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Abstract

Aims

Precision medicine requires accurate technologies for drug administration and proper
systems pharmacology approaches for patient data analysis. Here, plasma
pharmacokinetics (PK) data of the OPTILIV trial in which cancer patients received
oxaliplatin, 5-fluorouracil and irinotecan via chronomodulated schedules delivered by an
infusion pump into the hepatic artery were mathematically investigated.

Methods

A pump-to-patient model was designed in order to accurately represent the drug
solution dynamics from the pump to the patient blood. It was connected to
semi-mechanistic PK models to analyse inter-patient variability in PK parameters.

Results

Large time delays of up to 1h41 between the actual pump start and the time of drug
detection in patient blood was predicted by the model and confirmed by PK data.
Sudden delivery spike in the patient artery due to glucose rinse after drug
administration accounted for up to 10.7% of the total drug dose. New model-guided
delivery profiles were designed to precisely lead to the drug exposure intended by
clinicians. Next, the complete mathematical framework achieved a very good fit to
individual time-concentration PK profiles and concluded that inter-subject differences
in PK parameters was the lowest for irinotecan, intermediate for oxaliplatin and the
largest for 5-fluorouracil. Clustering patients according to their PK parameter values
revealed two patient subgroups for each drug in which inter-patient variability was
largely decreased compared to that in the total population.
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Conclusions

This study provides a complete mathematical framework to optimize drug infusion
pumps and inform on inter-patient PK variability, a step towards precise and
personalized cancer chronotherapy.

Author summary

Accuracy and safety of infusion pumps remain a critical issue in the clinics and the
development of accurate mathematical models to optimize drug administration though
such devices has a key part to play in the advancement of precision medicine. Here, PK
data from cancer patient receiving irinotecan, oxaliplatin and 5-fluorouracil into the
hepatic artery via an infusion pump was mathematically investigated. A
pump-to-patient model was designed and revealed significant inconsistencies between
intended drug profiles and actual plasma concentrations. This mathematical model was
then used to suggest improved profiles in order to minimise error and optimise delivery.
Physiologically-based PK models of the three drugs were then linked to the
pump-to-patient model. The whole framework achieved a very good fit to data and
allowed quantifying inter-patient variability in PK parameters and linking them to
potential clinical biomarkers via patient clustering. The developed methodology
improves our understanding of patient-specific drug pharmacokinetics towards
personalized drug administration.

Introduction 1

Cancer management is challenged by large inter- and intra-patient variabilities in both 2

disease progression and response to treatments. Thus, the quest for accurate and 3

personalized cancer therapies has fostered the development of new technologies enabling 4

multi-type measurements in individual patients and complex drug scheduling. To 5

translate datasets available for an individual patient into personalized therapies and 6

further ensure their precise administration, new mathematical approaches are required. 7

Indeed, systems medicine, that involves the implementation of theoretical approaches in 8

medical research and practice, is critically needed as emphasized in the roadmaps of the 9

Coordinated Action for Systems Medicine (CaSyM) from the European Union 10

(https://www.casym.eu, [1]) and of the Avicenna action (http://avicenna-isct.org/), and 11

in other international consortia [2–5]. The final aim is a measurable improvement of 12

patient health through systems-based practice which will enable predictive, personalised, 13

participatory and preventive (P4) medicine [6]. 14

Accuracy and safety of infusion pumps are mandatory to ensure that the correct 15

drug dose is delivered to the patient over the intended period. Recurrent incidents 16

related to devices delivering fluids such as nutrients or medications into the body have 17

led the U.S Food and Drug Administration (FDA) to launch in 2010 an initiative to 18

reduce infusion pump risks 19

(https://www.fda.gov/medicaldevices/productsandmedicalprocedures/ 20

generalhospitaldevicesandsupplies/infusionpumps/ucm202501.htm). Many of 21

the reported events are related to deficiencies in the initial design of the device and of 22

the embedded software. Adverse events may also arise from a defect appearing over the 23

device’s life cycle due to technical failure or lack of proper maintenance. However, due 24

to the complexity of the equipment, user errors are also common [7]. 25

Optimizing chemotherapeutics index, defined as the ratio between treatment 26

antitumor efficacy and induced toxicities, is complex at multiple levels. First, large 27

inter-patient variabilities are demonstrated in drug pharmacokinetics, tolerability and 28
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anti-tumour efficacy [2, 8–10]. Next, important intra-patient variabilities arise from the 29

fact that tumour and healthy tissues, rather than being static over time, display 30

time-dependent variations, in particular over the 24h span, which are called circadian 31

rhythms [11]. The circadian timing system controls most physiological functions of the 32

organism resulting in drug Absorption, Distribution, Metabolism and Elimination 33

(ADME) displaying 24h-rhythms with differences of up to several folds between 34

minimum and maximum activities [12,13]. 35

Chronotherapy -that is administering drugs according to the patient’s biological 36

rhythms over 24 h- is a growing field in medicine and especially in oncology. Indeed, at 37

least 22 clinical trials involving a total of 1773 patients with different types of 38

metastatic cancers have demonstrated a significant influence of administration timing 39

on the tolerability of 11 commonly-used antitumor drugs [14]. Two randomized phase 40

III clinical trials in 278 metastatic colorectal cancer (mCRC) patients receiving 41

irinotecan, oxaliplatin and 5-fluorouracil showed that cancer chronotherapy achieved an 42

up-to-5-fold decrease in treatment side effects and nearly doubled anti-tumour efficacy 43

compared to conventional administration of the same drug doses [15]. However, a 44

meta-analysis of these two studies combined to another clinical trial involving 564 45

mCRC patients receiving the same drugs (497 men and 345 women in total) concluded 46

that the chronomodulated drug modality significantly increased the efficacy and 47

survival in men while reducing that in women as compared to conventional 48

administration [16]. Such sex-specificity was further validated for irinotecan 49

chronotoxicity in mouse experiments [17] and in a clinical trial involving 199 mCRC 50

patients treated with oxaliplatin (infusion peak 4pm), 5-fluorouracil (infusion peak 4am) 51

