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Abstract 

Electronic Health Records (EHR) are data 
generated during routine interactions across 
healthcare settings and contain rich, longitudinal 
information on diagnoses, symptoms, medications, 
investigations and tests. A primary use-case for 
EHR is the creation of phenotyping algorithms 
used to identify disease status, onset and 
progression or extraction of information on risk 
factors or biomarkers. Phenotyping however is 
challenging since EHR are collected for different 
purposes, have variable data quality and often 
require significant harmonization. While 
considerable effort goes into the phenotyping 
process, no consistent methodology for 
representing algorithms exists in the UK. Creating 
a national repository of curated algorithms can 
potentially enable algorithm dissemination and 
reuse by the wider community. A critical first step 
is the creation of a robust minimum information 
standard for phenotyping algorithm components 
(metadata, implementation logic, validation 
evidence) which involves identifying and reviewing 
the complexity and heterogeneity of current UK 
EHR algorithms. In this study, we analyzed all 
available EHR phenotyping algorithms (n=70) 
from two large-scale contemporary EHR resources 
in the UK (CALIBER and UK Biobank). We 
documented EHR sources, controlled clinical 
terminologies, evidence of algorithm validation, 
representation and implementation logic patterns. 
Understanding the heterogeneity of UK EHR 
algorithms and identifying common 
implementation patterns will facilitate the design of 
a minimum information standard for representing 
and curating algorithms nationally and 
internationally. 

1 Introduction 
In the United Kingdom (UK), structured electronic health 
records (EHR) spanning primary care, hospital care, 
disease/procedure registries and death registries are used to 

create longitudinal disease phenotypes for observational 
research studies [Hemingway et al., 2018]. Through a 
process called phenotyping, researchers create algorithms 
which utilize multiple EHR sources to accurately extract 
information on diseases (e.g. status, onset and progression), 
lifestyle risk factors and biomarkers [Banda et al., 2018]. 
Phenotyping however is challenging due to the fact that 
EHR are fragmented, curated using different controlled 
clinical terminologies and collected for purposes other than 
research (e.g. reimbursement, audit) [Morley et al., 2014].  
 
Phenotyping requires a significant amount of resources and 
mix of expertise, yet no common standard approach for 
defining, validating and ultimately sharing EHR 
phenotyping algorithms currently exists. In the UK, 
structured primary care EHR have been used in >1,800 
peer-reviewed studies to date but only 5% of studies 
published sufficiently reproducible phenotypes [Springate et 
al., 2014]. Defining a standardized format to represent EHR 
phenotypes will enable portability across data sources (and 
healthcare systems) and facilitate the systematic sharing of 
algorithms across the community [Mo et al. 2015].  
 
Compared to the United States (US), the UK EHR research 
landscape differs in two important ways: 1) researchers can 
utilize multiple national EHR sources to create longitudinal 
‘cradle to grave’ phenotypes [Kuan et al., 2019], and 2) UK 
primary care EHR contain both healthy and unhealthy 
individuals which allow researchers to capture information 
on disease severity and progression over time. A recent 
systematic review identified 66 different definitions used to 
capture asthma status and exacerbations in research using 
UK EHR [Al Sallakh et al., 2017] demonstrating significant 
existing heterogeneity. While analyses have been 
undertaken in the US to characterize the heterogeneity of 
phenotyping algorithms [Conway et al., 2011], no such 
analysis has been carried out in the UK.  
 
One of the aims of the newly-established national institute 
for health data science, Health Data Research UK (HDR 
UK, www.hdruk.ac.uk), is the creation of a national 
Phenomics Resource: an open-access online resource where 
EHR phenotypes can be deposited and curated. A critical 
first step in this process is to establish a minimum 
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information standard for representing EHR phenotyping 
algorithms. This involves exploring and documenting the 
complexity, heterogeneity, design and implementation 
patterns of contemporary phenotyping algorithms in the UK. 
The concept of a minimum information standard has been 
used successfully in other biomedical disciplines, e.g. 
Minimum Information About a Microarray Experiment 
(MIAME) defines standards for reporting microarray 
experiments [Brazma et al., 2001]. Establishing a 
standardized method for representing phenotypes in the UK 
can potentially address these challenges and ensure 
compatibility with other international initiatives such as 
eMERGE and PCORNet [Fleurence et al. 2014; Gottesman 
et al. 2013]. 

