1 STING recruits NLRP3 to the ER and deubiquitinates NLRP3 to activate the inflammasome

3	Wenbiao Wang ¹ , Dingwen Hu ² , Yuqian Feng ¹ , Caifeng Wu ¹ , Aixin Li ² , Yingchong Wang ² , Keli
4	Cheng ² , Mingfu Tian ² , Feng Xiao ² , Qi Zhang ² , Muhammad Adnan Shereen ² , Weijie Chen ¹ , Pan
5	Pan ¹ , Pin Wan ¹ , Weiyong Liu ² , Fang Liu ² , Kailang Wu ² , Geng Li ¹ , Yingle Liu ^{1,2} , and Jianguo Wu ^{1,2} *
6	¹ Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University,
7	Guangzhou 510632, China. ² State Key Laboratory of Virology, College of Life Sciences, Wuhan
8	University, Wuhan 430072, China.
9	
10	*Correspondence: Jianguo Wu, State Key Laboratory of Virology and College of Life Sciences,
11	Wuhan University, Wuhan 430072, P.R. China, Tel.: +86-27-68754979, Fax: +86-27-68754592,
12	Email: jwu@whu.edu.cn
13	
14	
15	
16	
17	Running title: STING activates the NLRP3 inflammasome
18	
19	

20 Abstract

21

22	One of the fundamental reactions of the innate immune responses to pathogen infection is the
23	release of pro-inflammatory cytokines, including IL-1 β , processed by the NLRP3 inflammasome.
24	STING is essential for innate immune responses and inflammasome activation. Here we reveal a
25	distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1 β
26	secretion, and inflammatory responses in human cell lines, mice primary cells, and mice.
27	Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and
28	promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and
29	promotes NLRP3 translocation to the endoplasmic reticulum, thereby facilitating the inflammasome
30	formation. Second, STING interacts with NLRP3 and removes K48- and K63-linked
31	polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we
32	demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against DNA
33	virus infection.
34	
35	Keywords: Cyclic GMP-AMP synthase (cGAS)/Herpes simplex virus type 1
36	(HSV-1)/Interleukine-1 β (IL-1 β)/Polyubiquitination and deubiquitination/The cGAS-STING

38

37

pathway

39 Introduction

40

41	The innate immune system detecting pathogens through recognition of molecular patterns is a
42	primary host defense strategy to suppress the infections (Akira et al, 2006). Recognition of
43	pathogens stimuli, known as pathogen-associate molecular patterns (PAMPS), is relied on pattern
44	recognition receptors (PRRs). Several families of PRRs have been described, including the Toll-like
45	receptor (TLR) (Takeuchi & Akira, 2010), RIG-I-like receptor (RLR) (Yoneyama et al., 2004),
46	NOD-like receptor (NLR) (Ting et al, 2008), and C-type lectin receptor (CLR) (Hardison & Brown,
47	2012). The NLRs involved in the assembly of large protein complexes referred to as
48	inflammasomes are emerging as a major route by which the innate immune system responds to
49	pathogen infections (Schroder & Tschopp, 2010). One of the fundamental reactions of the innate
50	immunity is the procession and release of pro-inflammatory cytokines, including interleukine-1 β
51	(IL-1β), a pleiotropic cytokine playing crucial roles in inflammatory responses in addition to
52	instructing immune responses (Dinarello, 2009). The best-characterized inflammasomes is the
53	NLRP3 inflammasome, which consists of three major components: a cytoplasmic sensor NLRP3
54	(NACHT, LRR and PYD domains-containing protein 3), an adaptor ASC (apoptosis-associated
55	speck-like protein with CARD domain), and an interleukin-1β-converting enzyme pro-Caspase-1
56	(cysteinyl aspartate-specific proteinase-1) (Schroder & Tschopp, 2010). NLRP3 and ASC together
57	promote the cleavage of pro-Casp-1 to generate active subunits p20 and p10, which regulate IL-1 β
58	maturation (Martinon et al, 2004).