and irinotecan given at 6 different circadian times 52

(https://academic.oup.com/annonc/article/28/suppl_5/mdx393.048/4109820). 53

Both studies showed a higher circadian amplitude in females as compared to males and 54

a difference of several hours between the optimal timing of each gender. Furthermore, 55

circadian biomarker monitoring in individual patients recently revealed up to 12 h 56

inter-patient differences regarding the timing of midsleep, the circadian maximum in 57

skin surface temperature or that in physical activity [18]. These investigations have 58

highlighted the need for the individualization of drug combinations and chronoinfusion 59

schemes to further improve treatment outcome, taking into account the patients’ sex, 60

chronotype and genetic background. The accurate delivery of intended administration 61

profiles is obviously critical in this context. Chronotherapy requires the error in drug 62

infusion timing not to be greater than few minutes. 63

Clinical findings about cancer chronotherapy have motivated the development of 64

innovative technologies for chronomodulated drug delivery including the Mélodie 65

infusion pump (Axoncable, Montmirail, France, [19]). This portable electronic pump 66

allows for the administration of up to 4 compounds according to pre-programmed 67

schedules over the 24 h span. It was used in several clinical trials for the 68

chronomodulated delivery of irinotecan (CPT11), oxaliplatin (L-OHP) and 69

5-fluorouracil (5-FU) into the central vein of metastatic colorectal cancer patients [13]. 70

The Mélodie pump was recently used to infuse those three anticancer drugs directly into 71

the hepatic artery of metastatic cancer patients in the translational European OPTILIV 72

Study [19]. In this study, the plasma pharmacokinetics of oxaliplatin revealed 73

inconsistencies between programmed delivery schedules and observed drug 74

concentration within the patient blood including a delay in the time taken for the drug 75

to be detectable in the blood and unexpected peaks in plasma concentrations during 76

drug infusion. Such inconsistencies between targeted drug exposure patterns and 77

plasma drug levels motivated the design of a mathematical model of fluid dynamics 78

within the pump system presented hereafter. This pump-to-patient model was then 79

connected to semi-physiological PK models to investigate the inter-patient variability in 80

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/688606doi: bioRxiv preprint 

https://doi.org/10.1101/688606
http://creativecommons.org/licenses/by/4.0/


drug PK after hepatic artery administration. Thus, this systems pharmacology study 81

aimed to develop predictive mathematical models allowing for the quantitative and 82

general understanding of i) the pump dynamics, irrespective of the drug delivery device, 83

and ii) patient-specific whole-body PK of irinotecan, oxaliplatin and 5-fluorouracil after 84

drug administration using an infusion pump. Such mathematical techniques would then 85

allow for precise and personalized drug timing. 86

Results 87

The overall objective of this study was to accurately investigate the inter-patient 88

variability in the plasma PK of the three anticancer drugs administered during the 89

OPTILIV trial. A first strategy consisted in using compartmental PK modelling taking 90

the delivery profiles programmed into the infusion pump as inputs for the plasma 91

compartments. However, such methodology revealed inconsistencies between the best-fit 92

models and the data, including delays of several hours. We then concluded that the fluid 93

dynamics from the pump to the patient had to be quantitatively modelled. Hence, we 94

designed the complete model in two sequential mathematical studies. First, we studied 95

the drug solution dynamics from the pump to the patient blood for which the model 96

was based on partial differential equations. This novel model of the pump delivery 97

system took into account the specificity of the equipment used in order to accurately 98

predict drug delivery in the patients’ blood, although it could be easily adapted to any 99

drug delivery devices. Second, we connected this model to compartmental PK models 100

based on ordinary differential equations. This complete framework allowed the 101

investigation of inter-patient variability in drug PK after hepatic artery administration. 102

Pump-to-patient drug solution dynamics 103

Model design 104

The pump-to-patient model is a transport equation representing the dynamics of the 105

drug solution along the administration tube, with respect to time (t) and 106

one-dimensional space (x)(equation 1). x is the distance along the tube from the pump 107

(x = 0) to the patient (x = L). The drug solution was assumed to be incompressible so 108

that the fluid velocity was considered as constant along the whole tube. Thus, the drug 109

concentration in the tube u(x, t) changes with respect to the following equation: 110

∂u(x, t)

∂t
= −V (t)

∂u(x, t)

∂x
t ∈ [0, T ], x ∈ [0, L] (1)

with a Dirichlet boundary condition of,

u(0, t) =
S(t)

sa× V (t)
, (2)

where V (t) is the fluid velocity inside the tube, expressed in mm/h. The constant
sa = πr2 is the cross sectional surface area of the tube (in m2), with r being the radius
of the tube. The source term S(t) represents the amount of drug delivered according to
the infusion profile programmed into the pump and is expressed in mol/h. Initial
conditions along the tube are u(x, 0) = 0. The fluid velocity and source terms are
controlled by the pump which imposes a fluid delivery rate expressed in ml/h. They are
computed by converting the fluid delivery rate into mm/h and mol/h respectively using
the tube geometry and the concentration of each drug solution. Hence, model
simulations at the end of the tube (x = L) do not depend on the exact geometry of the
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tube but rather on its total volume. The input function for PK models depending only
on quantities at the end of the tube, the original infusion tube which was constituted of
two sections of different diameters was simplified in numerical simulations to a tube of
radius 1mm and total length 2340mm that had the same total volume as the original
set-up. The total tube volume was set to 1.84 mL as in the equipment used in the
OPTILIV study. The transport equation with associated initial and boundary
conditions can be solved using the classical method of characteristics which gives [20]:

u(t, x) =

{
0 if

∫ t
0
V (r)dr < x

S(τ(t,x))
sa×V (τ(t,x)) otherwise

,

where τ(x, t) is the time at which the drug reaching point x at time t initially entered
the system i.e. ∫ t

τ(t,x)

V (s)ds = x.