2. Aims 
Despite the widespread use of UK EHR data sources for 
research, contemporary research resources utilize different 
approaches for algorithm creation, curation and validation. 
The aims of this study were to: a) identify and characterize 
the structural components, implementation logic and 
heterogeneity of rule-based algorithms defining diseases, 
lifestyle risk factors and biomarkers in structured national 
EHR in the UK utilized by contemporary research 
resources, and b) propose a minimum information standard 
to represent UK EHR phenotyping algorithms.  

3. Methods 
We identified, downloaded and reviewed published 
phenotyping algorithms for diseases, biomarkers and 
lifestyle risk factors from two large-scale contemporary UK 
research resources: UK Biobank1 and CALIBER2.  
 
The UK Biobank [Sudlow et al., 2015] is a prospective 
cohort study of 500,000 (aged 40-69 at recruitment) adults 
recruited in England, Scotland and Wales from 2006-2010. 
For each participant, deep phenotypic and genotypic 
information is available including biomarkers in blood and 
urine, imaging (brain, heart, abdomen, bone, carotid artery), 
lifestyle indicators, pathophysiological measurements and 
genome-wide genotype data. Follow-up for health outcomes 
is enabled by hospital EHR (Hospital Episode Statistics 
(HES) in England, Patient Episode Data Warehouse in 
Wales and Scottish Morbidity Registry in Scotland) and 
linkages to primary care EHR are underway. CALIBER 
[Denaxas et al., 2012; Denaxas et al., 2019] is a research 
resource consisting of algorithms, tools and methods for 
structured EHR linked across primary care (Clinical Practice 
Research Datalink, CPRD), hospital care (HES) and a 
mortality data (Office for National Statistics, ONS) in the 
UK.  
 
                                                 
1 http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=42 
2 https://www.caliberresearch.org/portal/phenotypes 

In the UK, national EHR are recorded using controlled 
clinical terminologies where terms are assigned at variable 
timepoints i.e. in UK primary care the physician records 
terms in real time during the consultation with the patient 
whereas in hospital care terms are retrospectively entered 
into databases by trained coders and data selected for billing 
purposes. We identified and counted the number of ontology 
terms each algorithm utilizes from five controlled clinical 
terminologies which are widely used in the UK: a) Read 
(primary care, subset of SNOMED-CT), b) International 
Classification of Diseases 9th and 10th Revision (ICD-9, 
ICD-10, secondary care diagnoses and cause of mortality), 
c) OPCS Classification of Interventions and Procedures 
(OPCS-4, hospital surgical procedures, analogous to the 
Current Procedural Terminology ontology used in the 
United States), and d) the Dictionary of Medicines and 
Devices (DM+D) which is used to record primary care 
prescriptions. Terms were automatically extracted from 
documents and counted using regular expressions in Python 
3.63. We manually extracted and counted terms across five 
randomly chosen algorithms to verify the automatically-
generated counts. 
 
EHR phenotype validation is a critical process guiding the 
subsequent use of algorithms and we were interested in what 
types, if any, of evidence were available to external 
researchers. We classified the available material into six 
non-overlapping categories which encapsulate all potential 
approaches for obtaining validity evidence (adapted from 
[Denaxas et al, 2019] and recorded as used/not used): 
• Aetiological: Are the prospective associations with risk 

factors consistent with previous published evidence 
from both EHR and non-EHR studies?  

• Prognostic: Are the risks of subsequent events 
plausible and consistent with existing domain 
knowledge?  

• Case-note review: What is the positive predictive value 
(PPV) and the negative predictive value (NPV) when 
comparing the algorithm with clinician-led review of 
case notes, self-reported information or a suitable “gold 
standard” source? 

• Cross-EHR-source concordance: To what extent is 
the phenotype concordant across EHR sources?  

• Genetic: Are the observed genetic associations 
plausible and consistent in terms of magnitude and 
direction of association with associations reported from 
non-EHR studies? 

