., among tissue resident T cells and myeloid 409 

cells – present across multiple types of skin inflammation. For example, GA and leprosy are two 410 

granulomatous diseases characterized by aggregates of lymphocytes and macrophages within 411 

the dermis, which are both thought to arise from a delayed-type hypersensitivity response to M. 412 

leprae infection (leprosy) and an unknown agent (GA) (Modlin et al., 1984; Terziroli Beretta-Piccoli 413 
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et al., 2018). Here, we find that both are characterized by the presence of T cell sub-cluster 0 414 

(Immature CD8+ CTL) and T cell sub-cluster 8 (mature CTL effectors containing CD8+ T-CTL, gd 415 

and NK cells; Figure 3). Although both conditions contain CD163+ dermal macrophages and 416 

various DC subpopulations, M1-like macrophages were present only in leprosy, which host the 417 

intracellular pathogen M. leprae, were present only in leprosy (Fulco et al., 2014; Verreck et al., 418 

2004).  Moreover, GA uniquely contained specific populations of fibroblasts expressing SPOCK1, 419 

CRLF1, and COMP (Figure S5), which likely reflect remodeling of the dermis with mucin 420 

deposition and alternation of elastin fibers (Piette and Rosenbach, 2016; Yun et al., 2009).  421 

Acne, meanwhile, is an inflammatory disease thought to arise in response to infection with 422 

P. acnes, resulting in the formation of lesions that resemble a wound following eruption of the hair 423 

follicle into the dermis (Beylot et al., 2014). Here, we observe 2 clusters of endothelial cells marked 424 

by expression of SLC9A3R2, a marker of endothelial homeostasis, and a signature of proliferation 425 

(Venule clusters 3 and 4, Figure S5).  This increased angiogenesis and endothelial proliferation 426 

is most consistent with the proliferative phase of wound healing in acne (Holland et al., 2004).  427 

Alopecia areata and psoriasis both arise from autoimmune and autoinflammatory 428 

processes, yet there were distinct differences in their underlying cell states. For example, alopecia 429 

areata is thought to be driven by a population of CD8+ T cells that target hair follicles (Xing et al., 430 

2014). Notably, in alopecia, we report a sub-cluster of T cells characterized by expression of 431 

PDE4D (Figure 3). PDE4 inhibitors have recently shown demonstrated efficacy in the treatment 432 

of alopecia (Keren et al., 2015; López et al., 2017), and it is intriguing to speculate that these 433 

inhibitors might work by targeting this subset of T cells.  434 

In psoriasis, T cells are thought to be a primary driver of inflammation, with dendritic cells 435 

playing a central role in the recruitment and polarization of T cells that contribute to the 436 

hyperproliferation of keratinocytes in the disease (Lowes et al., 2014). In both patients with 437 

psoriasis, we report a sub-cluster of DCs (IRF4+ cDC2) that display elevated expression of 438 
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CCL17, CCL22 and IL12B (Figure 4G and Figure S4I). Importantly, a similar population of dermal 439 

cDC2 cells has recently been shown to drive psoriatic inflammation in mice and humans through 440 

the recruitment of inflammatory T cells (Kim et al., 2018; Zaba et al., 2010). Although we detected 441 

a diversity in T cell subtypes in psoriatic lesions, we note few Th-17-like cells (Hawkes et al., 442 

2018).  443 

Leveraging the increased sensitivity of Seq-Well S^3, we performed pseudo-time 444 

correlation analysis to uncover an altered differentiation trajectory of keratinocytes compared to 445 

normal skin (Figure 5 and S6). From our pseudo-time correlation analysis, we detected FOSL1 446 

as a putative transcription factor involved in psoriatic differentiation, a finding which we validated 447 

through immunofluorescent staining of healthy and psoriatic skin (Figure 5G).  Further, previous 448 

studies using in vitro keratinocyte based systems have suggested that more differentiated 449 

keratinocytes were the main responders to IL-17A, given larger effect sizes in differentiated 450 

compared to monolayer keratinocyte (Chiricozzi et al., 2014). Using data generated with Seq-Well 451 

