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Abstract

Understanding the correlation structure associated with multiple brain measurements informs about potential “functional group-
ings” and network organization. The correlation structure can be conveniently captured in a matrix format that summarizes the
relationships among a set of brain measurements involving two regions, for example. Such functional connectivity matrix is an
important component of many types of investigation focusing on network-level properties of the brain, including clustering brain
states, characterizing dynamic functional states, performing participant identification (so-called “fingerprinting), understanding
how tasks reconfigure brain networks, and inter-subject correlation analysis. In these investigations, some notion of proximity or
similarity of functional connectivity matrices is employed, such as their Euclidean distance or Pearson correlation (by correlating
the matrix entries). Here, we propose the use of a geodesic distance metric that reflects the underlying non-Euclidean geometry of
functional correlation matrices. The approach is evaluated in the context of participant identification (fingerprinting): given a par-
ticipant’s functional connectivity matrix based on resting-state or task data, how effectively can the participant be identified? Using
geodesic distance, identification accuracy was over 95% on resting-state data, and exceeded the Pearson correlation approach by
20%. For whole-cortex regions, accuracy improved on a range of tasks by between 2% and as much as 20%. We also investigated
identification using pairs of subnetworks (say, dorsal attention plus default mode), and particular combinations improved accuracy
over whole-cortex participant identification by over 10%. The geodesic distance also outperformed Pearson correlation when the
former employed a fourth of the data as the latter. Finally, we suggest that low-dimensional distance visualizations based on the
geodesic approach help uncover the geometry of task functional connectivity in relation to that during resting-state. We propose
that the use of the geodesic distance is an effective way to compare the correlation structure of the brain across a broad range of
studies.

1. Introduction

Measurements of brain activity are acquired across mul-
tiple sensors or spatial locations, such as those obtained by
electro/magneto-encephalography, electrophysiology record-
ings, calcium imaging, or functional magnetic resonance imag-
ing (fMRI) data. Understanding the correlation structure as-
sociated with multiple brain measurements is a central goal in
neuroscience, as it informs about potential “functional group-
ings” and network structure [21, 26]. The correlation structure
can be conveniently captured in a matrix format that captures
the relationships among a set of brain measurements. For exam-
ple, in the case of fMRI, each entry of the matrix might contain
an estimate of the functional connectivity (FC) between regions
i and j, typically computed as the correlation between the time
series data of the two regions in question.

In recent years, the FC matrix has become an important
component of many types of investigation focusing on network-
level properties of the brain, particularly in fMRI. For example,
it has been used to cluster brain states [2], characterize dynamic
functional states [14], perform participant identification [10],
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and understand how tasks reconfigure brain networks [24]. In
these applications, some notion of proximity or similarity of
FC matrices is employed (Figure 1A). How should similarity be
gauged? An intuitive approach is to “unroll” the FC matrix into
a vector and compute the Pearson correlation between the ma-
trices themselves. Thus if, say, two brain states captured by FC
matrices are similar (for example, during two similar perceptual
conditions), their matrices would be (relatively) highly corre-
lated. Indeed, the correlation approach has yielded impressive
results, such as successfully identifying a participant out of a
large group of participants based on FC matrix similarity (fin-
gerprinting; [10, 9]). Related approaches include computing the
Euclidean (L2) distance between the vectorized matrices [22],
or using the so-called Manhattan (L1) distance [2].

FC matrices computed by Pearson correlating time series
data are objects that lie on a non-linear surface (technically
known as a manifold) called the positive semidefinite cone:
their geometry is non-Euclidean. Accordingly, distances be-
tween Pearson FC matrices must be measured along the sur-
face of the cone (Figure 1B). In addition, FC matrices are often
high dimensional, and the proximity measure adopted is criti-
cal since noisy dimensions can contribute substantially to the
measure [1].
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Fig. 1: Functional connectivity matrices and their underlying geometry. A. Similarity of functional connectivity (FC) matrices. Is the FC matrix X more similar to
A or B? This question arises when the goal is to determine the task being being performed, the mental state, or the participant. B. Illustration of geodesic distance
(magenta, solid) and Euclidean distance (blue, dashed) on the so-called positive semidefinite cone. The geodesic and Euclidean distances between two points can
differ substantially. C. Is X, Alice or Bob? Equivalently, is the FC X more similar to that of Alice or Bob? Identification involves mapping an unknown participant’s
data to one of the participants in the database (only two in this case). In this example, X is correctly labeled as Alice using geodesic distance, but incorrectly labeled
as Bob using Pearson dissimilarity.

In the present paper, we characterized the advantages of us-
ing a geodesic proximity measure between FC matrices. We
apply the approach to the problem of participant identification:
Given resting-state or task data, is it possible to determine a
participant from her FC matrix [10]? We show that using the
geodesic distance, a non-Euclidean distance metric that consid-
ers the manifold on which the data lies, improves participant
identification compared to a similarity measure based on Pear-
son correlation (Figure 1C). The improvement is shown to be
non-trivial and consistent across resting-state and task condi-
tions.

We also investigate how distances between high-
dimensional FC matrices can be effectively visualized in
low-dimensional spaces. Such visualization reflected iden-
tification accuracy based on the full-dimensional data, and
thus retained important distance information. We suggest that
visualization in lower dimensions aids in understanding the
geometry of task FC structure in relation to resting-state FC.

2. Methods

2.1. Human Connectome Project Data

We utilized data from N = 100 unrelated participants from
the Human Connectome Project (HCP) of the 1200-participant
release [7]. Data from resting-state and seven tasks were em-
ployed: emotion processing (EM), gambling (GB), language
(LG), motor (MT), relational processing (RL), social cognition
(SO), and working memory (WM). Throughout the paper, we
refer to resting-state plus the tasks as conditions. For a descrip-
tion of the tasks and scan parameters, see [4]. Data were col-
lected with a repetition time (TR) of 720 ms.

During each run, stimuli were presented in separate blocks
often interleaved with fixation blocks. Some task runs also con-
tained cues. To retain only task-related segments of the run,
extraneous segments were trimmed. To account for hemody-
namic lag, the first four TRs of the block were not used, and the
first four TRs following the end of the block were used. Emo-
tional processing, working memory, and motor tasks contained
3-second cues at block onset. Accordingly, to account for the
cue response and the hemodynamic lag, data from 12 seconds
after the cue onset to 3 seconds after the end of the block were
used. Time course length for each condition before and after
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trimming is provided in Table 1. Note that trimming the fixa-
tion periods is important in characterizing participant identifica-
tion from task data, because fixation periods behave much like
“mini resting periods” that can potentially provide information
regarding the participant.