• External populations: Has the algorithm been 
evaluated in different countries or external sources? 

 
For each algorithm, we documented the EHR sources the 
phenotype is derived from (i.e. primary care, hospital care, 

                                                 
3 https://www.python.org/ 
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mortality register). We extracted information on the 
representation components of phenotypes e.g. the presence 
of tabular data and the use of a flowchart (or other graphical 
presentation). We extracted and categorized information on 
the different types of implementation logic, temporality and 
algorithm implementation patterns (Table 1), partially based 
on previous research in the US [Conway et al., 2011]. 
Concept Definition Example 
Simple 
Boolean 

Simple 
Boolean 
statements 
e.g. 
“AND”, 
“OR” 

PVD diagnosis during a 
primary care 
consultation OR 
diagnosis of leg or aortic 
embolism or thrombosis 
during a hospitalization 

Complex 
Boolean 

Nested 
statements 
with 
multiple 
layers? 

IF patient = diabetic: HT 
threshold: SBP ≥140 
mmHg OR DBP ≥90 
mmHg ELSE: threshold 
SBP ≥150 mmHg OR 
DBP ≥90 mmHg 

Negation Are 
negation 
statements 
used? 

No AF diagnosis term is 
present, but the patient 
record includes a 
warfarin prescription in 
the absence of prior 
DVT or PE, or a digoxin 
prescription but no HF 

Temporal 
(simple) 

Temporal 
proximity 
future or 
past 

Iron deficiency anaemia 
record in primary care 
OR hospital AND 
endoscopy in 30 days 

Temporal 
(complex) 

Complex 
temporal 
rules. 
multiple 
logic layers 

≥3 high SBP/DBP 
readings within 1-year 
OR ≥2 high SBP/DBP 
readings in a 6-month 
period 

Biomarker Evidence 
from 
continuous 
measureme
nt 

Presence of a positive 
rheumatoid factor test or 
anti-cyclic citrullinated 
peptide antibody test 
after a rheumatoid 
arthritis diagnosis 

Complex 
calculation 

Calculation 
e.g.  unit 
conversion 

Calculate average BMI 
in consultation, exclude 
measurements <10 
kg/m2 or >80 kg/m2 

 
Table 1: Characteristics of implementation logic, 
temporality and algorithmic implementation features 
extracted and analyzed from phenotyping algorithms in 
the UK Biobank and the CALIBER resources. AF Atrial 
Fibrillation; BMI Body Mass Index; BP Blood Pressure; 
DBP Diastolic Blood Pressure; DVT Deep Vein 
Thrombosis; PVD Peripheral Vascular Disease; PE 

Pulmonary Embolism; HT Hypertension; HF Heart Failure; 
mmHg millimeter of mercury; SBP Systolic Blood Pressure. 

4. Results 
We identified and reviewed 70 EHR phenotyping (Table 2) 
algorithms available from the UK Biobank (n=19) and the 
CALIBER resource (n=51). The majority of phenotyping 
algorithms were created to ascertain disease status (n=54) 
(e.g. heart failure [Gho et al. 2018; Uijl et al. 2019], 
depression [Daskalopoulou et al. 2016]), ten algorithms 
were created to extract information on biomarkers (e.g. 
heart rate [Archangelidi et al. 2018], blood pressure 
[Rapsomaniki et al. 2014]) and six algorithms were used to 
identify lifestyle risk factors (e.g. alcohol [Bell et al. 2017], 
smoking  [Pujades-Rodriguez et al. 2015]). 
 