S^3 cross-analyzed against an IL-17 response signature in keratinocytes, we show that IL-17 452 

responses are observed in keratinocytes from all layers of the epidermis, but that these responses 453 

are stronger in keratinocytes derived from more differentiated layers of the psoriatic epidermis 454 

(Figure S6C). This observation is corroborated by co-localization of the IL-17 receptor subunits 455 

(IL-17RA/IL-17RC) in the upper layers of psoriatic epidermis (Figure 5H).  456 

In conclusion, we describe a powerful massively-parallel scRNA-Seq protocol that enables 457 

improved transcript capture and gene detection from low-input clinical samples. Here, Seq-Well 458 

S^3 provides novel insights into putative mechanisms and the cellular localization of previously 459 

appreciated and unknown responses to specific inflammatory mediators in immunologic skin 460 

conditions in a fashion not previously achievable. Increases in the sensitivity of gene and 461 

transcript detection are increasingly important as single-cell atlasing efforts shift from detection of 462 

large differences between cell types within normal tissue to identification of subtle differences in 463 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/689273doi: bioRxiv preprint 

https://doi.org/10.1101/689273
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell state across cell types within diseased tissues. The increased sensitivity of gene detection 464 

and transcript capture afforded by S^3 enhances the strength of inferences that can be drawn 465 

from these types of single-cell data, as evidenced by the range of immune, stromal and 466 

parenchymal cell states uncovered in human skin inflammation. The S^3 protocol is easy to 467 

integrate into current bead-based RNA-Seq platforms, such as Drop-Seq, making it broadly useful 468 

for the single-cell community, particularly in the setting of human disease. Importantly, S^3’s 469 

increases in library complexity and sequencing efficiency reduce costs relative to plate-based 470 

protocols, and providing researchers with a powerful and cost-effective alternative to commercial 471 

solutions in a format that can be deployed almost anywhere.   472 
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Figure 1. Overview of Second Strand Synthesis (S^3) 711 

A. Conceptual illustration of the molecular features that define immune phenotypes – including 712 
transcription factors, cytokines and receptors – as well as the Seq-Well second-strand synthesis 713 
method (Seq-Well S^3) and how it improves detection of key genes and transcripts.  714 

B. Scatterplot showing differences in per-cell transcript capture (y-axis) as a function of aligned 715 
reads per cell (x-axis) between 10x Genomics v2 (10x v2, grey) and Seq-Well S^3 (black). Red 716 
line indicates uniform line where transcripts per cell and aligned reads would be equivalent.  717 

C. Scatterplot shows the differences in per-cell gene detection (y-axis) as a function of aligned 718 
reads per cell (x-axis) between 10x v2 (grey) and Seq-Well S^3 (black).  719 

D. Scatterplot comparing gene detection rates in CD4+ T cells between 10x v2 (x-axis) and Seq-720 
Well S^3 (y-axis). Black line indicates point of equivalence in gene detection frequency between 721 
methods. Colors correspond to classes of genes including transcription factors (blue), cytokines 722 
(magenta), and receptors (green). 723 

E. Scatterplot comparing gene detection frequency (y-axis) between Seq-Well S^3 (positive 724 
values) and 10x v2 (negative values) as a function of the aggregate expression levels (log(scaled 725 
UMI + 1)) of an individual gene (x-axis). Black line indicates point of equivalence in gene detection 726 
frequency between methods. Colors correspond to classes of genes including transcription 727 
factors (blue), cytokines (magenta), and receptors (green). 728 

F. Violin plot (boxplots median +- quartiles) showing the distribution of per-cell transcript capture 729 
for Seq-well S^3 (blue; n = 1,485), 10x v2 (red; n = 2995), and Smart-Seq2 (black, n = 382).  730 

G. Scatterplot showing the relationship between aligned reads and genes detected per cell 731 
between Seq-Well S^3 (blue), 10x v2 (red) and Smart-Seq2 (black) in sorted PBMC CD4+ T cells. 732 