2.2. Preprocessing

Task data were part of the “minimally preprocessed” re-
lease, which included gradient unwarping, fieldmap-based EPI
distortion correction, brain-boundary-based registration of EPI
to structural T1-weighted scan, non-linear registration, and in-
tensity normalization [12]. Cortical data were mapped to a
surface representation and utilized here. In addition, we re-
gressed out 12 motion-related variables (6 translation parame-
ters and their derivatives) and low frequency signal changes us-
ing the 3dDeconvolve program of the AFNI package [6] (with
the ortvec and polort options). Resting-state also followed
the so-called minimal preprocessing pipeline, in addition to de-
noising using ICA-FIX [25], as provided with the data distribu-
tion. Cortical data were mapped to a surface representation. No
further preprocessing was performed.

2.3. Regions of interest and organization into subnetworks

For simplicity, we focused on cortical regions of interest
(ROIs) only. We used the local-global Schaefer cortical parcel-
lations that divide the cortex into 300 ROIs [23] (throughout the
text, we refer to it as “whole-cortex”). A summary ROI-level
time series was obtained by averaging signals within the region.
We then used the Yeo 7-network parcellation to group the
ROIs into 7 subnetworks known as visual, somatomotor,

dorsal attention, ventral attention, limbic,

frontoparietal, and default mode [29]. The number of
ROIs within each of the subnetworks is provided in Table 2.
The ROIs and the grouping into 7 networks is shown in
Figure S1. Some of the effects of varying the number of ROIs
are described in the supplemental material (Section S1).

2.4. Functional connectivity

Functional connectivity was computed by Pearson correlat-
ing time series data between every pair of ROIs, resulting in
300 × 300 FC matrices. A symmetric matrix S that satisfies
y′S y ≥ 0 (where y′ is the transpose of y) for any non-zero vector
y is said to be positive semidefinite and has eigenvalues greater
than or equal to zero. After normalizing the time series of each
ROI to unit variance, let xt = (xt,1, xt,2, . . . , xt,300) be the vector
of activations of all ROIs at time t for t = 1, 2, . . . ,T . If we
denote the mean across as x̄, the covariance matrix is given by

Q =
1
T

T∑
t=1

(xt − x̄)(xt − x̄)′. (1)

Note that the (i, j) entry of Q is simply the Pearson correlation
coefficient between the time series of regions i and j. For any

non-zero vector y of dimension 300,

y′Qy = y′
 1

T

T∑
t=1

(xt − x̄)(xt − x̄)′
 y

=
1
T

T∑
t=1

y′(xt − x̄)(xt − x̄)′y

=
1
T

T∑
t=1

(
(xt − x̄)′y

)2
≥ 0.

Thus, covariance matrices are positive semidefinite.
If Q1 and Q2 are two FC matrices, it can be easily shown

following the steps above that αQ1 + βQ2 is also positive
semidefinite for α, β > 0. Thus, the set of all positive semidefi-
nite matrices lie on a cone referred to as the positive semidefinite
cone [5].

2.5. Geometry of functional connectivity matrices

Pearson correlation is often used to characterize the simi-
larity of FC matrices. However, as correlation matrices lie on
a non-linear space, a natural approach is to compute geodesic
distances between FC matrices to quantify their distance. The
geodesic distance between two points on the positive semidef-
inite cone, and thus between two FC matrices Q1 and Q2, is
the shortest path between them along the manifold [20]. There
exists only one geodesic path joining two such points.

For two functional connectivity matrices of size n× n (here,
n = 300 ROIs), their geodesic distance can be computed as
proposed in [20]:

dG(Q1,Q2) =

√
trace(log2(Q−

1
2

1 Q2Q−
1
2

1 )), (2)

where the matrix log operator is used here. Note that this def-
inition assumes that the matrix Q1 is invertible; when this was
not the case the identity matrix, I, was added as a perturbation
matrix to both Q1 and Q2 to ensure that all eigenvalues were

greater than 0 (see Section S2). If Q = Q−
1
2

1 Q2Q−
1
2

1 , and λi for
i = 1 to n are the n eigenvalues ≥ 0 of Q, the geodesic distance
is simply

dG(Q1,Q2) =

√√ n∑
i=1

(log(λi))2. (3)

From (3), it is clear that dG ≥ 0. In addition, if dG = 0, then
Q1 = Q2. It is also easy to verify that dG(Q1,Q2) = dG(Q2,Q1).
Thus, the geodesic distance applied to matrices meets the crite-
ria of a metric (see [11]).

If q1 and q2 are vectors obtained by stacking the columns of
Q1 and Q2, respectively, Pearson dissimilarity between the two
matrices is defined as

dP(Q1,Q2) =
1 − corr(q1, q2)

2
, (4)

where the corr function is the Pearson correlation coefficient.
Pearson dissimilarity ranges between 0 and 1 and is not a formal
metric because it does not satisfy the triangular inequality [27].
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Condition REST EM GB LG MT RL SO WM
Frames per full run 1200 176 253 316 284 232 274 405
Frames per trimmed run 1200 141 156 295-305 170 138 160 312

Table 1: Number of frames per run (in samples) before and after trimming fixation periods.

Subnetwork Visual SomatoMotor Dorsal Attention Ventral Attention Limbic FrontoParietal Default
Number of ROIs

100 17 14 15 12 5 13 24
200 29 35 26 22 12 30 46
300 47 57 34 34 20 40 68
400 61 77 46 47 26 52 91

Table 2: Number of ROIs in each subnetwork

2.6. Participant identification

Identification involves mapping an unknown participant’s
data to one of the participants in the database. Since each task in
the HCP data contains 2 runs for every participant, we used one
run as training data (that is, to form the database) and the other
run for testing. Identification was performed on each condition
(resting-state or task) separately.

Participant identification is equivalent to N-class classifica-
tion where the objective is to label an individual’s FC matrix
in the test data to one of the N participants in the training data.
To do so, we used a 1-Nearest Neighbor approach [10]: An FC
matrix in the test data is labeled with the participant identity of
the FC that is most similar to it in the training data. Suppose
Qtest

x is an unknown participant’s FC matrix. Then

label(x) = arg
N

min
i=1

d(Qtrain
i ,Qtest

x ), (5)

where Qtrain
i is the ith participant’s FC matrix in the training data

and d(·, ·) is a distance or similarity measure. Here we compare
the use of a geodesic distance metric to a Pearson dissimilarity
measure.

2.6.1. Identification accuracy
Participant identification was performed using the first run

as training data and the second run as testing data. For the N
participants in the testing data, accuracy was defined as

Accuracy =
Number of correctly labeled participants

Total number of participants
.

Then, the roles of the training and testing data were reversed
and accuracy was computed again. The reported identification
accuracy was the mean of the two accuracy values.