The input function for the PK models corresponds to the rate of drug infusion into the
patient (i.e. at x = L) and can be obtained by:

d(t) = sa× V (t)u(t, L) =

{
0 for t such that

∫ t
0
V (r)dr < L

V (t) S(τL(t,L))
V (τL(t,L)) otherwise, with

∫ t
τ(t,L)

V (s)ds = L

Note that, for all drug infusion apart from the glucose flushes, the source term S(t) 111

is proportional to the fluid velocity V (t) as the drug is infused within the tube in the 112

same time as the fluid, so that d(t) is proportional to V (t) once the tube is filled i.e. for 113

times t such that
∫ t
0
V (r)dr < L . An example of the PDE model simulations in time 114

and space for oxaliplatin delivery is shown in Fig 1a. 115

Fig 1. (a) shows oxaliplatin concentration profile in the infusion tube. The x-axis
represents the distance along the tube, the y-axis represents the time from the start of
the pump delivery. For figures (b-g), the x-axis represents Clock time and starts at the
beginning of the considered drug administration. The left column shows the difference
between the intended delivery profiles and the simulated delivery profiles evaluated at
the end of the tube (x=L), for irinotecan (b), oxaliplatin (d) and 5-fluorouracil (f). The
right-hand column shows the cumulative percentage of drug delivered to the patient for
the intended and actual profiles over time for irinotecan (c), oxaliplatin (e) and
5-fluorouracil (g).

Differences between programmed infusion profiles and actual drug delivery 116

in the patient’s blood 117

The pump infusion schemes used in the OPTILIV trial were simulated for the three 118

drugs: irinotecan, oxaliplatin and 5-fluorouracil. Whereas the drug profiles programmed 119

into the pump followed a smooth sinusoidal function, the actual drug delivery in the 120

patient artery differed from the programmed profiles by two main features. First, the 121

model predicted a significant time delay between the actual start of the drug delivery by 122

the pump and the time the drug first reached the patient blood (Fig 1b,d,f). This delay 123

was evaluated by the model to 3 h 5 min for oxaliplatin, 2 h 202 min for 5-fluorouracil 124

and 51 min for irinotecan. It corresponded to the time taken to fill the infusion tube 125

with the solution containing the drug at the beginning of the infusion. The delay was 126

drug-specific as it depended on the drug solution concentration and the velocity of the 127
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solution in the tube driven by the programmed input profiles. Next, at the end of the 128

infusion profiles, the pump stopped and did not administer the amount of drug left 129

inside the tube. This remaining drug was flushed out by the glucose rinse subsequent to 130

drug administration which induced a sudden delivery spike in the patient artery 131

(Fig 1c,e,g). The amount of drug in this spike was expressed in percentage of total drug 132

delivered and was estimated to 10.7% for oxaliplatin, 5.36% for 5-fluorouracil and 1.85% 133

for irinotecan. 134

Our systems approach revealed important differences between the intended drug 135

infusion profile and the actual administration into the patient artery. Hence, we 136

developed optimized infusion profiles that strictly achieved the drug administration 137

intended by clinicians. The same equipment was considered to avoid cost of changing. 138

Drug concentrations of the infusion solutions were kept unchanged in order to avoid 139

possible problems of drug stability. In order to administer the drug in the patient’s 140

blood following a smooth sinusoidal function, a profile in three parts is required as 141

follows (Fig 2). The first part of the profile is an initial bolus to fill the tube between 142

the pump and the patient with the drug solution. Once the tube is filled, the original 143

sinusoidal profile starts. Then, to solve the problem of the amount of drug left in the 144

tube when the pump stops, the original sinusoidal profile needs to be interrupted when 145

the total drug amount has left the drug bag. Then, a subsequent glucose rinse needs to 146

be infused according to the final segment of the sinusoidal curve in order to deliver the 147

drug remaining in the tube at the correct rate. 148

Fig 2. Improved administration profiles. (a) shows the drug solution delivery profile
which consists of an initial bolus to fill the tube entirely, followed by the original profile.
(b) shows the rinse solution delivery rate which continues drug delivery at correct rate
while clearing the tube from any active substance, (c) shows how the flow rate along the
tube is smoothly switched between the drug and the rinse and (d) shows the new drug
delivery profile that will enter the patient compared to the original profile used in the
OPTILIV study.

Inter-patient variabilities in irinotecan, 5-fluorouracil and 149

oxaliplatin PK after chronomodulated administration 150

The pump-to-patient model provided educated predictions of the drug infusion into the 151

patients’ blood, which was a prerequisite to study the inter-patient variability in the PK 152

of irinotecan, oxaliplatin and 5-fluorouracil. A compartmental physiological model was 153

designed for each drug and all parameters were fitted for each patient independently. 154

Compartmental models of irinotecan, oxaliplatin and 5-fluorouracil 155

pharmacokinetics 156

PK models represented the drug fate in: the Liver, to accurately represent hepatic 157

delivery, the Blood, the measurement site, and the rest of the body known throughout 158

this paper as Organs. The volume of each compartment was individualised for each 159

patient using Vauthey method for Liver [21], Nadler’s formula for Blood [22], and 160

Sendroy method for Organs [23]. Each model assumed that the drug was delivered 161

directly into the liver compartment to represent the Hepatic Artery Infusion (HAI, Fig 162

3, 4 & 5). All transports in between compartments were considered as passive and 163

represented by linear kinetics. Drug clearance included renal elimination for the Blood 164

compartment, intestinal elimination for the Organs compartment and biliary excretion 165

for the Liver compartment. In the absence of quantitative data and to avoid model 166

over-parametrization, circadian rhythms were neglected in the PK models and all 167
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parameters were assumed to be constant over the 8-hour time window of PK 168

measurements. Any chemical species bound either to plasma proteins or to DNA was 169

assumed to be unable to move between compartments or to be cleared from the system. 170

For the sake of simplicity, uptake and efflux rate constants were assumed to be equal for 171

Blood-Liver and Blood-Organs transport respectively, for each of the three drugs. 172

Parameter identifiability assessed though sensitivity analysis to cost function variations 173

revealed poor sensitivity of the clearance rate constant in the Organs compartment for 174

the three drugs (cf. Methods). Hence, Organs clearance was assumed to be equal to 175

that of the Liver compartment for irinotecan and oxaliplatin and was neglected for 176