H. Violin plots showing the distribution of normalized expression values for select transcription 733 
factors, cytokines and cytokine receptors between Seq-Well S^3 and 10x v2.   734 
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Figure 2. Cell Types Recovered across Inflammatory Skin Conditions 735 

A. (Top-Left) Diagram illustrating the anatomic organization and major features of human skin. 736 
(Top-Right) Cell-type composition of the epidermis and dermis. (Bottom) Sample processing 737 
pipeline used to generate a collection cellular states across skin inflammation.  738 

B. (Left) UMAP plot for 20,308 cells colored by cell-type cluster. (Right) Stacked barplot showing 739 
the cell-type composition for each of the nine skin biopsies.  740 

C. (Left) UMAP plot for 20,308 cells colored by inflammatory skin condition. (Right) Stacked 741 
barplot showing the proportion of cells from each skin condition within phenotypic clusters.  742 
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Figure 3. Identification of Inflammatory T cell States using Seq-Well S^3 743 

A. (Left) Force-directed graph (Fruchterman Reingold) of 2,908 T cells colored by the nine 744 
phenotypic sub-clusters identified by Louvain clustering. (Right) Stacked barplots showing the 745 
distribution of these T cell sub-clusters within each skin biopsy.  746 

B. (Left) Force-directed graph of 2,908 T cells colored by inflammatory skin condition. (Right) 747 
Stacked barplots showing the contribution of each inflammatory skin condition to the T cell sub-748 
clusters.  749 

C. T cell force-directed graphs displaying normalized expression (log(scaled UMI + 1)) of a 750 
curated group of sub-cluster-defining gene. Higher expression values are shown in black.  751 

D. Heatmap showing normalized gene expression values (log(scaled UMI + 1)) for a curated list 752 
of sub-cluster-defining genes across nine T cell sub-clusters.  753 

E. Heatmap showing the rate of detection for lineage-defining transcription factors, cytokines, and 754 
cytokine receptors across T cell phenotypic clusters. 755 

F. Heatmap showing average expression of genes enriched across T cells by inflammatory skin 756 
condition (row-normalized average expression values).  757 

G. Plot showing rates of detection of TCR genes from human skin T cells across a range of 758 
sequencing depths.  759 

H. Heatmap showing normalized gene expression values (log(scaled UMI + 1)) for genes enriched 760 
in sub-group analysis of T cell sub-cluster 8.  761 
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Figure 4. Diverse Myeloid Cell States Uncovered using Seq-Well S^3  762 

A. (Left) Force-directed graph of 2,371 myeloid cells colored by five phenotypic sub-clusters (NB, 763 
Langerhans cells were enriched from leprosy and normal skin). (Right) Stacked barplots showing 764 
the distribution of myeloid sub-clusters within each skin biopsy.  765 

B. (Left) Force-directed graph of 2,371 myeloid cells colored by inflammatory skin condition. 766 
(Right) Stacked barplots showing the contribution of each inflammatory skin condition to each 767 
myeloid sub-cluster.  768 

C. Force-directed graphs of 2,371 myeloid cells that highlighting expression of a curated group of 769 
sub-cluster defining genes (log(scaled UMI + 1)). 770 

D. Heatmap showing the normalized expression (log(scaled UMI + 1)) of a curated list of myeloid 771 
cell-type cluster-defining genes. 772 

E. Volcano plot showing genes differentially expressed in Langerhans cells between leprosy (ncells 773 
= 56) and normal skin (ncells = 120). Log10-fold change values are shown on the x-axis and -log10 774 
adjusted p-values are shown on the y-axis.  775 

F. Heatmaps showing the normalized expression (log(scaled UMI + 1)) of mast-cell proteases 776 
across inflammatory skin conditions.  777 

G. Heatmap showing detection frequencies for transcription factors, surface receptors, and 778 
cytokines across DC sub-populations.   779 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/689273doi: bioRxiv preprint 

https://doi.org/10.1101/689273
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
Stratum corneum

Stratum basale

Stratum lucidum
Stratum granulosum

Stratum
spinosum

B

D E
KRT14

FLG

F G APOBEC3FOSL IL36G TNFAIP3

Normal Uninvolved Psoriatic

Normal Psoriasis
Pseudotime Correlation Values

C

Figure 5. 