The stimulator of interferon genes (STING) has the essential roles in innate immune response
against pathogen infections (Ishikawa et al, 2009). Upon binding of cytoplasmic DNA, cyclic

61	GMP-AMP synthase (cGAS) catalyzes the formation of cyclic guanosine monophosphate-adenosine
62	monophosphate (cGAMP) by binding to STING. STING subsequently co-localizes with TBK1 and
63	IRF3, leading to induction of type I IFNs, and recruits TRAF6 and TBK1 or TRAF3 and IKK α to
64	activate the NF-κB pathway (Abe & Barber, 2014; Wu et al., 2013). In human myeloid cells,
65	STING is involved in cytosolic DNA induced-NLRP3 inflammasome activation (Gaidt et al, 2017),
66	and in mice BMDMs, STING is required for pathogen-induced inflammasome activation and IL-1 β
67	secretion (Webster et al., 2017; Swanson et al., 2017).
68	We explored how STING regulates the NLRP3 inflammasome and reveal a distinct mechanism
69	underlying such regulation upon herpes simplex virus type 1 (HSV-1) infection and cytosolic DNA
70	stimulation. HSV-1 causes various mild clinical symptoms, while in immunocompromized and
71	neonates individuals, it can cause herpes simplex encephalitis, which may lead to death or result in
72	some neurological problems (Roizman, 2013). But the detailed mechanisms by which HSV-1
73	regulates the NLRP3 inflammasome are largely unknown. We demonstrate that HSV-1-induced
74	NLRP3 inflammasome activation is dependent on the cGAS-cGAMP-STING pathway. STING
75	recruits and promotes NLRP3 translocation to the endoplasmic reticulum, and binds and removes
76	NLRP3 polyubiquitination, thereby promoting the inflammasome activation. We propose that the
77	cGAS-cGAMP-STING-NLRP3 axis is essential for host defense against DNA virus infection.

Results 79

80

100

STING interacts with NLRP3 to facilitate the inflammasome activation. 81 We initially determined the correlation between STING and NLRP3, and showed that STING and 82 NLRP3 interacted with each other in human embryonic kidney (HEK293T) cells (Fig 1A, B). The 83 NLRP3 inflammasome consists of three major components, NLRP3, ASC, and pro-Casp-1 84 (Schroder & Tschopp, 2010). We explored whether STING interacts with ASC and/or pro-Casp-1, 85 and clearly revealed that STING interacted with NLRP3, but not with ASC or pro-Casp-1 (Fig 1C). 86 87 NLRP3 protein harbors several prototypic domains, including PYRIN domain (PYD), NACHT-associated domain (NAD), and Leucine rich repeats (LRR) (Ye & Ting, 2008). Next, the 88 domain of NLRP3 involved in the interaction with STING was determined by evaluating the 89 90 plasmids encoding NLRP3, PYRIN, NACHT, or LRR (Figure 1D) as described previously (Wang et al, 2018). Like NLRP3, NACHT and LRR interacted with STING, but PYRIN failed to interact 91 with STING (Figure 1E), and consistently, STING interacted with NLRP3, NACHT, and LRR (Fig 92 1F, lanes 2, 6 and 8), but not with PYRIN (Fig 1F, lane 4). In another hand, STING comprises five 93 putative transmembrane (TM) regions (Ishikawa & Barber, 2008). The domain of STING required 94 for the interaction with NLRP3 was assessed by analyzing plasmids encoding wild-type (WT) 95 STING and seven truncated proteins (Fig 1G). Like WT STING(1-379aa) (Fig 1H, lane 9), the 96 truncated proteins STING(1-160aa), STING(1-240aa), STING(41-379aa), STING(81-379aa), and 97 STING(111–379aa) interacted strongly with NLRP3 (Fig 1H, lane 2–6), STING(151–379aa) 98 associated weakly with NLRP3 (Fig 1H, lane 7), but STING(211-379aa) failed to interact with 99 NLRP3 (Fig 1H, lane 8), indicating that TM5 (151–160aa) of STING is involved in the interaction

101 with NLRP3.

102	The role of STING in the regulation of the NLRP3 inflammasome was explored by using a
103	pro-Casp-1 activation and pro-IL-1 β cleavage cell system as established previously (Wang et al.,
104	2017). In this system (NACI), HEK293T cells were co-transfected with plasmids encoding NLRP3,
105	ASC, pro-Casp1, and pro-IL-1β. In the NACI cells, IL-1β secretion was stimulated by STING(1-
106	160aa), STING(1-240aa), STING(41-379aa), or STING (Fig 1I, lane 2-4 and 9), but not by
107	STING(81–379aa), STING(111–379aa), STING(151–379aa) or STING(211–379aa) (Fig 1I, lane 5–
108	8), suggesting that TM2 (41–81aa) of STING is required for the induction of IL-1 β secretion.
109	Notably, STING promoted the NLRP3-ASC interaction (Fig 1J), an indicator of the inflammasome
110	assembly (Compan et al., 2012) and enhanced NLRP3-mediated ASC oligomerization (Fig 1K),
111	which is critical for inflammasome activation (Shenoy et al., 2012). Moreover, in HEK293T cells
112	(Fig 1L) and HeLa cells (Fig 1M), NLRP3 and STING co-localized and formed large spots in the
113	cytosol (Fig 1L and M), an indication of the NLRP3 inflammasome formation ((Martinon et al.,
114	2009). Taken together, STING interacts with NLRP3 through TM5 domain and promotes the
115	assembly and activation of the NLRP3 inflammasome through TM2 domain.
116	