5-fluorouracil [24]. In the model of irinotecan and 5-fluorouracil, poor sensitivity was 177

also obtained for transport parameters between Blood and Organs, so that Organs 178

transport rates were assumed to be proportional to that of the Liver, and the volumes 179

of the compartments were used to scaled parameters. Parameter likelihood profiles 180

analysis revealed that additional constraints were needed to ensure the identifiability of 181

all parameters (see Methods and SI). Hence, information on renal, intestinal and 182

hepatic clearance relative rates was inferred from literature as follows. For irinotecan, 183

CPT11 drug amount though renal clearance and though combined intestinal elimination 184

and biliary clearance were respectively set to 34% and 51% of the total administered 185

dose [25]. As SN38 renal elimination was documented as negligible, the metabolite was 186

considered to only be cleared through Liver or Organs and these cleared amounts were 187

assumed to account for 15% of the total administered dose of irinotecan [25]. 188

Oxaliplatin clearance was set such that 55% of the total administered drug amount was 189

cleared via the kidneys [26]. The amount of Pt bound within the Organs or within the 190

Liver was set to 84% and 12% of the total dose, respectively [27]. 5-FU was shown to be 191

mainly cleared through hepatic metabolism, so that the amount of drug cleared though 192

the Liver was assumed to account for approximately 80% of the total dose [24]. 193

The final irinotecan model had six compartments as each of the three Liver, Blood 194

and Organs, had two sub-compartments: the parent drug irinotecan, and its active 195

metabolite SN38 (Fig. 3). Initial irinotecan administered in the liver was assumed to be 196

only in the form of the parent drug. Irinotecan was activated into SN38 via Michaelis 197

Menten kinetics with the parameter estimates Km taken from [28]. SN38 was 198

considered to only be present in its bound form since the bound fraction is reported to 199

be greater than 95% [29]. SN38 clearance terms accounted for SN38 elimination 200

including its deactivation into SN38G though UDP-glycosyltransferases (UGTs) [28]. 201

Fig 3. Semi-physiological model of irinotecan PK. Compartments were minimised to
the most important components, Liver to accurately represent drug delivery, Blood
which is measurement site and Organs to represent the rest of the body. Ci is the rate
constant of clearance from compartment i. Irinotecan is bio-activated into its active
metabolite SN38. Irinotecan was assumed to be delivered directly into the liver.

The oxaliplatin PK model had six compartments corresponding to bound and free 202

platinum (Pt) molecules in the Liver, Blood and other Organs. Oxaliplatin is rapidly 203

metabolised into platinum complex forms [26], which were not distinguished in the 204

current data so as all metabolites of oxaliplatin were assumed to have the same PK 205

properties in the model. Initial oxaliplatin administered in the liver was assumed to be 206

free. Free Pt could bind to proteins and unbinding from proteins was also included in 207

all compartments (Fig 4). 208

The final model for 5-fluorouracil had three compartments. The drug clearance 209

accounted for both drug elimination and drug metabolism in each compartment (Fig 5). 210

Protein binding of 5-fluorouracil was neglected in the model because of the low protein 211

affinity of this drug [30]. Equations for the three models can be seen in SI. 212
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Fig 4. Semi-physiological model of oxaliplatin PK. Compartments were minimised to
the most important components, Liver to accurately represent drug delivery, Blood
which is measurement site and Organs to represent the rest of the body. Ci is the rate
constant of clearance from compartment i. Each compartment contains a bound and
unbound drug fraction and only unbound molecules can migrate between compartments.
b and u are respectively the binding and unbinding rate constants of platinum to
proteins. Oxaliplatin was assumed to be delivered directly into the liver in its unbound
form.

Fig 5. Semi-physiological model of 5-fluorouracil PK. Compartments were minimised
to the most important components, Liver to accurately represent drug delivery, Blood
which is measurement site and Organs to represent the rest of the body. Ci is the rate
constant of clearance from compartment i. 5-fluorouracil was assumed to be delivered
directly into the liver.

Inter-patient variability in irinotecan, oxaliplatin and 5-fluorouracil PK 213

parameters. 214

Overall, each of the three drug models showed a very good fit to data as demonstrated 215

by R2 values averaged over all patients of 0.86 for irinotecan, 0.79 for oxaliplatin and 216

0.8 for 5-fluorouracil (Fig 1, 2 and 3 and table 4, 7 and 10 in SI). These results obtained 217

using infusion rates computed through the pump-to-patient model were compared with 218

simulations with infusion rates equal to the profiles programmed into the pump (see SI). 219

Using the pump-to-patient model allowed to improve SSR values by 7.9% for irinotecan, 220

49.5% for oxaliplatin and 12.5% for 5-fluorouracil in average for all patients, thus 221

proving the validity of our approach. The irinotecan model had an almost perfect fit 222

and showed a rapid accumulation of both irinotecan and SN38 in the plasma of patients 223

(Fig 6). No obvious impact on irinotecan and SN38 plasma concentrations was observed 224

regarding the time needed to fill the infusion tube or the 30-min glucose delivery spike, 225

as predicted by the pump-to-patient model.

Fig 6. Patient data best-fit of irinotecan PK model. Each subplot represents an
individual patient dataset, fit to the model independently. (a) shows the fit of irinotecan
plasma concentration, (b) shows that of SN38, the active metabolite of irinotecan.

226

The fit for the oxaliplatin PK model captured all general trends (Fig 7). The model 227

fit for patient 7 did not fully captured the dynamics of total Pt plasma concentration 228

but correctly simulated free Pt concentration. The model did predict i) a delay in 229

plasma Pt concentrations at the start of the infusion due to the pump-to-patient drug 230

transport and ii) a spike during the glucose flush for all patients. This drug spike had 231

an effect on the time of maximum concentration tmax of the free Pt by shifting the time 232

by up to 6 h. The model underestimated the free platinum peak concentrations after 233

the glucose flush for the patients with the most significant rise in concentration, that 234

are patients 2, 3 and 7.

Fig 7. Patient data best-fit of oxaliplatin PK model. Each subplot is an individual
patient data, fit to the model independently. (a) shows plasma ultrafiltrate platinum
concentrations, and (b) shows plasma total platinum concentrations. PK data for
Patient 11 was missing.