2.7. Bootstrapping

For participant identification statistics, one must confront
the non-independence between participants in the sample. Con-
sider the following case. If two participants’ FC matrices QA

and QB are close to each other, B might be mislabeled as A.

However, if A was not in the training database, it is conceiv-
able that B would have been labeled correctly. Therefore, the
entire group must be considered as the unit of interest; it is the
group that determines if identification performance will be poor
or good.

A convenient procedure to assess variability in identifica-
tion performance is to use bootstrap resamples, with each re-
sample comprising random draws with replacement of the urn
containing the group of participants. Thus, a bootstrap resam-
ple is a proxy for a group of participants, and variability can be
quantified by resampling it a large number of times.

More precisely, suppose a dataset of size N for a run is de-
noted by D. Let 0 ≤ fP(D) ≤ 1 and 0 ≤ fG(D) ≤ 1 be the
participant identification accuracy obtained using Pearson dis-
similarity and the geodesic distance, respectively. Let R j be
a dataset also of size N obtained by resampling D, with re-
placement, N times. Thus, R j is a bootstrap resample ofD and
may contain duplicate entries. The accuracy difference on this
bootstrap resample is given by δ(R j) = fG(R j) − fP(R j). Such
difference score is computed for M = 1000 bootstrap resam-
ples R1,R2, . . . ,RM and the mean difference score, δ̄, is com-
puted. This process (based on M resamples) provides exactly
one mean difference score. The question of interest is as fol-
lows: How are mean difference scores distributed? (Note that
this parallels the question of the distribution of the sample mean
in the setting of the standard Central Limit Theorem.) Since the
object of interest is the mean difference score, the procedure to
determine a specific δ̄ is repeated B = 1000 times, resulting in
{δ̄1, δ̄2, . . . , δ̄B} (that is, B mean differences).

Reported p-values were computed as follows. Because ac-
curacy differences are percentages, we initially applied a stan-
dard Fischer-z transformation to {δ̄1, δ̄2, . . . , δ̄B} so that their dis-
tribution would be approximately normal. To test the null hy-
pothesis H0 : δ̄ = 0, a one-sample t-test was then used.

2.7.1. Evaluating shorter data segments
To understand the effect of the length (or the number of

frames) of the run, we truncated runs to smaller segments. For
a particular segment length, 50 segments were obtained each of
which had a unique, randomly-chosen starting point in the run.
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The objective was to pick several segments of the same length
without favoring those that started at the beginning of the scan.
For each segment, 1000 bootstrap iterations were used to obtain
a mean accuracy score.

2.8. Multidimensional scaling

Naturally, visualizing distances between FC matrices is not
straightforward given their high dimensionality. Here, we used
non-metric multidimensional scaling to visualize distances in
three dimensions [15]. Whereas standard multidimensional
scaling computes the Euclidean distance between the high-
dimensional vectors of interest, non-metric multidimensional
scaling takes as input any dissimilary matrix of the form

D =


d1,1 d1,2 . . . d1,100
d2,1 d2,2 . . . d2,100
...

...
. . .

...
d100,1 d100,2 . . . d100,100


where di, j is the “distance between the FC matrices i and j
(N = 100 represents the number of participants). Here, either
the geodesic distance or Pearson dissimilarity was used. Given
D, non-metric multidimensional scaling finds a set of R3 vec-
tors such that the Euclidean distance between these vectors pre-
serves, to the extent possible, the high-dimensional distances:

ˆdi, j = ||xi − x j||
2
2 ≈ di, j

where the vectors x are low dimensional. Thus, if di, j =

d(Qi,Q j) is the distance between two FC matrices Qi and Q j,
and ˆdi, j is the distance in the lower-dimensional representation,
the output (set of points) is produced by minimizing the stress
function:

S =

√√√√√√√√∑
i< j

(di, j − ˆdi, j)2

∑
i< j

d2
i, j

.

The optimal distances, ˆdi, j, are obtained using a gradient de-
scent approach that minimizes the stress. The MATLAB 2018a
[17] implementation of mdscale with 1000 gradient descent it-
erations was used.

Note that the objective of using non-metric multidimen-
sional scaling was to represent in a more intuitive manner the
relationships between high-dimensional functional connectivity
matrices. Thus, points in the lower-dimensional representation
no longer lie on the positive semidefinite cone and closeness
should be interpreted in the Euclidean sense (two points are
close if their Euclidean distance is small). The visualizations,
approximate as they are, are only provided to aid understand-
ing, and are not part of the procedure to determine identification
accuracy.

2.9. Note on p-values

As discussed by many others recently, we do not view
“statistical significance dichotomous thresholds (for example,
p < 0.05) as the ultimate criterion in deciding whether a result

(a) (b)

(c) (d)

Fig. 2: Motivating functional connectivity geometry. (a) Identical Euclidean
distance does not imply identical geodesic distance. (c) Identical geodesic dis-
tance can yield very different Pearson dissimilarity. (b, d) Comparison of dis-
tances/similarity AB and AC in (a) and (c), respectively.

is “real” or not ([3, 18]). In any case, understanding variabil-
ity and the unlikeliness of a result provides some information.
Given that we compare geodesic distance to Pearson dissim-
ilarity across conditions and other parameters, some form of
correction for multiple comparisons is opportune. Accordingly,
we provide the uncorrected p-value as well as the Bonferroni-
corrected α level (which we call the “reference α”) so that the
reader can further gauge the “strength” of the finding. Again,
we do not advocate using the Bonferroni-corrected α in a di-
chotomous fashion, but provide it as an additional “reference
point for the reader.

3. Results

3.1. Motivation behind geodesic distance

We motivate the geodesic distance with simple examples
from the space of 2 × 2 FC matrices. Since FC matrices are
symmetric and positive semidefinite, they take the form

Q =

[
x y
y z

]
,

and satisfy x ≥ 0, y ≥ 0 and xy−z2 ≥ 0. Since the matrices have
only three unique entries, all points that satisfy these equations
can be plotted in three dimensions in Euclidean space, and form
a positive semidefinite cone (Figure 1B).
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In the first example, we considered three points on the cone
(i.e., three 2 × 2 FC matrices) A, B and C such that B and C
are equidistant from A in terms of the Euclidean distance (Fig-
ure 2a). If a tangent surface to the cone is drawn at A, the
point C is much closer to the tangent surface than B. Thus the
geodesic distance between A and C is larger than that between
A and B (Fig. 2b). In this case, Pearson dissimilarity is capable
of distinguishing the two distances.