117 HSV-1 infection promotes the STING-NLRP3 interaction.

STING plays a key role in host innate immune response in response to pathogen infections and cytosolic DNA simulation (Ishikawa & Barber, 2008). We evaluated the effects of HSV-1 infection and HSV120 transfection, a biotinylated dsDNA representing the genomes of HSV-1 that efficiently induces STING-dependent type I IFN production as reported previously (Abe et al., 2013) on the

122 STING-NLRP3 interaction. In TPA-differentiated human leukemic monocyte (THP-1) macrophages,

123	HSV-1 infection facilitated endogenous NLRP3-STING interaction and promoted endogenous
124	STING-NLRP3 interaction (Fig 2A, B). In HEK293T cells and HeLa cells (Fig 2D), the
125	STING-NLRP3 interaction was enhanced upon HSV-1 infection (Fig 2C, D). Similarly, in
126	TPA-differentiated THP-1 macrophages, HEK293T cells, and HeLa cells, the NLRP3-STING
127	interaction was promoted by HSV120 transfection (Fig 2E-G). Moreover, in primary mouse
128	embryo fibroblasts (MEFs), HSV-1 infection and HSV120 transfection facilitated endogenous
129	STING-NLRP3 interaction (Fig 2H). Collectively, HSV-1 infection and HSV120 transfection
130	facilitate the interaction of STING with NLRP3.

132 HSV-1 infection induces IL-1β expression and secretion.

133 Next, we explored whether HSV-1 infection and HSV120 transfection regulate the NLRP3

134 inflammasome activation. In TPA-differentiated THP-1 macrophages, endogenous IL-1β secretion

135 was induced by Nigericin (a positive control for the inflammasome activation) and HSV-1 (Fig 3A,

B). Consistently, IL-1 β maturation and Casp-1 cleavage, as well as pro-IL-1 β production were

137 activated upon HSV-1 infection (Fig 3C, D). Notably, IL-1β mRNA was not induced by Nigericin

but induced upon HSV-1 infection (Fig 3E, F) and HSV-1 ICP27 mRNA was expressed in the

139 infected cells (Fig 3G, H). Similarly, in TPA-differentiated THP-1 macrophages, IL-1β secretion

140 was induced by Nigericin and facilitated by HSV120 (Fig 3I). IL-1β maturation and Casp-1

141 cleavage and pro-IL-1β production were stimulated by Nigericin and promoted by HSV120 (Fig 3J).

142 IFN-β mRNA expression was not induced by Nigericin but activated by HSV120 (Fig 3K),

demonstrating that HSV120 is effective in the cells. Moreover, in mice primary MEFs, endogenous

144 IL-1β secretion was induced by ATP (a positive control), promoted upon HSV-1 infection, and

145	enhanced by HSV120 stimulation (Fig 3L, M). HSV-1 ICP27 mRNA was detected in the cells (Fig
146	3N), suggesting that HSV-1 is replicated. IFN- β mRNA was not induced by ATP but activated by
147	HSV120 in the cells (Fig 3O), demonstrating that HSV120 is effective. Therefore, IL-1 β expression
148	and secretion are induced upon DNA virus infection and cytosolic DNA stimulation.