All but one CALIBER phenotyping algorithm (n=50) used 
information from primary care EHR with the exception of 
socioeconomic status which was defined using the Index of 
Multiple Deprivation (IMD) provided by the ONS. 
Algorithms defining biomarker measurements (e.g. white 
blood cells, heart rate) were based on primary care EHR 
entirely while approximately half of the algorithms 
ascertaining disease status (n=19 of 35) combined 
information across all three EHR sources. All currently 
available UK Biobank algorithms (n=19) combined 
information recorded during the baseline assessment (data 
not shown), diagnoses and/or surgical procedures recorded 
during hospitalization and information based on the 
underlying (or secondary) cause of death which is recorded 
in the national mortality register. Primary care linkages in 
UK Biobank are still underway and as a result none of the 
currently available algorithms utilized information from 
primary care EHR. However, primary care information for 
just under half of the cohort (n=230,000) will be made 
available for UK Biobank researchers in June 2019. 
Algorithms incorporating primary care data for the 
conditions already covered have been or are being 
developed [Wilkinson et al 2019]. Along with a range of 
additional algorithms expanding the range of health 
outcomes available, they will be available from UK Biobank 
later in 2019. Overall, based on current publicly available 
information from CALIBER and UK Biobank, 75% (n=66) 
of algorithms used data from secondary care EHR and 45% 
(n=49) used information available in the death registry.  
 
The most widely-used clinical terminology was Read with 
4,729 (non-unique) terms used across all algorithms while 
the second highest number of terms was derived from the 
DM+D with 2,273 (non-unique) terms used to record 
prescriptions in primary care EHR. Four algorithms (body 
mass index, socioeconomic deprivation, sex, heart rate) did 
not use any terms across any terminology systems and were 
based on information which is derived from a structured 
field of the EHR or externally linked such as in the case of 
IMD. The atrial fibrillation algorithm used the highest 
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number of clinical terms (n=987) while across all algorithms 
the pregnancy phenotype used the highest number of Read 
codes (n=1,948). ICD-9 was the terminology least used: in 
the UK Biobank it is used for recording diagnoses in older 
Scottish hospital records and in CALIBER it is used to 
record the cause of death prior to 1997. Algorithms defining 
biomarkers contained the lowest number of terminology 
terms as they relied on structured data fields combined with 
a small number of diagnosis terms to denote the type of test 
(e.g. Read code “42K..00 Eosinophil count”). 
 
With regards to algorithm implementation logic, 66 (93%) 
of algorithms used Boolean statements, usually to identify 
the presence of one or more diagnosis codes in a patient’s 
EHR. Where Boolean statements were deployed, in nearly 
half of the cases these were complex and involved either a 
series of nested statements or joined information across 
multiple sources, for example in the UK Biobank where 
information is derived from self-reported, hospital and 
mortality sources and events are further stratified as 
‘prevalent’ (first reported prior to recruitment) or ‘incident’ 
(first reported after recruitment). A similar pattern of logic 
was observed with regards to temporality where 66 
algorithms utilized temporal rules and almost always this 
included more complex statements and restrictions. Finally, 
approximately half (n=43) of the algorithms used negation. 
Only ten algorithms (16%) included more complex 
calculations, usually to calculate the mean of multiple 
measurements on the same day or to harmonize units for 
laboratory measurements to a common format.  
 
Prognostic 86% (n=66) and cross-source concordance 54% 
(n=43) validation approaches where the most widely-used 
algorithm evaluation approaches. The least-widely used 
validation approach was expert case note review, although 
this type of validation has been completed for a few UK 
Biobank algorithms, including dementia and its subtypes 
[Wilkinson et al, 2019], and is underway for several others. 
Most (93% [n=66]) of the algorithms used data stored in 
tabular format since tables are predominantly used to store 
lists of controlled clinical terminology terms. Only 25% 
(n=15) of algorithms included a graphical representation of 
the algorithm using a flowchart and all algorithms included 
a textual description of the algorithm components. 
 

5. Discussion 
In this study we downloaded and reviewed 70 EHR 
phenotyping algorithms from two large-scale, national 
research resources in the UK. We reviewed algorithms in 
terms of EHR data sources, controlled clinical terminologies 
used, available evidence of algorithm validation, algorithm 
representation formats and implementation logic patterns. 
 
Similar to findings from US studies, we discovered that UK 
EHR algorithms make extensive use of Boolean statements 

and temporal logic. When these are used, they are often 
complex i.e. combining multiple nested Boolean layers of 
logic and defining temporal proximity rules within them. 
This is expected given that algorithms utilize multiple 
sources of information and include evidence from primary 
care and hospital care (or self-reported information in the 
case of the UK Biobank). Algorithms defining disease status 
were the most frequent and complex algorithms reviewed 
and utilized the greatest number of terms from controlled 
clinical terminologies. Negation was another major 
component of algorithms and is often used to exclude 
concomitant diagnoses or procedures when trying to 
ascertain diseases based on secondary information (e.g. 
ascertaining AF cases based on a prescription of digoxin but 
excluding patients which are diagnosed with HF).   
 