235

The 5-fluorouracil model showed a very good fit to data, despite a slight systematic 236

under-estimation of the third datapoint in time. It predicted the glucose flush to induce 237
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a late spike in plasma drug concentration which could not be seen in the data for all 238

patients, probably because blood sampling frequency was not high enough (Fig 8). This 239

model-predicted spike in 5-fluorouracil concentration changed the tmax value for 240

Patient 5, 6 and 9. The predicted spike AUC was equal to approximately 5% of the 241

total AUC which was in agreement with the pump-to-patient model prediction. This 242

was only calculable for 5-fluorouracil since its elimination was fast enough for its 243

concentration to be close to zero by the time the glucose flush began.

Fig 8. Patient data best-fit of 5-fluorouracil PK model. Each subplot is an individual
patient data fit to the model independently. PK data for Patient 6 and 11 was missing.

244

The model fit to each individual patient PK data allowed to investigate the 245

inter-patient variability in resulting PK parameters (Fig 9a, b, c). The CV of each PK 246

parameter was calculated among the patient population (see SI). Interestingly, 247

Blood-Liver and Blood-Organs transport parameters presented the highest CVs for all 248

three drugs. Then, the mean CVs for the entire parameter set of each drug model were 249

calculated as a single measure of inter-patient variability. Irinotecan had the smallest 250

mean CV with a value of 73.6%, and a range from 46.1 to 170.6%. 5-fluorouracil had 251

the second smallest mean CV at 105.69%, with the smallest range from 56.0 to 176.79%. 252

Oxaliplatin had the largest value of mean CV, 177.87%, with the largest range from 253

41.15 to 302.5%. In all three models the parameters which showed the largest 254

inter-patient variability were the uptake/efflux parameters. For each drug model, 255

individual patient parameter sets were then utilized to identify patient clusters. The 256

numbers of clusters were determined by minimising the validity index of Fukuyama and 257

Sugeno VFS as described in [31]. Clustering for different numbers of clusters and their 258

respective VFS can be seen in the SI (Supplementary figures 7, 8 and 9). For irinotecan, 259

the minimum value of VFS was achieved for five clusters. One cluster was composed of 260

Patients 1, 3, 5, 7, 8, and 10, the other four patients were in a cluster on their own. The 261

analysis for oxaliplatin concluded to two clusters, a cluster of only one patient, patient 262

7, and the rest of the patients being clustered together. The analysis for 5-fluorouracil 263

revealed four clusters: 5 patients were grouped in the largest cluster (Patients 1, 2, 3, 7, 264

and 10), two patients in the second cluster (Patients 4, 5) and the final two patients 265

were in clusters on their own. Only patients 1, 3 and 10 were consistently clustered 266

together for all three drugs. Once the patient PK parameters had been clustered, the 267

mean of parameter CVs was reassessed for each cluster with 2 or more patients within. 268

Irinotecan mean CV in the largest cluster was 47.18%, which represented a large 269

decrease compared to the mean CV in the entire patient population equal to 73,16%. 270

Oxaliplatin main cluster which was constituted of all patient but patient 7 had a mean 271

CV of 165.58% as compared to 177,87% for the entire population. 5-fluorouracil’s 272

largest cluster had a CV of 28.95% and the smaller cluster had a CV of 51.53%, which 273

corresponded to a drastic decrease of inter-patient variability as the population mean 274

CV was equal to 105.69%. All other clusters for each drug had only a single patient and 275

therefore the CV could not be assessed. 276
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Fig 9. Inter-patient variability in drug PK parameters. The first line shows parameter
variability across the considered patient population for irinotecan (a), oxaliplatin (b)
and 5-fluorouracil (c), the colour and symbols represent the clusters each parameter set
belongs to. The parameters are named with reference to the schematics of the models,
the subscripts refer to the blood (B), organs (O) and liver (L). In the irinotecan
parameters, additional subscripts cpt and sn refer to irinotecan and SN38 respectively.
The second line shows multidimensional scaling representation of patient clustering
based on their PK parameters for irinotecan (d), oxaliplatin (e) and 5-fluorouracil (f),
the x refer to the cluster centroids and the points refer to patient PK parameters
projected onto 2D plot.

Discussion 277

Precision and personalized medicine requires accurate technologies for drug 278

administration and proper systems pharmacology approaches for individual patient 279

multidimensional data analysis. Here, plasma PK data of the OPTILIV trial in which 280

patients received irinotecan, oxaliplatin and 5-fluorouracil through a chronomodulated 281

schedule delivered by an infusion pump into the hepatic artery were mathematically 282

analysed. To allow for an accurate analysis of PK patient data, a model of the pump 283

drug delivery was successfully designed and connected to semi-mechanistic PK models. 284

The overall framework achieved a very good fit to individual time-concentration profiles. 285

The validity of the approach was further demonstrated by the improved data fit using 286

the PDE explicit solution connected to PK models compared to PK models directly 287

integrating infusion profiles that were programmed into the pump (see SI). This study 288

gave insights into inter-patient variability and paved the path to treatment optimization. 289

The simulations for the pump-to-patient model showed and quantified a delay 290

between the actual start of the pump and the time when the drug appeared in the 291

patient blood which was due to the delay needed for the drug solution to fill up the 292

infusion tube and eventually reach the patient. The length of this delay depends on 293

both the drug solution concentration and the volume of the infusion tube, so that its 294

importance was high for oxaliplatin, intermediate for 5-fluorouracil and minor for 295

irinotecan. Temporal accuracy is key for precision medicine especially in the context of 296

chronotherapy and chronomodulated drug delivery. Thus, the programmation of any 297

drug administration devices need to account for these delays. The pump-to-patient 298

model that we present here allow to adapt any infusion schemes for any drug 299

administration devices in order to properly administer the treatment schedules initially 300

intended by the oncologists. 301

In addition to such “pump-to-body” delay, the increase in free Pt concentration near 302

22:00 shown in the PK data was explained by a spike in oxaliplatin delivery resulting 303

from the glucose rinse flushing out the residual oxaliplatin left within the infusion tube. 304