150	The NLRP3 inflammasome is required for HSV-1-induced IL-1β activation.
151	Accordingly, we determined whether the NLRP3 inflammasome is required for HSV-1 in the
152	induction of IL-1 β activation. Initially, the effects of glybenclamide (NLRP3 inhibitor) and
153	Ac-YVAD-cmk (Casp-1 inhibitor) (Wang et al., 2015) on HSV-1-mediated IL-1 β activation were
154	evaluated. In TPA-differentiated THP-1 macrophages, IL-1 β secretion (Fig 4A, C) as well as IL-1 β
155	(p17) cleavage and Casp-1(p20 and p22) maturation (Fig 4B, D) activated by Nigericin and HSV-1
156	were significantly attenuated by glybenclamide (Fig 4A, B) or Ac-YVAD-cmk (Fig 4C, D). HSV-1
157	ICP27 mRNA was expressed in infected cells (Fig 4E, F), indicating that HSV-1 is replicated.
158	In addition, the role of endogenous NLRP3 inflammasome in HSV-1-induced IL-1 β activation
159	was assessed in THP-1 cell lines stably expressing negative control shRNA (sh-NC) and shRNAs
160	(sh-NLRP3, sh-ASC and sh-Casp-1) targeting the NLRP3 inflammasome components. Notably,
161	IL-1 β secretion (Fig 4G, I) as well as IL-1 β (p17) cleavage and Casp-1 (p20 and p22) maturation
162	(Fig 4H, J, top) induced by Nigericin (Fig 4G, H) or HSV-1 (Fig 4I, J) were attenuated by
163	sh-NLRP3, sh-ASC, and sh-Casp-1. The NLRP3, ASC, and pro-Casp-1 proteins were
164	own-regulated by sh-NLRP3, sh-ASC, and sh-Casp-1 stable cells, respectively (Fig 4H, J, bottom),
165	indicating that shRNAs are effective in the cells. HSV-1 ICP27 mRNA was expressed in infected

166 cells (Fig 4K), confirming that HSV-1 is replicated in the cells.

167	Moreover, the direct role of NLRP3 in the regulation of HSV-1-induced IL-1 β secretion was
168	determined in primary MEFs of C57BL/6 WT pregnant mice and NLRP3 ^{-/-} pregnant mice. NLRP3
169	protein was detected in WT mice primary MEFs, but not in NLRP3 ^{-/-} mice primary MEFs (Fig 4L),
170	indicating that NLRP3 is knocked out in the null mice. IL-1 β secretion was induced by ATP and
171	HSV-1 in WT mice primary MEFs but not in NLRP3 ^{-/-} mice primary MEFs (Fig 4M). HSV-1 ICP27
172	mRNA was expressed in infected cells, indicating that HSV-1 is replicated in the cells (Fig 4N).
173	Collectively, inhibition, knock-down, and knock-out of the NLRP3 inflammasome components lead
174	to the repression of IL-1 β secretion and Casp-1 maturation, therefore the NLRP3 inflammasome is
175	required for HSV-1-induced activation of IL-1β.
176	
177	STING recruits NLRP3 to the ER to promote the inflammasome formation.
178	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune
178 179	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3
178 179 180	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the
178 179 180 181	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while
178 179 180 181 182	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while NLRP3 and STING together co-localized and distributed in the ER to form specks (Fig 5A), which
178 179 180 181 182 183	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while NLRP3 and STING together co-localized and distributed in the ER to form specks (Fig 5A), which is an indication of the NLRP3 inflammasome complex formation (Martinon et al., 2009), suggesting
178 179 180 181 182 183 184	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while NLRP3 and STING together co-localized and distributed in the ER to form specks (Fig 5A), which is an indication of the NLRP3 inflammasome complex formation (Martinon et al., 2009), suggesting that STING recruits NLRP3 to the ER and promotes the inflammasome formation. In addition,
178 179 180 181 182 183 184 185	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while NLRP3 and STING together co-localized and distributed in the ER to form specks (Fig 5A), which is an indication of the NLRP3 inflammasome complex formation (Martinon et al., 2009), suggesting that STING recruits NLRP3 to the ER and promotes the inflammasome formation. In addition, NLRP3 diffusely distributed in the cytosol of untreated cells, but formed distinct specks upon
178 179 180 181 182 183 184 185 186	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while NLRP3 and STING together co-localized and distributed in the ER to form specks (Fig 5A), which is an indication of the NLRP3 inflammasome complex formation (Martinon et al., 2009), suggesting that STING recruits NLRP3 to the ER and promotes the inflammasome formation. In addition, NLRP3 diffusely distributed in the cytosol of untreated cells, but formed distinct specks upon HSV-1 infection or HSV120 transfection (Fig 5B). Moreover, NLRP3 diffusely distributed in the
178 179 180 181 182 183 184 185 186 187	STING predominantly resides in the endoplasmic reticulum (ER) to regulate innate immune signaling processes (Ishikawa & Barber, 2008). Here we evaluated whether STING recruits NLRP3 to ER and activates the inflammasome. In HeLa cells, NLRP3 alone diffusely distributed in the cytoplasm and STING alone located in the ER (as indicated by the ER marker, ER blue), while NLRP3 and STING together co-localized and distributed in the ER to form specks (Fig 5A), which is an indication of the NLRP3 inflammasome complex formation (Martinon et al., 2009), suggesting that STING recruits NLRP3 to the ER and promotes the inflammasome formation. In addition, NLRP3 diffusely distributed in the cytosol of untreated cells, but formed distinct specks upon HSV-1 infection or HSV120 transfection (Fig 5B). Moreover, NLRP3 diffusely distributed in the cytosol of untreated cells, while upon HSV-1 infection or HSV120 transfection, NLRP3 forms