The Read clinical terminology was the most popular 
terminology used with the highest number of terms per 
phenotype. These findings are expected as Read contains a 
significant amount of duplication internally due to synonym 
terms which can be potentially utilized. Additionally, the 
clinical concepts contained within Read subsume the 
concepts across all other terminologies i.e. Read contains 
terms for diagnoses, symptoms, laboratory tests, 
prescriptions and procedures. UK primary care clinical 
coding is currently transitioning to SNOMED-CT which 
should provide a more streamlined set of terms to be used.   
  
In terms of validation, we observed a significant level of 
heterogeneity with approaches seeking to evaluate and 
replicate previously reported aetiological and prognostic 
estimates from non-EHR studies being the most popular. 
The presentation of the evidence however does not follow a 
common standard and sometimes only included references 
to published research rather than a more structured abstract 
of the main findings of the analyses. In contrast with the 
US, expert review of case records was the least frequently 
used approach for evaluation due to the fact that large scale 
corpuses of medical text do not exist in the UK owing to 
information governance restrictions and the technical 
challenges of integrating such data since they are held in a 
wide range of formats by multiple different NHS 
organisations. For similar reasons, none of the algorithms 
reviewed utilize medical text and natural language 
processing approaches to extract information from medical 
notes which is prevalent in some clinical specialties such as 
mental health [Wu et al. 2018].  
 
Significant heterogeneity was also observed in terms of 
representation. UK Biobank algorithms were curated in 
individual PDF files4 and included extended information on 
the goal of the algorithm and useful background knowledge 
and references. In contrast, CALIBER phenotypes were 
                                                 
4 http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=42 
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stored in an online, openly-available Portal5, spanned 
multiple pages and did not include much background 
information. Flowcharts or similar graphical representations 
were not widely-used and while they are not machine-
readable, they can potentially minimize errors during 
translation of the algorithm to machine code. 
 
Our study has potential limitations. We reviewed algorithms 
from only two UK sources. While other UK initiatives exist, 
they tend to focus on curating lists of controlled clinical 
terminology terms (referred to as codelists) rather than self-
contained phenotypes i.e. terms, implementation, validation 
evidence. We only focused on rule-based approaches and 
did not cover machine learning approaches. While rule-
based methods are the most widely used in the UK, data-
driven high-throughput approaches including natural 
language processing methods are emerging [Zhou et al., 
2016, Pikoula et al., 2019]. These approaches pose different 
challenges and their requirements would need to be 
documented and analysed in order to ensure their integration 
[Hripcsak & Albers 2013]. Finally, reproducible research 
approaches [Denaxas et al., 2017, Goodman et al, 2016] 
which are covered elsewhere would also need to be 
carefully taken into consideration in order to ensure 
algorithm portability.  

6. Steps towards a minimum information standard 
Based on our findings, we propose that an EHR 
phenotyping algorithm representation combines metadata, 
implementation logic, validation evidence and use-cases. 
We suggest the following components towards establishing 
a minimum information standard with regards to rule-based 
phenotyping algorithms for UK EHR: 
 
Part 1 – Algorithm metadata: Succinct information about 
the goal of the algorithm, the intended use-case, the data 
sources and controlled clinical terminologies used, 
applicable age groups and genders, list of authors and their 
contact details and a set of SNOMED-CT terms to classify 
the algorithm. A unique identifier, such as a Digital Object 
Identifier (DOI), should be minted to enable usage tracking 
in subsequent research.  
 
Part 2 – Implementation: Details on the implementation 
logic of the algorithm with pseudocode to facilitate the 
translation to machine code and documentation on decisions 
made and reasoning. Where possible analytical scripts 
should be attached using markdown or a similar approach. 
The standard should support defining complex Boolean and 
temporal logic across multiple EHR sources and clinical 
terminologies. In the future, a computable phenotype format 
should encapsulate this information as a stand-alone file. 