This phenomenon was well captured and quantified by oxaliplatin PK model which 305

predicted that the quantity of drug delivered in the final spike was equal to 10.7% of the 306

total dose. The model also showed that the tmax of oxaliplatin plasma concentration 307

was shifted by several hours due to this delivery profile spike. In silico simulations also 308

predicted that the glucose flush would alter the PK of 5-fluorouracil, however the 309

sampling scheme did not cover the time when this would theoretically happen so that 310

this prediction could not be verified experimentally. The spike only accounted for a 311

small amount of 5-fluorouracil dose of 5.36% and may not have caused any significant 312

detrimental effect. The delivery spike due to the glucose rinse did not seem to have 313

influenced the plasma concentration profile of irinotecan because the drug concentration 314

in the solution was much lower and the flow rate programmed into the pump was much 315

higher as compared to oxaliplatin and 5-fluorouracil administration. Indeed, the spike 316
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only accounted for less than 2% of the total dose of irinotecan. 317

The pump-to-patient model further showed that these inconsistencies between the 318

simulated and intended drug administration could be overcome with a simple and easily 319

constructed adaptation of the infusion profiles, given the specific dimensions of the 320

infusion tube. The new profile showed a much better match with the original intended 321

administration profile. 322

Several published clinical studies propose mathematical models of the PK of 323

5-fluorouracil, oxaliplatin or irinotecan with various levels of complexity. First, a 324

physiologically-based PK model of capecitabine, a pro-drug of 5-fluorouracil, was 325

designed for humans [32]. However, the data available in the OPTILIV study would not 326

allow for estimating parameters of such a detailed model. Next, numerous clinical 327

studies have performed compartment analysis of plasma PK data from cancer patients 328

receiving either 5-fluorouracil, oxaliplatin or irinotecan [33]. These models were 329

designed for intravenous injection and could not be readily used for intra-arterial 330

hepatic administration. Thus, the development of new semi-physiological PK models 331

was necessary to include the drug delivery site as a separate compartment, that was 332

different from the Blood compartment for which data was provided. Furthermore, the 333

intention was also to develop more physiologically-relevant models in view of future 334

account of circadian rhythms and vhronotherapy optimization investigations. Indeed, 335

the developed models are called semi-physiological as the compartment volumes 336

together with relative fractions of clearance routes were inferred from literature. These 337

models could then be further extended to physiologically-based models by detailing the 338

”Organ” compartment and be connected to mechanistic PD models to represent 339

organ-specific drug PK-PD towards chrono-administration optimization. 340

Inter-patient differences in maximum plasma drug concentrations and in the time at 341

which it occurred led us to further investigate variability in between subjects. Irinotecan 342

showed the lowest mean variability. Clustering analysis indicated that patients could be 343

classified into five clusters with respect to irinotecan PK parameters. The second largest 344

inter-patient variability was found for 5-fluorouracil. Clustering for 5-fluorouracil 345

showed there was four clusters. Regarding oxaliplatin, there was the largest variability 346

between patients PK model parameters with all parameters showing high variance. 347

Clustering according to oxaliplatin PK parameters split patients into two clusters 348

leading to isolate patient 7. This clustering of the patients led to a reduced inter-patient 349

variability for all drugs, especially for irinotecan and 5-fluorouracil. This decrease in 350

CVs is not unexpected, but the significant level of reduction means this method could 351

be used as a way to stratify patients into treatment groups with less inter-patient 352

variability in PK profiles. The measure of inter-patient variability could be interpreted 353

as indicators of the need for personalisation as high differences between subjects implies 354

high potential benefit of drug administration personalisation. Here, we demonstrated 355

that the PK of all three considered drugs displayed important inter-subject variability. 356

The remaining clinical challenge lays in determining clinical biomarkers for stratifying 357

patients before drug administration, in order to reach the intended plasma PK levels. In 358

order to do so, we performed modelling analyses and identified the critical PK 359

parameters for irinotecan, 5-fluorouracil and oxaliplatin which were the transport 360

parameters between the Blood and either the Liver or the Organs compartments. 361

Conclusion 362

In conclusion, a mathematical framework was designed to allow for accurate analysis of 363

patient PK data. A model of the dynamics of the drug solution from the pump to the 364

patient’s blood was designed, irrespective of the drug delivery device. It was used to 365

represent the chronomodulated drug administration though the Mélodie infusion pump 366
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into the patient hepatic artery of irinotecan, oxaliplatin and 5-fluorouracil. The model 367

revealed significant inconsistencies between the drug profiles programmed into the 368

pump which corresponded to the drug exposure intended by clinicians and the actual 369

plasma PK levels. Importantly, it allowed for the design of innovative drug in-fusion 370

profiles to be programmed into the pump to precisely achieve the desired drug delivery 371

into the patient’s blood. Next, the pump-to-patient model was connected to 372

semi-physiological models of the PK of irinotecan, oxaliplatin and 5-fluorouracil. The 373

overall framework achieved a very good fit to data and gave insights into inter-patient 374

variability in the PK of each drug. Potential clinical biomarkers for treatment 375

personalisation were suggested although further investigations in larger cohorts of 376

patients are required. Overall, this complete framework informs on drug delivery 377

dynamics and patient-specific PK of irinotecan, oxaliplatin and 5-fluorouracil towards 378

precise and personalized administration of these drugs. 379

Methods 380

Ethics Statement 381

The pharmacokinetic data used in this investigation came from Lévi et al 382

pharmacokinetic investigation [19] and the comparison study companion study of the 383

European OPTILIV trial (ClinicalTrials.gov study ID NCT00852228), which 384

involved nine centres in four countries [34]. The data has been analysed anonymously. 385

OPTILIV clinical datasets 386

The OPTILIV trial included 11 colorectal cancer patients with liver metastases (7 men 387

and 4 women with median age of 60). The combination of irinotecan, oxaliplatin and 388

5-fluorouracil was delivered to patients by Hepatic Artery Infusion (HAI) using the 389

Mélodie pump [19]. The patients received an intravenous administration of cetuximab 390

500 mg/m2 over 2 h 30 min on the morning of day 1 which was not modelled. From day 391