To motivate why Pearson dissimilarity is problematic, con-
sider that the Pearson correlation between two vectors is equiv-
alent to the cosine of the angle between them after they have
been “centered” individually (that is, the mean of each vector
is subtracted from it) and normalized. Indeed, the computation
of Pearson correlation eliminates the contribution of the signal
mean, as can be readily seen in the following equation:

corr(x, y) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
,

where x and y are vectors. For FC matrices, such centering
which is implicit in Pearson correlation alters the eigenvalues
and the positive semidefiniteness of the matrix. Since the eigen-
values are the basis for computing geodesic distances, we see
that Pearson correlation in fact distorts the evaluation of simi-
larity between connectivity matrices (in relation to what is esti-
mated with the geodesic distance).

In a second illustrative example (Figure 2c), we consider
three points A, B and C on the cone such that B and C are
symmetrically on either side of A. By symmetry, A is equidis-
tant from B and C in terms of both the Euclidean distance and
geodesic distance. However, Pearson dissimilarity between the
two sets of points can be quite distinct. Suppose O is the origin
and ∠AOB = ∠AOC (where ∠ is the angle subtended between
A and B). However, because Pearson correlation mean centers
the vectors A and B, the correlation is related to mean-centered
vector angles that can be quite different from the original ones
(Figure 2d). In other words, if A, B, and C are vectors obtained
by centering A, B, and C, in most cases ∠AOB , ∠AOC. The
upshot is that measures of similarity based on Pearson correla-
tion do not correspond to actual distances between functional
connectivity matrices.

3.2. Geodesic distance and participant identification

Participant identification (N = 100) was performed on
each condition (resting-state and tasks) using two measures:
geodesic distance and Pearson dissimilarity (Methods 2.6). FC
matrices obtained from one run were used as training data and
matrices from the second run as testing data. Identification ac-
curacy for each condition is shown in Figure 3 (accuracy based
on chance would be 1%; see supplemental material for compar-
ison with accuracy values reported previously [10]).

To assess the robustness of the results and for statistical
comparisons between the two measures, identification was per-
formed on bootstrap resamples. For each bootstrap resample,
the difference between accuracy using geodesic distance and
Pearson dissimilarity was computed. A one-sample two-tailed

Fig. 3: Participant identification for the eight conditions using the geodesic dis-
tance and Pearson dissimilarity. Training and testing data were from the same
condition. Accuracy improved using the geodesic distance on each condition.
Error bars indicate standard error of the mean across bootstrap iterations. Ab-
breviations: EM, emotion processing; GB, gambling; LG, language; MT, mo-
tor; RL, relational processing; RS, resting-state; SO, social cognition; WM,
working memory.

t-test was then used to assess the null hypothesis that the dif-
ference distribution had zero mean (Methods 2.7). For each
condition, using the geodesic distance improved identification
accuracy over Pearson dissimilarity (p < 10−4 for all tasks; ref-
erence α = 0.05/8 = 0.00625 given 8 conditions; Table S1 and
Fig. S3). The mean improvement using geodesic distance was
around 8%, ranging from 2% (relational processing) to as much
as 19% (resting-state). For resting-state and the language con-
ditions, the accuracy obtained using the geodesic distance was
very hight and close to 95%.

3.3. Low-dimensional visualization of functional connectivity
matrices

Since FC matrices are high dimensional, multidimensional
scaling was used to visualize the distances between them in
three dimensions (Figure 4). For resting-state, FC matrices
within-participant geodesic distances between training and test-
ing were very small, whereas distances between different par-
ticipants were considerably larger, consistent with the high
identification accuracy. Visualization of Pearson dissimilar-
ity revealed similar characteristics, but the ratios of within- to
between-participant distances were not as large. In fact, using
Pearson dissimilarity resulted in participant 5 being mislabeled
as participant 2, for example.

For the emotional processing task, within-participant dis-
tances were not much smaller than between-participant dis-
tances even for the geodesic distance consistent with the lower
accuracy on this task. However, all participants in the randomly
chosen subset were still labeled correctly. Using Pearson dis-
similarity, two participants were mislabeled. In general, us-
ing the geodesic distance resulted in more favorable ratios of
within- to between-participant FC distances.
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(a) Resting-state

(b) Emotional processing

Fig. 4: Visualization of geodesic distance and Pearson dissimilarity. Dis-
tance/similarity between high-dimensional functional connectivity matrices
(300 × 300) was visualized in three dimensions using generalzied multi-
dimensional scaling. Training data (green) and testing data (red) were selected
from five random participants (numbers 1-5). Mislabeled participants are en-
circled in magenta. (A) Resting-state. (B) Emotional processing task. For
resting-state, within-participant geodesic distances were very small relative to
between-participant distances in the lower-dimensional representation (when
numbers labeling the participants overlapped, only one of them is visible).

3.4. Identification accuracy and time course length: resting-
state data

Since the length of the time course plays a key role in the
quality of the estimate of the FC matrix [16, 30], we sought
to characterize its effect on participant identification. Because
resting-state data had the longest time course (1200 TRs),
shorter segments varying from 100 to 1100 TRs (in steps of
100) were extracted. Accuracy improved with length for both
measures (Figure 5). Accuracy using the geodesic distance was
higher than Pearson dissimilarity for segment lengths greater
than 200 TRs (p < 10−4; reference α = 0.05/11 = 0.0045 given
11 segment lengths; Fig. S4). For segment length of 100 TRs,
accuracy using geodesic distance was still higher than Pearson
dissimilarity (but p = 0.051). Notably, the geodesic distance,
with segment lengths as short as 300 TRs, outperformed the
best accuracy using Pearson dissimilarity which was obtained
with the full time course (four times more data; p < 10−4; ref-
erence α = 0.05/11 = 0.0045 given 11 segment lengths).

3.5. Identification accuracy and time course length: task data
Although accuracy increased with segment length for rest-

ing state, length did not predict performance straightforwardly
(Figure 6A). In particular, working memory and language tasks

Fig. 5: Participant identification accuracy as a function of segment length for
resting-state data. Accuracy using geodesic distance exceeded Pearson dissim-
ilarity at each segment length (see text). Error bars indicate standard error of
the mean across bootstrap iterations.

had comparable time course lengths, but identification accu-
racy differed by as much as 10%. To probe this issue further,
runs were trimmed so that they all had the same duration (138
TRs, which was the length of the shortest task; for conditions
with more data, this target length was obtained by deleting time
points at the beginning and end of the data segment, thereby
retaining the middle part).

With time course length equated, accuracy still varied con-
siderably across tasks (Figure 6B). Accuracy obtained using
the geodesic distance exceeded that of Pearson dissimilarity for
all conditions except the gambling task (p = 1 for gambling,
p < 10−4 for all other tasks; reference α = 0.05/8 = 0.00625
given 8 conditions; Fig S5). Notably, although resting-state had
the highest identification accuracy when the entire time course
was used, it had the lowest identification accuracy when length
was equated across conditions.