UMAP 1

U
M

AP
 2

N
or

m
al

Ps
or

ia
tic

H

KRT14

FLG

IL-17R
DAPI

Normal Keratinocyte Differentiation Trajectory

Differentiating Terminal

SPRR2E
APOBEC3A

KRT16
SPRR2A
CDKN1A

FOSL1
CCL20

RNF144B
KRT6B
NDRG1
KRT6C

NFKBIA
EIF4A3
DDIT4
KLF6

HCAR3
PNRC1

ZNF217
ARL14

S100A9

IL33
PSAT1
TLCD1

SREBF1
ACAT2

CFD
COX6B1

MLEC
PLEKHA5

SCP2
AP1B1
DDAH2
RAI14

C14orf132
ALDOC
DEGS1
USP54
SERF2

PLXNA2
SLC26A2

-0.6 -0.3 0 0.3 0.6

G
en

es

Acne Alopecia GA Leprosy

Normal Psoriasis

Terminal

Basal

Basal

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/689273doi: bioRxiv preprint 

https://doi.org/10.1101/689273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Keratinocyte Differentiation Trajectories 780 

A. Diagram showing the layers of the epidermis and morphologic changes associated with 781 
keratinocyte differentiation.  782 

B. UMAP embedding of 20,308 cells with all keratinocyte and hair follicle populations highlighted 783 
in blue.  784 

C. Diffusion map of 5,141 keratinocytes colored by inflammatory skin condition. Axes correspond 785 
to diffusion components.   786 

D. t-SNE plot showing differentiation trajectory of keratinocytes from normal skin from basal cells 787 
(yellow) through differentiating cells (aqua) and terminal keratinocytes (purple). 788 

E. (Top-left) tSNE plot of normal keratinocytes with normalized KRT14 expression values 789 
overlayed. (Top-right) Immunohistochemistry staining showing the expression of KRT14 from the 790 
human protein atlas (Uhlén et al., 2015). (Bottom-left) tSNE plot of normal keratinocytes with 791 
normalized FLG expression values overlayed. (Bottom-right) Immunohistochemistry staining of 792 
FLG from the human protein atlas(Uhlén et al., 2015). Scale bars = 50 microns. 793 

F. Stacked barplot showing genes with the highest differential pseudo-time correlation between 794 
normal keratinocytes (blue) and psoriatic keratinocytes (red) sorted by correlation values in 795 
psoriatic keratinocytes. Correlation values shown on the x-axis represent Pearson correlation 796 
coefficients between normalized gene expression and diffusion pseudotime. 797 

G. (Top) Immunofluorescence staining in normal (above) and psoriatic (below) for FOSL, IL36G, 798 
TNFAIP3, and APOBEC3. All images stained for nuclei (DAPI) and gene of interest (Red 799 
Fluorescence). Scale bar = 100 microns. 800 

H. Immunofluorescence staining for IL-17R expression (green) in normal (left), uninvolved 801 
(middle), and psoriatic skin (right). Scale bar = 100 microns.   802 
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Supplementary Figure 1. Second-Strand Synthesis Overview, related to Figure 1 803 

A. Illustration of the second strand synthesis procedure: (1) mRNA is captured via poly-T priming 804 
of poly-adenylated mRNA; (2) First strand synthesis is performed to generate single-stranded 805 
cDNA template on bead-bound sequences; (3) Successful template switching: The use of 806 
enzymes with terminal transferase activity generates a 3’ overhang of 3 cytosines. Template 807 
switching utilizes this overhang to append the SMART sequence to both ends of the cDNA 808 
molecule during first strand synthesis. Failed Template Switching: If template switching fails, this 809 
results in loss of previously primed and reverse transcribed mRNA molecules; (4) mRNA template 810 
is chemically denatured using 0.1M NaOH; (5) Second strand synthesis is performed using a 811 
random-octamer with the SMART sequence in the 5’ orientation; and, (6) Following second strand 812 
synthesis, PCR amplification, library preparation and sequencing are performed to generate data. 813 