                                                 
5 https://www.caliberresearch.org/portal 
 

 
Part 3 – Validation evidence: Description of the steps 
taken to support phenotype validity across six categories 
(aetiological, prognostic, genetic, expert review, cross-
source and external population). For each implementation, 
the number of cases, controls, NPV and PPV values should 
be reported and the format should support the embedding of 
graphical files (e.g. forest plots). 
 
Part 4 – Use-cases: Links to published research utilizing 
the phenotype algorithms, cross-referenced with DOI’s. 

7. Conclusion 

Our analyses identified a certain level of underlying 
homogeneity in terms of how phenotyping algorithms are 
defined and evaluated. We suggest four components 
towards a minimum information standard that should be 
used to represent phenotyping algorithms. These findings 
provide a crucial first step towards curating and 
disseminating phenotyping algorithms utilizing UK EHR. 
Further work is required towards establishing a computable 
format for phenotyping algorithms and ensuring 
interoperability with other resources (e.g. PheKB). 
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CALIBER                        

AAA + + + 32 6 6 46 0 + + +    +  +   + +   

AD + + + 36 17 7 0 0 +  +    +  + +  + +   

AF + + + 523 5 0 396 63 + + + +   + + + + + + +   

Alcohol +   141 0 0 0 0 +      + + + + + + +   

AMI + + + 43 18 14 2 0 + + + +  + + + + + + + +   

AU + +  38 6 0 0 15 +  +    + + + + + + +   

Bleeding + + + 131 14 0 17 0 + + +  +  +  + +  + + +  

BMI +   0 0 0 0 0 +           +  + + 

BP +   67 0 0 0 0 +      +     +  + + 

CHD + + + 30 8 9 0 0 + + +    +  + +  +    

Dementia NS + + + 36 17 7 0 0 +  +    +  + +  + +   

Depression + +  152 15 0 0 0 +  +    +  +   + +   

Deprivation    0 0 0 0 0 +               

Diabetes + +  141 4 0 0 0 + +     + + + + + + +   

Eosinophils +   4 0 0 0 0 +      +  + + + + + +  

Ethnicity + +  104 0 0 0 0 +      + + + + +     

GCA + +  7 1 0 0 18 +  +    +  + + + + +   

Gender +   0 0 0 0 0 +               

HCM + +  81 2 0 41 557 +  +    + + + + + + +   

HDL +   4 0 0 0 0 +      +  + +  + + + + 

HF + + + 93 6 9 0 0 + + +    + + + + + + +   

HIV + + + 35 25 0 0  +  +    +  +   + +   

HR +   0 0 0 0 0 +        +   + + + + 

HT + +  84 5 0 2 0 + + +    +  +   + + + + 

ICH + + + 17 1 1 0 0 + + +    +  +   + +   

Influenza +   62 0 0 0 0 +      +  +       

Isch. Stroke + + + 10 1 2 0 0 + + +    +  +   + +   

LDL +   5 0 0 0 0 +      +  +   + + + + 

Lymphocytes +   10 0 0 0 0 +      +  +   + + + + 

MS + +  10 1 0 0 15 +  +    + + + + + + + +  

Neutrophils +   6 0 0 0 0 +      +  +   + + + + 

Obesity + + + 105 1 0 50 0 +  +    +  +   +    
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PAD + + + 201 6 5 71 0 + + +    +  + +  + +   