3.6. Brain subnetworks and participant identification

Particular brain subnetworks are known to be engaged more
prominently, as well as exhibit enhanced functional connectiv-
ity, during particular tasks [21]. To evaluate performance based
on subsets of regions, ROIs were grouped into seven subnet-
works (Methods 2.3). Was the best subnetwork for identifi-
cation dependent on condition? Data for all conditions were
trimmed so that they had the same length (138 TRs; the limbic
subnetwork was excluded because identification accuracy was
less than 10% across conditions).

Using geodesic distance improved the accuracy across most
conditions for most subnetworks (Figure 7A). In particular, for
the visual, dorsal attention, frontoparietal and
default mode subnetworks, accuracy was comparable to that
obtained with the whole cortex. For example, the default

mode subnetwork produced accuracy over 90% for the lan-
guage task. The frontoparietal performance on resting-
state and emotion processing was close to 80%. Further in-
spection of Figure 7A revealed additional features of con-
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(a)

(b)

Fig. 6: Participant identification and time course length. (A) Accuracy based
on geodesic distance for resting-state and task conditions (time course length in
TRs in the inset). The magenta curve shows the accuracy for resting-state data
trimmed to segment lengths shorter and longer than those of task data (lengths
from left to right: 100, 125, 145, 170, 200, 300, 600, 900, and 1200 TRs). (B)
Accuracy when data was trimmed such that all conditions had the same time
course length (138 TRs). Error bars indicate standard error of the mean across
bootstrap iterations. Abbreviations: EM, emotion processing; GB, gambling;
LG, language; MT, motor; RL, relational processing; RS, resting-state; SO,
social cognition; WM, working memory.

dition/subnetwork combinations. For example, the visual

subnetwork was not very suitable for identification based on
resting-state data. Not surprisingly, the default mode subnet-
work performed well with resting-state data. Interestingly, the
frontoparietal subnetwork performed nearly as well with
resting-state data, too. These two subnetworks obtained even
higher identification accuracy during the language task.

To further evaluate performance of subnetworks, identifica-
tion accuracy was averaged across conditions (Figure 7B). By
using the geodesic distance, accuracy improved substantially,
with several subnetworks improving by over 20%. Except for
the somatomotor subnetwork, using the geodesic distance re-
sulted in improved performance (p = 0.996 for somatomotor,
p < 10−5 for all other subnetworks; reference α = 0.05/7 =

0.0071 given 7 subnetworks; see Fig. S6 for bootstrap dis-
tributions). The highest mean accuracies were observed in
the visual, dorsal attention, frontoparietal, and
default mode networks for both geodesic and Pearson mea-

sures, indicating that some subnetworks are more suitable than
others for participant identification.

Figure 8 displays geodesic identification accuracy for each
condition as a function of subnetwork size. Whereas the small-
est subnetwork (limbic) performed poorly for all conditions,
accuracy did not always increase with size. For example, the
dorsal attention and ventral attention subnetworks
have the same size, but the former produced considerably
higher accuracy on each condition (p < 10−12 for all condi-
tions; reference α = 0.05/8 = 0.00625 given the 8 conditions;
see Fig. S7 for bootstrap distributions). Across conditions, the
dorsal attention improved over the same-sized ventral

attention by over 20%. Of note, the somatomotor sub-
network was larger than all but the default mode subnet-
work, but it produced relatively low identification accuracy; at
the same time, the largest subnetwork (default mode), was
associated with consistently high accuracy across conditions.
Finally, no single subnetwork exhibited the highest accuracy
for all conditions. In fact, performance varied across condi-
tions, but also varied in particular ways across subnetworks
for each condition. Notably, the visual, textttdorsal atten-
tion, frontoparietal, and default mode subnetworks per-
formed consistently well. Similar trends were observed for the
Pearson dissimilarity measure but overall accuracy levels were
lower (Figure S12).

3.7. Combining subnetworks improved identification accuracy

As described, subnetworks had comparable (and sometimes
higher) identification accuracy than whole-cortex performance,
although subnetworks were associated with much smaller ma-
trices, of course. Could particular subnetworks be combined to
further improve identification? We tested this possibility by tar-
geting two subnetworks that exhibited high performance over-
all, namely frontoparietal and default mode (see Fig-
ure 7B). The combined network included all within-network
functional connections of course, but also all between-network
links (for example, a functional connection between a region
of the frontoparietal network and a region of the default
mode network). Accuracy using geodesic distance was superior
to Pearson dissimilarity (Figure 9; p < 10−15 for all conditions;
reference α = 0.05/8 = 0.00625 given 8 conditions; Figure S8).

Using geodesic distance, the combined subnetwork also
outperformed both the individual subnetworks on all condi-
tions except the language task (p = 0.24 for the language task,
p < 10−12 for all other conditions; α = 0.05/16 = 0.003125
given 8 conditions and comparisons with two subnetworks; see
Figures S9-S10 for bootstrap distributions). In addition, for the
geodesic distance, the combined subnetworks exhibited higher
accuracy than whole-cortex FC matrices (p < 10−12 for all con-
ditions; α = 0.05/8 = 0.00625 given 8 conditions; see Fig. S11
for bootstrap distributions) although the number of ROIs in the
combined subnetwork (108) was nearly a third as those in the
cortex (300). Clearly, the improvement in accuracy was not
a simple consequence of increased size, but resulted from im-
proved identity characterization.
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Fig. 7: (a) Participant identification accuracy using subnetworks. Runs were trimmed such that all conditions had the same time course length. Some subnetworks
were more suitable than others for identifying individual differences. The use of geodesic distance showed considerable improvements in accuracy for most
subnetworks. (b) Across subnetworks, average participant identification accuracy is displayed. The geodesic distance substantially improved identification accuracy.
Error bars indicate standard error of mean across bootstrap iterations. Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, motor; RL,
relational processing; RS, resting-state; SO, social cognition; WM, working memory.

Fig. 8: Participant identification accuracy plotted against subnetwork size for each condition (geodesic distance). The size of the subnetwork (the number of ROIs)
is also indicated in the inset. The error bars represent standard error of the mean across bootstrap iterations.

3.8. Information transfer between conditions

In the previous sections, training and testing data were
based on the same condition. Here, we sought to under-
stand if participants could be identified if the training and
testing data were obtained from different conditions; for ex-
ample, identifying a participant performing a working mem-
ory task when the training used resting-state data. Time se-
ries length was not equated across conditions because our
goal was to evaluate how transferable identity-related infor-
mation was between pairs of conditions. Accordingly, we
did not want to potentially degrade FC information by using
shorter data segments. Identification was performed on the

combined default-plus-frontoparietal network, which
as discussed performed well across conditions (Figure 9).