B. Scatterplots show the relationship between transcript detection (y-axis) and number of aligned 814 
reads per cell (x-axis) for an initial experiment (top) series of optimization conditions using 815 
HEK293 and NIH-3T3 cell lines (botttom). 816 

C. Scatterplots that illustrate the relationship between number of transcripts detected (y-axis) and 817 
number of aligned reads per cell (x-axis) between Seq-Well V1 and Seq-Well S^3 in sequencing 818 
experiments for an initial experiment (top) and a series of optimization experiment using human 819 
PBMCs (bottom).  820 

D. Histograms that show the fraction of transcripts uniquely mapped to the human genome for 821 
each cell for Seq-Well V1 (Top) and Seq-Well S^3 (Bottom). Colors indicate species classification 822 
for cells with at least 90% purity of human (blue) or mouse (red) mapping.  823 
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Figure S2. 
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Supplementary Figure 2. PBMC Methods Comparisons, related to Figure 1 824 

A. t-SNE plot showing detected cell-types among PBMCs including CD4+ T cells (green), 825 
CD8+/NK Cells (blue), B cells (purple), and Monocytes (red) using 10X v2 and Seq-Well S^3. Cells 826 
recovered using Seq-well are colored with darker shades. 827 

B. Stacked barplots show the proportion of cell types recovered using Seq-Well S^3 (left) and 828 
10X v2 (right).  829 

C. Top: Violin plots (boxplots median +- quartiles) showing the distribution of per cell gene 830 
detection from Seq-Well S^3 (left) and 10X v2 (right). Bottom: Violin plots (boxplots median +/- 831 
quartiles) showing the distribution of per cell-gene detection from Seq-Well S^3 (left) and 10X v2 832 
(right).  833 

D. Scatterplots showing a comparison of gene detection frequencies between Seq-Well S^3 (y-834 
axis) and 10x v2 (x-axis) for each cell type.  835 

E. Scatterplots showing the difference in gene detection between Seq-Well S^3 and 10X v2 (y-836 
axis) as a function of average normalized expression (log(scaled UMI + 1)) (x-axis).  837 

F. Scatterplots showing a comparison of gene detection frequencies among sorted CD4+ T cells 838 
between (Left) Seq-well S^3 (y-axis) and 10x v2 (x-axis), (Middle) Seq-Well S^3 (y-axis) and 839 
Smart-Seq2 (x-axis), and (Right) 10x v2 (y-axis) and Smart-Seq2 (x-axis).   840 
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Supplementary Figure 3. Overview of Samples, related to Figure 2 841 

A. UMAP plot for 20,308 cells colored by 33 cell type cell type clusters (Louvain Resolution: 2.0).  842 

B. Heatmap showing the relative expression of cell-type defining gene signatures across 20,308 843 
cells.  844 

C. Dendrogram of hierarchical clustering shows similarity of cell type clusters among top 25 845 
cluster-defining genes (Figure S3B).  846 

D. t-SNE plots for each of the nine skin biopsies colored by generic cell type. 847 

E. Violin plots show the distribution of per-cell quality metrics displayed in UMAP embedding of 848 
20,308 cells colored by colored generic cell-type classification (Figure 2B).   849 
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Supplementary Figure 4. Immune Cell Heterogeneity, related to Figures 3 and 4 850 

A. (Top) Force-directed graph of 2,903 T cells colored by T cell sub-cluster. (Bottom)  Heatmap 851 
of gene-set enrichment scores based on comparison of T cell phenotypic sub-clusters to a curated 852 
list of reference signatures in the Savant database. 853 

B. Sub-grouping results for (top) T cell sub-cluster 0 and (bottom) T cell sub-cluster 8. For each 854 
analysis, t-SNE plots colored by inflammatory skin condition (top-left) and sub-cluster (bottom-855 
left) are shown. For each clusters, heatmaps show gene expression patterns across T and NK 856 
cells sub-types (right).  857 