189	(Fig 5D). Notably, in transfected HeLa cells, NLRP3, STING, and Calnexin were detected in whole
190	cell lysate (WCL) and purified ER fraction, and interestingly, NLRP3 abundance was enhanced by
191	STING in purified ER fraction (Fig 5E). Similarly, in mock-infected THP-1 macrophages and mice
192	primary MEFs, NLRP3, STING, and Calnexin were detected in WCL and purified ER, and NLRP3
193	abundance was increased in the ER upon HSV-1 infection (Fig 5F, G). Therefore, STING, HSV-1,
194	and HSV120 facilitate the NLRP3 inflammasome formation in the ER

Moreover, the effect of endogenous STING on NLRP3 translocation to the ER was further 195 determined by using shRNA targeting STING (sh-STING). Hela cells stably expressing sh-NC or 196 197 sh-STING were generated, and then transfected with Flag-NLRP3 and infected with HSV-1 or transfected with HSV120. In the absence of sh-STING, NLRP3 diffusely distributed in the cytosol 198 of untreated cells and formed distinct specks in the ER, as indicated by Calnexin and ER Blue (Fig 199 200 5H, I, top), upon HSV-1 infection or HSV120-transfection, however, in the presence of sh-STING, NLRP3 failed to form specks upon HSV-1 infection or HSV120 transfection (Fig 5H, I, bottom), 201 indicating that STING knock-down leads to the repression of HSV-1-induced formation of the 202 203 NLRP3 inflammasome. In addition, NLRP3, Calnexin, and STING were detected in WCL and purified ER fraction of Hela cells (Fig 5J), THP-1 cells (Fig 5K) and mice primary MEFs (Fig 5L), 204 and notably, NLRP3 level was higher in purified ER fraction upon HSV-1 infection in sh-NC stable 205 cells (Fig 5J-L, lane 6 vs. 5) as compared with sh-STING stable cells (Fig 5J-L, lane 8 vs. 7), 206 suggesting that STING knock-down results in the attenuation of NLRP3 translocation to the ER 207 upon HSV-1 infection. We also confirmed that STING abundance was down-regulated by 208 sh-STING (Fig 5J-L). Collectively, STING recruits NLRP3 to the ER and promotes the NLRP3 209 inflammasome formation upon HSV-1 infection and cytosolic DNA stimulation. 210

212 STING deubiquitinates NLRP3 to activate the NLRP3 inflammasome.

- 213 The deubiquitination of NLRP3 is required for the NLRP3 inflammasome activation (Juliana et al.,
- 214 2012). We next investigated whether STING plays a role in the deubiquitination of NLRP3, thereby
- facilitating the inflammasome activation. Interestingly, NLRP3 polyubiquitination catalyzed by
- 216 HA-UB, HA-UB(K48R), or HA-Ub(K63R) was repressed by STING (Fig 6A, B). We also revealed
- that NLRP3 polyubiquitination catalyzed by HA-UB, HA-UB(K48O) (ubiquitin mutant that only
- retains a single lysine residue), or HA-UB(K63O) (ubiquitin mutant that only retains a single lysine
- residue) was suppressed by STING (Fig 6C). These results reveal that STING removes K48- and
- 220 K63-linked polyubiquitination of NLRP3.