Results for both geodesic distance and Pearson dissimilary
are displayed in Figure 10. Whereas Pearson dissimilarity was
useful in identifying participants when they performed the same
task (within-conditions, diagonal entries), performance deteri-
orated when the training and test data originated from different
tasks. Notably, across-condition identification was consider-
ably higher with the geodesic distance, and this enhancement
was rather striking when the training data was from resting-
state, and to some extent based on the language and work-
ing memory tasks. For example, testing working memory data
based on training with resting-state data yielded 99% accuracy,
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Fig. 9: Participant identification accuracy by combining subnetworks. For
the geodesic distance, the frontoparietal (subnet1) and default mode

(subnet2) subnetworks were combined. For the Pearson dissimilarity mea-
sure, the dorsal attention (subnet1) and default mode (subnet2) sub-
networks were combined (the top two subnetworks based on mean accuracy
across conditions for this measure). Abbreviations: EM, emotion process-
ing; GB, gambling; LG, language; MT, motor; RL, relational processing; RS,
resting-state; SO, social cognition; WM, working memory.

which intriguingly was even better than when training with
working memory itself (accuracy: 94.4%, p < 10−4). On av-
erage, training with resting-state yielded 87.7% accuracy when
testing on other conditions (see the ”column mean” in Fig-
ure 10). The present results indicate that the geometry of FC
is especially important for across-task identification (see Dis-
cussion).

Because in this section time course length was not equated
across conditions, we note that those with longer lengths aided
across-task identification. Accordingly, transfer might particu-
larly benefit from employing training sets with longer data seg-
ments. Nevertheless, future research should also evaluate trans-
fer effects when longer data segments are available for a wider
range of tasks (for example, ≥ 300 TRs) so as to characterize
their transfer potential.

3.9. FC geometry of task and resting-state data

As some conditions yielded high identification accuracy
when training and testing were based on different con-
ditions, we sought to visualize distance/dissimilarity in a
lower dimensional space via multidimensioanal scaling. Fig-
ure 11(a) displays the low-dimensional representation of the
distances/dissimilarities for a set of randomly chosen partici-
pants when resting-state was employed for training data and
working memory for testing (untrimmed data). Based on the
geodesic distance, resting-state FC matrices were relatively
close together to one another; in contrast, working memory FC
matrices were further ”spread out”. Intriguingly, such geometry
allowed for the separation of FCs based on participant identity.
To see this, consider the panels in Figure 11(b), which show
participant-level distances. In contrast, using Pearson dissimi-
larity, the geometry did not allow accurate participant identity.

In fact, nearly all participants in this illustrative sample were
misidentified.

The results in Figure 11(a) prompted us to investigate, in an
exploratory fashion, distance/dissimilarity between conditions,
specifically, resting-state, motor, and language (Figure 12. In-
triguingly, the geometry of distances was quite different when
geodesic distances were used compared to Pearson dissimilar-
ity. These observations suggest that when FC matrices are used
for task classification (not identification as done here), differ-
ent algorithms may be more suited for this aim. For exam-
ple, non-linear radial basis functions might function better for
the geodesic case, and linear classifiers for Pearson dissimilar-
ity. Although a fuller investigation of this issue is beyond the
scope of the present paper, we believe this is a fruitful direction.
Furthermore, the analysis of functional connectivity of mental
states should take into account participant-related information
since it plays a potentially dominant contribution in the identi-
fication of mental states [28]

4. Discussion

In this paper, we investigated participant identification
based on FC matrices from fMRI data by employing geometry-
aware methods. Correlation matrices are objects that lie on
non-linear surfaces, and thereby benefit from non-Euclidean
distance measures. Indeed, we show that using the geodesic
distance improved participant identification, at times by as
much as 20%. Further, low-dimensional visualization based on
geodesic distance contributes to understanding how FC geome-
try affects identification.

4.1. Factors influencing participant identification
Scan duration determines the amount of data used to esti-

mate FC matrices, and played a key role in identification ac-
curacy. For resting-state data, accuracy improved with time
course length and was close to 95% when the entire data were
employed (1200 TRs), but fell to under 50% when trimmed to
under 150 TRs. The steep drop is possibly due to the uncon-
strained nature of resting-state data, and reveals that longer data
segments are required to more robustly identify functional con-
nectivity patterns that are unique to individuals. Notably, us-
ing the geodesic distance resulted in higher accuracy than Pear-
son dissimilarity even when, say, only a fourth of the data were
employed for FC estimation. Thus, a more suitable geometry
is particularly appealing when data-limited scenarios are envi-
sioned.

When time course length was trimmed to the same dura-
tion, identification accuracy still varied across scanning condi-
tions. The resting-state condition resulted in the lowest accu-
racy. With the data trimmed to the minimum amount of data,
the language task exhibited over 80% accuracy. Accuracy of
all task conditions exceeded 50%, with four of them exceeding
60%. Thus, even with rather limited amounts of data identi-
fying the participant was feasible. In addition, we observed
considerable variability is performance across conditions, con-
sistent with previous literature suggesting that brain states can
be manipulated to emphasize individual differences in FC [9].
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Fig. 10: Participant identification accuracy when the training and testing data were based on different conditions. The combined network containing the
frontoparietal and default mode subnetworks was employed. The mean accuracy for each train and test condition is also indicated. For example, when
resting-state is used as training data, the column mean is computed as the accuracy across all other conditions (i.e., except resting-state itself). The row means are
computed in a similar fashion by excluding the diagonal term. Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, motor; RL, relational
processing; RS, resting-state; SO, social cognition; WM, working memory.

Thus far, we have discussed findings based on whole-cortex
FC matrices (300 ROIs were employed). We reasoned that par-
ticular subsets of regions potentially might be more informative
than others. To evaluate this possibility identification was ap-
plied to resting-state and task conditions separately for each
individual subnetwork of the Yeo parcellation ([29]). The FC
matrices employed were therefore relatively small (the num-
ber of ROIs ranged from 20-68). Four subnetworks (vision,
dorsal-attention, control, default) stood out as con-
sistently exhibiting the highest levels of performance. The av-
erage accuracy across conditions approach 70% for the four
networks. Intriguingly, accuracy for the language task based
on the control and default subnetworks exceeded that ob-
served with the whole cortex. Whereas subnetwork size might
contribute to its ability to identify participants, it is clearly not
the driving factor. For example, the dorsal-attention and
the ventral-attention networks had the same number of
ROIs, but the former outperformed the latter consistently (on
average by over 30%).