BuP + +  25 6 0 0 286 +  +    + + + + + + +   

PBC + +  4 1 0 0 21 +  +    + + + + + + +   

PMR + +  3 2 0 0 90 +  +    +  + + + + +   

Pregnancy + +  1948 0 0 0 0 +      +  +       

Psoriasis + +  82 0 0 0 453 +  +    + + + + + + +   

RA + +  75 18 0 0 72 +  +    + + + + + + + +  

SA + +  181 3 0 67 674 + + +    + + + +  + +   

SAH + + + 11 1 1 0 0 + + +    +  +  + +    

SCD + + + 32 6 2 16 0 + + +    +  + + + + +   

Scleroderma + +  5 5 0 0 9 +  +    + + + + + + + +  

Smoking +   21 3 0 0 0 +      +  + + + +    

Stroke NS + + + 17 6 3 1 0 + + +    +  +  + +    

TIA + + + 15 2  0 0 + + +    +  +  + +    

Triglycerides +   6 0 0 0 0 +      +  +   + + + + 

UA + +  12 4 0 0 0 + + +    +  + + + +    

UCD + + + 32 6 2 16 0 + +     +  +  + +    

VD + + + 36 17 7 0 0 +  +    +  + +  + +   

WBC +   16 0 0 0 0 +      +  +   + + + + 

UK Biobank6                        

AD n/a + + n/a 32 9 0 n/a +    +  +  + + + + +   

AMI n/a + + n/a 23 17 0 n/a +      +  +  + + +   

Asthma n/a + + n/a 6 6 0 n/a +      +  +  + + +   

COPD n/a + + n/a 11 4 0 n/a +      +  +  + + +   

Dementia NS n/a + + n/a 32 9 0 n/a +    +  +  + + + + +   

ESRD n/a + + n/a 18 0 37 n/a +    +  +  + + + + +   

FTD n/a + + n/a 32 9 0 n/a +    +  +  + + + + +   

ICH n/a + + n/a 32 7 0 n/a +      +  +  + + +   

Isch. Stroke n/a + + n/a 32 7 0 n/a +      +  +  + + +   

MND n/a + + n/a 1 1 0 n/a +      +  +  + + +   

MSA n/a + + n/a 19 3 0 n/a +    +  +  + + + + +   

NSTEMI n/a + + n/a 23 17 0 n/a +      +  +  + + +   

Parkinsonism n/a + + n/a 19 3 0 n/a +    +  +  + + + + +   

PD n/a + + n/a 19 3 0 n/a +    +  +  + + + + +   

PSP n/a + + n/a 19 3 0 n/a +    +  +  + + + + +   

SAH n/a + + n/a 32 7 0 n/a +      +  +  + + +   

STEMI n/a + + n/a 23 17 0 n/a +      +  +  + + +   

Stroke NS n/a + + n/a 32 7 0 n/a +      +  +  + + +   

VD n/a + + n/a 32 9 0 n/a +    +  +  + + + + +   

                                                 
6 Primary care EHR available for participants in 2019; case-note review validation underway for multiple phenotypes. 
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Table 2. Information on EHR data sources, controlled clinical terminologies, available evidence of algorithm 
validation, algorithm representation format and implementation logic patterns from UK Biobank and CALIBER 
EHR phenotype algorithms 

AAA Abdominal Aortic Aneurysm; AD Alzheimer's Disease; AF Atrial Fibrillation; AMI Acute Myocardial Infarction; AU Autoimmune Uveitis; BMI 
Body Mass Index; BP Blood Pressure; BuP Bullous Pemphigoid; CHD Coronary Heart Disease; FTD Frontotemporal dementia; GCA Giant Cell Arteritis; 
HCM Hypertrophic Cardiomyopathy; HDL High Density Lipoprotein cholesterol; HF Heart Failure; HIV Human Immunodeficiency Virus; HR Heart Rate; 
HT Hypertension; ICH Intracerebral Haemorrhage; LDL Low Density Lipoprotein cholesterol; MS Multiple Sclerosis; NS Not Specified; PAD Peripheral 
Arterial Disease; PBC Primary Biliary Cirrhosis; PMR Polymyalgia Rheumatica; RA Rheumatoid Arthritis; SA Stable Angina; SAH Subarachnoid 
Haemorrhage; SCD Sudden Cardiac Death; TIA Transient Ischaemic Attack; UA Unstable Angina; UCD Unheralded Coronary Death; VD Vascular 
Dementia; WBC White Blood Cell Count; COPD Chronic Obstructive Pulmonary Disease; ESRD End Stage Renal Disease; MND Motor Neuron Disease; 
PD Parkinson's Disease and Parkinsonism; MSA Multiple System Atrophy; PSP Progressive Supranuclear Palsy; STEMI ST-Elevation AMI; NSTEMI Non-
ST Elevation AMI 
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