2, chronomodulated HAI of irinotecan (180 mg/m2), oxaliplatin (85 mg/m2) and 392

5-fluorouracil (2800 mg/m2) were given (Fig 1). Irinotecan was delivered as a 6-h 393

sinusoidal infusion starting at 02:00, with a peak at 05:00 on day 2. Oxaliplatin was 394

administered as an 11h 30min sinusoidal infusion beginning at 10:15 with a peak at 395

16:00 on days 2, 3 and 4. 5-fluorouracil was also delivered as an 11h 30min sinusoidal 396

infusion beginning at 22:15 with peak delivery at 04:00 at night, on days 3, 4 and 5. 397

The superiority of this drug scheduling compared to non-circadian based administration 398

was demonstrated for intravenous administration within several international clinical 399

trials [15]. Between each drug infusion, there was a glucose serum flush which cleared 400

the tubing. This was a 30-min sinusoidal infusion beginning at 09:45, and then again at 401

21:45 i.e. at the end of each infusion (Figure 10). 402

Fig 10. (a) Delivery profiles of irinotecan, oxaliplatin, 5-fluorouracil and glucose
flushes as administered in the OPTILIV clinical trial. (b) Schematic of the Mélodie
infusion pump (Axoncable, Montmirail, France) used in the OPTILIV study for hepatic
artery infusion [19].

Plasma pharmacokinetics (PK) data was gathered after the first dose of irinotecan, 403

oxaliplatin and 5-fluorouracil and measured longitudinally for each individual patient. 404

Plasma concentrations of irinotecan and its active metabolite SN38 were determined in 405

mg/ml at the start of infusion, then at 2, 3, 4, 6, 8 h 15 min and 31 h 45 min post HAI 406

onset, for a total of seven time points, including baseline. Oxaliplatin concentrations 407
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were determined by measuring both platinum plasma levels, unbound and total. 408

Oxaliplatin binds to proteins in the blood and the free Pt fraction is the biologically 409

active one. Thus, oxaliplatin concentrations were determined at the start time of 410

infusion, then at 3, 6, 9 h, 11 h 30 min and 17 h 15 min post HAI onset, for a total of 411

six time points, including baseline. Plasma concentrations of 5-fluorouracil were 412

determined at the start of infusion, then at approximately 3 h, 5 h 45 min, 9 h and 11 h 413

30 min post HAI, for a total of five time points, including baseline. 414

Pump description 415

The Mélodie pump system weighs 500 g when empty (excluding drug reservoirs and 416

batteries) and measures 160 x 98 x 34 mm. The pump consists of four channels which 417

correspond to the four reservoirs that are connected to the pump. Each reservoir can 418

have a maximum volume of 2 L. The four channels are controlled by four independent 419

mechanisms which control the delivery to the infusion tube (Fig 1). For the OPTILIV 420

study, the infusion tube comprised of two sections, the first was 135mm long with a 421

diameter of 2.5mm, and the second section was 1500mm long with a diameter of 1mm. 422

The two sections had a total volume of 1.84ml. The four pump reservoirs were loaded 423

with irinotecan, oxaliplatin, 5-fluorouracil and 5% glucose solution respectively, with the 424

latter one being used for washes in between drug infusions [35]. 425

Mathematical modelling 426

A pump-to-patient mathematical model was designed as follows, irrespective of the drug 427

delivery device. The drug solutions dynamics from the pump to the patient’s blood was 428

modelled using a Partial Differential Equation (PDE) considering time and 1 spatial 429

dimension. This method was chosen as PDEs can take into account both time and 430

space which was key for modelling systems such as pump delivery. The PDE was solved 431

using a backward finite difference method programmed within Python 3.5.2 432

(https://www.python.org/). The drug PK models were based on Ordinary Differential 433

Equations (ODEs) programmed using Python 3.5.2 and solved using the odeint function 434

from the scipy library [36]. 435

PK model parameter estimation involved a weighted least square approach, with 436

conditions also placed on the drug clearance routes. The minimization of the least 437

square cost function was performed by the Covariance Matrix adaptation Evolution 438

Strategy (CMAES) within Python which has been shown to be successful at handling 439

complex cost function landscapes [37]. Model goodness of fit was assessed using the sum 440

of square residuals (SSR) and R2 values. PK model parameter numerical identifiability 441

given the available data was investigated in a two-step process as follows. First, 442

parameter sensitivity regarding the least-square cost function was computed via a global 443

Sobol sensitivity analysis as a necessary condition for identifiability [38]. This method 444

assesses the relative contributions of each parameter to the variance in the cost function 445

obtained when parameter values are varied, and thus allows for the identification of 446

parameters which have no effect on the cost function and are therefore not identifiable 447

from the available dataset. This step allowed a first reduction of the PK models. Next, 448

likelihood profiles of parameters of the reduced models were derived following the 449

procedure outlined in [39]. Additional biological constraints derived from literature were 450

added to ensure numerical identifiability of all parameters. This two-step model design 451

process was undertaken as computing likelihood profiles is associated with a high 452

computational cost. 453

PK models were fit to single-patient plasma PK datasets independently to obtain 454

patient-specific parameter values. Data was available for 10 to 11 patients which was 455

too few to undertake mixed-effect population analysis and to reliably estimate the 456
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parameters variance within a patient population [40,41]. Sampling points at 6 hours 457

post injection for irinotecan and 11 hours 30 mins post injection for oxaliplatin and 458

5-fluorouracil theoretically occurred at the same time as the start of the 30 min glucose 459

flush, that is 9:45 for irinotecan and 5-fluorouracil, and 21:45 for oxaliplatin. As 460

described in the results section, the flush was equivalent to the administration of the 461

drug quantity remaining within the tube and logically influenced plasma drug 462

concentrations. However, the exact time of patient blood collection was not reported 463

and could vary by 10 to 15 minutes due to clinical constraints. Hence, the information 464

of whether the blood sample was taken before or during the flush was not available. 465