C. (Top) Detection rates for TCR genes for PBMCs in Seq-Well v1, 10x v2. and Seq-Well S^3. 858 
(Bottom) Detection frequency of TCR V-J (e.g. TRAV/J and TRBV/J) genes in CD4+ T cells from 859 
peripheral blood between Seq-Well S^3 (y-axis) and 10x v2 (x-axis). Colors correspond to TRAJ 860 
(red), TRAV (green), TRBJ (blue), and TRBV (purple) genes.  861 

D. Force-directed graph of 2,371 myeloid cells colored by myeloid phenotypic sub-clusters.  862 

E. Heatmap of gene-set enrichment scores based on comparison of myeloid phenotypic sub-863 
clusters to a curated list of reference signatures in the Savant database.  864 

F. (Left) UMAP plot for 502 dendritic cells from human skin colored by phenotypic sub-grouping. 865 
(Right) Stacked barplot showing composition of dendritic cells within each of nine skin biopsies 866 
by DC sub-cluster.  867 

G. (Left) UMAP plot for 502 dendritic cells from human skin colored by inflammatory skin 868 
condition. (Right) Stacked barplot showing contribution of inflammatory skin conditions to each 869 
dendritic cell sub-grouping. 870 

H. Heatmap showing average signature score across 5 dermal DC populations based on dendritic 871 
cell signatures from Villani et al. Science 2017. 872 

I. Heatmap showing the distribution of normalized gene expression levels (log(scaled UMI + 1)) 873 
for cluster-defining genes across dermal DC subpopulations.  874 

J. UMAP plots colored by normalized expression levels for DC sub-grouping-defining genes.  875 
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Figure S5.
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Figure S5. Stromal Cell Diversity 876 

A. Force-directed plots for 4,996 endothelial cells colored by phenotypic sub-cluster (left) and 877 
stacked barplot showing the distribution of endothelial phenotypic sub-clusters across samples 878 
(right). 879 

B. Force-directed plots for 4,996 endothelial colored by inflammatory skin condition (left) and 880 
stacked barplot showing the contribution of each inflammatory skin condition to endothelial 881 
phenotypic sub-clusters.  882 

C. Forced-directed plot colored by normalized expression level of genes that mark endothelial cell 883 
types: (Left) CD93, venules, (Middle) TAGLN, arterioles, (Right) LYVE1, lymphatics.  884 

D. Heatmap showing patterns of normalized gene expression levels (log(scaled UMI + 1)) across 885 
7 clusters of endothelial cells. 886 

E. Heatmap showing row-normalized expression levels of vascular addressins across phenotypic 887 
sub-clusters of endothelial cells.  888 

F. Force-directed plots for 4,189 fibroblasts colored by phenotypic sub-cluster (left) and stacked 889 
barplot showing the distribution of fibroblast phenotypic sub-clusters across samples (right). 890 

G. Force-directed plots for 4,189 fibroblasts colored by inflammatory skin condition (left) and 891 
stacked barplot showing the contribution of each inflammatory skin condition to fibroblast 892 
phenotypic sub-clusters.  893 

H. Force-directed graphs highlighting fibroblast cluster defining genes.  894 

I. Heatmap showing the normalized gene expression levels (log(scaled UMI + 1)) of fibroblast 895 
cluster-defining genes.  896 
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Figure S6. 
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Supplementary Figure 6. Keratinocyte Differentiation Trajectories, related to Figure 5 897 

A. (Left) Heatmap showing enrichment of genes along pseudo-temporal trajectories for normal 898 
keratinocytes. (Right) Heatmap showing enrichment of genes along pseudo-temporal trajectories 899 
among psoriatic keratinocytes.  900 

B. Differentiation trajectories for Normal (left) and Psoriatic (right) keratinocytes.  901 

C. Violin plots showing localization of cytokine response signatures in basal, differentiating and 902 
terminal keratinocytes for Normal (left) and Psoriatic (right) keratinocytes. 903 
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