To further explore subnetwork contributions we also com-
bined the two that displayed the highest individual accuracy
(control and default) into a single network. Remarkably,
the combined network always numerically outperformed the in-
dividual subnetworks, and indeed the entire cortex. Although it
was beyond the scope of the present study, it would be valuable
to investigate in future studies factors contributing to the perfor-
mance of individual subnetworks, and their combinations. For
example, subnetworks may contribute highly to identification
because their individual-specific functional connectivity infor-
mation capitalizes on the contributions of these subnetworks to
task performance. Alternatively, but not mutually exclusively,

subnetworks that do not participate as much during a task may
contain diagnostic information with respect to participant iden-
tity.

To what extent does participant identification transfer be-
tween experimental conditions? We found that training with
one condition and testing with another produced good levels
of identification accuracy. Certain combinations that on the
surface were not obvious produced particularly impressive re-
sults; for example, training with gambling and testing with
working-memory, or training with working-memory and testing
with language. Training with motor produced the least transfer
to other tasks, perhaps due to the low-level specificity of this
task. Notably, training with resting-state produced very high
transfer, such that testing with each task attained accuracy over
80% (with the exception of relational processing), and in some
instances over 90% (note that accuracy with working-memory
was 99%).

4.2. Low-dimensional distance visualizations
Relationships between high-dimensional FC matrices

(300 × 300) were visualized in three Euclidean-space dimen-
sions using multidimensional scaling. Both the Pearson dis-
similarity measure and geodesic distance were used. Note that
computing geodesic distances takes into account the non-linear
geometry of correlation matrices. Once their distances are com-
puted, and the space nonlinearity taken into account, they can
be illustrated in Euclidean space (naturally, some distortion en-
sues due to dimensionality reduction).

In our explorations, low-dimensional visualizations re-
flected identification accuracy on the full data, and thus pre-
served important distance information. In particular, the higher
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(a)

(b)

Fig. 11: Visualization of task and resting-state functional connectivity dis-
tances/dissimilarities in a three-dimensional space using multidimensioanl scal-
ing. The numbers indicate participant IDs. A. Distances/dissimilarities between
the functional connectivity matrices of resting-state (RS, used for training) and
working memory (WM, used for testing) for a set of 10 randomly chosen partic-
ipants. B. Participant-level distances/similarities between training and testing
data. Correct identification is marked in green and incorrect in red. For ex-
ample, when using geodesic distance, the best candidate for WM participant
1 (call it WM1) was RS participant 1 (RS1), and the best candidate for WM2
was RS2. However, incorrect classifications were also observed, such as RS4
(not RS7) being closest to WM7. For Pearson dissimilarity most classifications
were incorrect, such as RS1 (not RS10) being most similar to WM10.

Fig. 12: Functional connectivity geometry of resting-state and task conditions.
Training data for 10 random participants were employed (indicated by the num-
bers). Distances/dissimilarities in low dimensions were obtained via multidi-
mensional scaling. Note that the geometry in low dimensions differed consid-
erably for geodesic and Pearson, suggesting that condition categorization (not
participant identification) should capitalize on such geometry for better perfor-
mance.

identification accuracy using the geodesic distance resulted in
relatively low within- and high between-participant distances.
Visualization of FC from task data revealed insights into the
geometry of task correlation matrices in relation to resting-

Fig. 13: Visual comparison of functional connectivity (FC) matrices can be
unintuitive. Example FCs from resting-state data where the geodesic distance
correctly labeled the test participant but Pearson dissimilarity did not. The bot-
tom plots show the geodesic distances and Pearson dissimilarities between the
test FC and each of the FCs in the training data. The green bar indicates the
distance between the test FC to the correct training set FC; the red bar indicates
an incorrectly labeled training set FC. For the geodesic distance, the labeled
participant had indeed the smallest value; not so in the case of Pearson dissimi-
larity. This example also questions the common practice of informally evaluat-
ing functional connectivity similarity via simple visual inspection. At the very
least, it is not immediate that participant X is more similar to Alice than Bob.

state. Identification accuracy is related to the ratio of within-
to between-participant distances. Surprisingly, with geodesic
distances, tasks associated with higher identification accuracy
exhibited smaller between-participant distances. Still, the more
favorable ratio of within- to between-participant distances led
to favorable identification accuracy. Thus, the underlying ge-
ometry of functional connectivity may provide further insights
into our finding that high identification accuracy was attained
when training and testing were based on different scanning con-
ditions.

In the visualizations based on geodesic distance, distances
between task FCs did not appear to form convex sets (if A and
B are two points in a convex set, any point on the line joining
them also belongs to the set), and were instead in clustered ar-
rangements. Of note, previous work performing clustering of
FCs [2, 13] have used k-means which are not well suited to
finding non-convex clusters [8]. Instead, methods such as spec-
tral clustering are capable of capturing very general structures
[19], and are potentially more suitable for classifying functional
connectivity.

Pearson correlation is a common approach to compare FC
matrices. The present study demonstrates that non-linear mea-
sures are better suited to characterize functional connectivity
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relationships. The low-dimensional visualization briefly ex-
plored here hints at the different geometries associated with the
geodesic non-linear metric and the Pearson approach. Surpris-
ingly, we noted in our investigations that simple visual inspec-
tion of the correlation matrices as commonly done in the field
to highlight similarities between conditions can also be prob-
lematic, and in fact can lead to unintuitive scenarios (Fig 13).

4.3. Conclusions

Time series correlation matrices capture important aspects
of brain functional organization. Here, we propose the use
of a geodesic distance metric that reflects the underlying non-
Euclidean geometry of functional connectivity matrices. We
compared identification performance (also called fingerprint-
ing; that is, assigning a participant label to novel functional con-
nectivity data) obtained with standard Pearson correlation and
the proposed geodesic distance. The latter not only improved
identification accuracy but also provided insights into the ge-
ometry of task and resting-state conditions. Importantly, the
approach advocated here is general and can be utilized to study
the clustering of brain states, how tasks potentially reconfigure
brain networks, and to characterize intersubject correlations.
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Fig. S1: Parcellation of the cortex into 300 ROIs as provided by [23]. ROIs
were grouped into the 7 networks described in [29].

Supplemental material

S1. Effect of number of ROIs in the parcellation on identi-
fication

To study the effect of the parcellation scheme on partici-
pant identification accuracy using the two measures, we em-
ployed various parcellations with ROIs ranging from a 100 to
400. In general, mean participant identification accuracy in-
creased with increase in ROIs indicating that finer resolution or
detail in the FC revealed more uniqueness. Mean accuracy us-
ing the geodesic distance was consistently higher than the mean
accuracy using Pearson dissimilarity. For several conditions
(resting-state, language, motor), accuracy using geodesic dis-
tance on FCs obtained with 100 ROIs was greater than accuracy
obtained using Pearson dissimilarity with 400 ROIs (Fig. S2).