Thus, the collection time of the data points at theoretically 21:45 for oxaliplatin, 9:45 466

for irinotecan and 9:45 for 5-fluorouracil were unchanged if the drug concentration at 467

the preceding data point was greater than the current one, indicating the flush might 468

not have occurred yet. If not, the collection time was modified and set equal to the 469

glucose peak time, which is 15min after its start time i.e. 22:00 for oxaliplatin and 10:00 470

for irinotecan and 5-fluorouracil, such value leading to the best model fit. Overall, the 471

collection time was changed compared to the theoretical one for patients 1, 2, 3 and 7 472

for oxaliplatin, for patient 5 for 5-fluorouracil, and for no patients for irinotecan. 473

Inter-patient variability and patient clustering 474

based on PK parameters 475

Given the relatively small number of patients, the inter-patient variability in parameter
values was assessed using a nearly unbiased estimator of coefficient of variation (CV),

CV =

(
1 +

1

4n

)
× σ

µ
× 100,

where µ is the parameter mean, σ the parameter standard deviation and n is the 476

number of patients. 477

Next, fuzzy c-means clustering was used to define patient clusters based on
individual PK parameters, for each drug separately. The fuzzy c-means clustering was
done using a python library sckit-fuzzy (http://pythonhosted.org/scikit-fuzzy/). The
method is based on the determination of cluster centroids and classification of patient
parameter vectors into the clusters such that the following quantity is minimised:

n∑
i=1

c∑
j=1

w2
ij (xi − cj)2

where nis the number of patients, c is the number of clusters, xi is the parameter
vector of patient i, cj is the centroid of cluster j. wij is the probability of patient i
belonging to cluster j and can be expressed as:

wij =
1∑c

k=1

(
xi−cj
xi−ck

)2
Note that, for a given patient i, the following holds:

c∑
j=1

wij = 1.

The validity function proposed by Fukuyama and Sugeno was used to determine the
number of clusters for each drug. The function is defined as:

n∑
i=1

c∑
j=1

wij(||xj − cj ||2 − ||cj − c̄||2)
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where c̄ is the average of the centroids. The number of clusters were chosen between 2 478

and n-1 inclusively such that the VFS was minimised. Plotting the clustering results 479

was done using a multidimensional scaling (MDS) algorithm which projects 480

multidimensional data onto a 2D plane while keeping distance metric scaled relatively 481

to original data (Python library sklearn.manifold [42]). Correlation coefficients between 482

original Euclidean distance and 2D-Euclidean distance were calculated were high for all 483

models (¿ 0.98) which showed that the MDS projections were accurate [43]. 484
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Supporting information

S1 Eq 1. The equations for irinotecan PK model.

S1 Table 1. Individual Parameter Estimates of irinotecan PK model.

S1 Table 2. Irinotecan PK model Parameter Mean and CV across patient
population.

S1 Table 3. Sum of Square Residuals (SSR) for irinotecan PK model, with
either the original delivery profile, or that simulated throught the PDE pump-to-patient
model. The table also shows improvement in percentages for each patient and average
improvement for all patients.

S1 Table 4. R2 values for irinotecan model, with either the original delivery
profile, or that simulated throught the PDE pump-to-patient model. The table also
shows improvement in percentages for each patient and average improvement for all
patients.
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S1 Fig. 1 Patient data best-fit of irinotecan PK model with original
delivery profile and not PDE delivery profile. Each subplot represent an individual
patient dataset, fit to the model independently. The top figure shows the fit of
irinotecan plasma concentration, the bottom figure shows that of SN38, the active
metabolite of irinotecan. SN38 data and model simulations include both bound and free
SN38.

S1 Eq 2. The equations for oxaliplatin PK model.

S1 Table 5. Individual Parameter Estimates of oxaliplatin PK model,
including mean and CV of each parameter.

S1 Table 6. Sum of Square Residuals (SSR) for oxaliplatin PK model, with
either the original delivery profile, or that simulated throught the PDE pump-to-patient
model. The table also shows improvement in percentages for each patient and average
improvement for all patients.

S1 Table 7. R2 values for oxaliplatin model, with either the original delivery
profile, or that simulated throught the PDE pump-to-patient model. The table also
shows improvement in percentages for each patient and average improvement for all
patients.

S1 Fig. 2 Patient data best-fit of oxaliplatin PK model with original
delivery profile and not PDE delivery profile. Each subplot is an individual patient
data, fit to the model independently. The top figure shows plasma ultrafiltrate platinum
concentrations, and the bottom figure shows plasma total platinum concentrations.

S1 Eq 3. The equations for 5-fluorouracil PK model.

S1 Table 8. Individual Parameter Estimates of 5-fluorouracil PK model,
including mean and CV of each parameter.

S1 Table 9. Sum of Square Residuals (SSR) for 5-fluorouracil PK model,
with either the original delivery profile, or that simulated throught the PDE
pump-to-patient model. The table also shows improvement in percentages for each
patient and average improvement for all patients.

S1 Table 10. R2 values for 5-fluorouracil model, with either the original
delivery profile, or that simulated throught the PDE pump-to-patient model. The table
also shows improvement in percentages for each patient and average improvement for all
patients.

S1 Fig. 3 Patient data best-fit of 5-fluorouracil PK model with original
delivery profile and not PDE delivery profile. Each subplot is an individual patient
data, fit to the model independently.

S1 Fig. 4 Parameter Identifiability for irinotecan PK model.

S1 Fig. 5 Parameter Identifiability for oxaliplatin PK model.

S1 Fig. 6 Parameter Identifiability for 5-fluorouracil PK model.
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S1 Fig. 7 Patient parameter clustering analysis for Irinotecan. (a) 2D
vizualisation of patient clusters for different number of clusters. Centroids (stars) and
patients (dots) are shown, (b) VFS values for different numbers of clusters.

S1 Fig. 8 Patient parameter clustering analysis for oxaliplatin. (a) 2D
vizualisation of patient clusters for different number of clusters. Centroids (stars) and
patients (dots) are shown, (b) VFS values for different numbers of clusters.

S1 Fig. 9 Patient parameter clustering analysis for 5-fluorouracil. (a) 2D
vizualisation of patient clusters for different number of clusters. Centroids (stars) and
patients (dots) are shown, (b) VFS values for different numbers of clusters.
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