S2. Computing geodesic distances for matrices without full
rank

Computing the geodesic distance between two FC matrices
Q1 and Q2 (Equation 2) requires Q1 to be invertible, or equiv-
alently, all the eigenvalues of Q1 must be strictly greater than
zero. When FC matrices are based on n ROIs and n is larger
than number of frames in the run, the rank of the resulting
FC matrix is not full (i.e., < n), and some of its some eigen-
values are equal to 0. In practice, when the number of ROIs
n < (0.9 × number of frames), we applied the procedure below
to ensure full rankness.

To handle such cases, we adopted a simple approach here:
we added the identity matrix I to both Q1 and Q2, causing
the eigenvalues of the correlation matrices of interest to be in-
creased by 1. Because all eigenvalues are then greater than 0,
the matrices are invertible. In such cases, the geodesic distance,
dG(Q1+I,Q2+I), serves as a proxy for the geodesic distance be-
tween the two matrices. Note that the scenario of low-rank FC
matrices arises only for whole-cortex analysis, as for the sub-
network analyses, the number of ROIs in question was always
greater than the number of frames in the run.

For reference, the procedure above was employed in the fol-
lowing cases: whole-cortex results for all tasks; whole-cortex
resting-state results with lengths less than 400 TRs; and whole-
cortex results involving trimmed data.

S3. Replication - Constable 2015

The problem of participant identification has been ad-
dressed previously by Finn et al [10]. In their study, a group
of 126 participants from the Q2 release of HCP were used.
The release consisted of volumetric data for each participant
in the MNI template. Standard preprocessing procedures were
applied to the fMRI data and included removal of linear com-
ponents related to the 12 motion parameters, regression of the
mean time courses of the white matter and CSF as well as the
global signal, removal of linear trend, and low-pass filtering.
The data was summarized into an ROI-level time series by us-
ing the Shen parcellation that consisted of 268 ROIs. For par-
ticipant identification, they also used a 1-nearest neighbor clas-
sifier with Pearson dissimilarity as the closeness measure. They
reported an identification accuracy of around 90% on resting-
state data which is much higher than the 75% we obtained using
surface-based fMRI data from the latest release of HCP.

To understand the differences, we also performed partic-
ipant identification of the unrelated 100 subject volumetric
fMRI data provided by HCP. However, the current release pro-
vides aggressively preprocessed resting-state data using ICA-
FIX [25]. Using Pearson dissimilarity and the Shen parcella-
tion, identification accuracy was 83% (as opposed to 75% with
the Yeo parcellation on surface fMRI data). Using the geodesic
distance, accuracy again improved to 95% (96% with the Yeo
parcellation). Although we didn’t obtain an accuracy of 90%
as in Finn. et al for this group of 100 subjects, these results
indicate that the use of the geodesic distance improves the ac-
curacy substantially irrespective of the type of preprocessing on
the data.
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Fig. S2: Participant identification accuracy as a function of the number of ROIs. Here, training and testing data are from the same task. Error bars indicate standard
error of the mean across the bootstrap iterations.
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Fig. S3: Whole-cortex FCs: Comparing accuracy based on geodesic distance and Pearson dissimilarity for each task. Here, full time course lengths were used
for each task. For each outer bootstrap iteration, the difference between the mean participant identification accuracy using the geodesic distance and the Pearson
dissimilarity were computed to obtain difference distributions. The three green lines indicate the mean and the 95% confidence interval. The red line indicates zero
difference.

Fig. S4: Whole-cortex FCs: Comparing accuracy based on geodesic distance and Pearson dissimilarity for each segment length. For each bootstrap iteration, the
difference between the mean participant identification accuracy using the geodesic distance and the Pearson dissimilarity across the 8 tasks were computed to obtain
difference distributions. The three green lines indicate the mean and the 95% confidence interval. The red line indicates zero difference.
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Fig. S5: Whole-cortex FCs: Comparing accuracy based on geodesic distance and Pearson dissimilarity for each task. Here, tasks were trimmed such that they
all had the same time course length (of 138). For each bootstrap iteration, the difference between the mean participant identification accuracy using the geodesic
distance and the Pearson dissimilarity across the 8 tasks were computed to obtain difference distributions. The three green lines indicate the mean and the 95%
confidence interval. The red line indicates zero difference.

Fig. S6: Subnetwork FCs: Comparing mean accuracy based on geodesic distance and Pearson dissimilarity in each subnetwork. Here, tasks were trimmed such
that they all had the same time course length (of 138). For each bootstrap iteration, the difference between the mean participant identification accuracy using the
geodesic distance and the Pearson dissimilarity across the 8 tasks were computed to obtain difference distributions. The three green lines indicate the mean and the
95% confidence interval. The red line indicates zero difference.

connectivity dynamics. NeuroImage 114, 466–470. doi:10.1016/j.
neuroimage.2015.03.047.
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Fig. S7: Subnetwork FCs: Comparing mean accuracy in the dorsal attention and ventral attention subnetworks for each condition using the geodesic
distance. The subnetworks were of identical size for the 300 ROIs parcellation. Here, tasks were trimmed such that they all had the same time course length (of
138). The three green lines indicate the mean and the 95% confidence interval. The red line indicates zero difference.

Fig. S8: Combined subnetwork FCs: Comparing accuracy based on geodesic distance and Pearson dissimilarity for each condition. Here, tasks were trimmed
such that they all had the same time course length (of 138). For each outer bootstrap iteration, the difference between the mean participant identification accuracy
using the geodesic distance and the Pearson dissimilarity were computed to obtain difference distributions. The three green lines indicate the mean and the 95%
confidence interval. The red line indicates zero difference.
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Fig. S9: Geodesic distance: Comparing identification accuracy using the combined subnetwork with the control subnetwork (part of the combined subnetwork)
for each condition. The error bars represent standard error of the mean across 1000 bootstrap iterations. The three green lines indicate the mean and the 95%
confidence interval. The red line indicates zero difference.

Fig. S10: Geodesic distance: Comparing identification accuracy using the combined subnetwork with the default subnetwork (part of the combined subnetwork)
for each condition. The error bars represent standard error of the mean across 1000 bootstrap iterations. The three green lines indicate the mean and the 95%
confidence interval. The red line indicates zero difference.
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Fig. S11: Geodesic distance: Comparing identification accuracy using the combined subnetwork with whole-cortex FCs for each condition. The error bars
represent standard error of the mean across 1000 bootstrap iterations. The three green lines indicate the mean and the 95% confidence interval. The red line
indicates zero difference.

Fig. S12: Pearson dissimilarity: Participant identification accuracy plotted against subnetwork size for each task. The error bars represent standard error of the
mean across 1000 bootstrap iterations.
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