In addition, we examined whether HSV-1 infection and HSV120 transfection regulate the

deubiquitination of NLRP3. Notably, NLRP3 polyubiquitination catalyzed by HA-UB was

attenuated upon HSV-1 infection (Fig 6D) or by HSV120 transfection (Fig 6E). In THP-1

differentiated macrophages, UB-catalyzed (Fig 6F, top), K48-linked (Fig 6F, middle), and

K63-linked (Fig 6F, bottom) polyubiquitination of endogenous NLRP3 was repressed upon HSV-1

infection; and UB-catalyzed polyubiquitinion of endogenous NLRP3 was repressed by HSV120

227 (Fig 6G). Moreover, in mice primary MEFs, UB-catalyzed ployubiquitination of endogenous

NLRP3 was attenuated upon HSV-1 infection (Fig 6H). Therefore, HSV-1 infection and HSV120

stimulation promote the deubiquitination of endogenous NLRP3. Moreover, upon HSV-1 infection,

- the ployubiquitination of endogenous NLRP3 was attenuated in the presence of sh-NC but relatively
- unaffected in the presence of sh-STING (Fig 6I), indicating that STING knock-down leads to
- repression of NLRP3 deubiquitination. Taken together, STING removes K48- and K63-linked

polyubiquitination of NLRP3 to promote the inflammasome activation upon HSV-1 infection and
 cytosolic DNA stimulation.

235

236 STING is required for the NLRP3 inflammasome activation upon DNA virus infection.

237 Since STING recruits NLRP3 to the ER and removes NLRP3 deubiquitination upon HSV-1

infection, we speculated that STING may play a role in HSV-1-induced NLRP3 inflammasome

activation. The effect of STING knock-down on HSV-1-induced NLRP3 inflammasome activation

was initially examined in THP-1 cells stably expressing sh-STING. Endogenous IL-1 β secretion as

well as IL-1 β (p17) cleavage and Casp-1 (p20 and p22) maturation induced by HSV-1 were

significantly attenuated by sh-STING (Fig 7A, B). HSV-1 ICP27 mRNA was detected in HSV-1

infection cells (Fig 7C), indicating that HSV-1 is replicated. Additionally, endogenous IL-1 β

secretion, IL-1 β (p17) maturation, and Casp-1 (p20 and p22) cleavage induced by DNA90, HSV120,

or HSV-1 were suppressed by sh-STING (Fig 7D, E). Thus, STING knock-down leads to the

suppression of IL-1 β secretion and Casp-1 maturation upon DNA virus infection and cytosolic DNA

247 stimulation.

Accordingly, we determine whether STING plays a specific role in the NLRP3 inflammasome activation mediated by DNA virus. THP-1 cells stably expressing sh-STING were differentiated to macrophages, and then treated with Nigericin or infected with HSV-1. Notably, sh-STING significantly attenuated endogenous IL-1 β secretion as well as L-1 β (p17) maturation and Casp-1 (p20 and p22) cleavage induced upon HSV-1 infection, but had no effect on IL-1 β secretion or IL-1 β (p17) maturation and Casp-1 (p20 and p22) cleavage induced by Nigericin stimulation (Fig 7F, G). HSV-1 ICP27 mRNA was detected in HSV-1 infection cells (Fig 7H), indicating that HSV-1 is

255	replicated in the cells. Moreover, we explored whether STING plays roles in the NLRP3
256	inflammasome activation induced by RNA viruses. THP-1 differentiated macrophages stably
257	expressing sh-STING were infected with RNA viruses, Sendai virus (SeV) and Zika virus (ZIKV),
258	or with HSV-1. Interestingly, endogenous IL-1 β secretion as well as IL-1 β (p17) maturation and
259	Casp-1 (p20 and p22) cleavage were induced upon the infections of the three viruses, however,
260	HSV-1-mediated induction was attenuated by sh-STING, but SeV- or ZIKV-mediated inductions
261	were not affected by sh-STING (Fig 7I, J). SeV P mRNA, ZIKV mRNA, and HSV-1 ICP27 mRNA
262	were detected in infected cells, respectively (Fig 7K-M). Taken together, STING plays specific
263	roles in the NLRP3 inflammasome activation upon DNA virus infection or cytosolic DNA
264	stimulation, but has no effect on the inflammasome activation induced by RNA virus infection or
265	Nigericin stimulation.
266	
267	NLRP3 is critical for host defense against HSV-1 infection in mice.
268	To gain insights into the biological function of NLRP3 in vivo, we analyzed C57BL/6 NLRP3 ^{+/+}
269	WT mice and C57BL/6 NLRP3 ^{-/-} deficiency mice. Notably, HSV-1-infected NLRP3 ^{-/-} mice began to
270	die at 5 days post-infection and all infected mice died at 7 days post-infection, while infected WT
271	mice began to die at 7 days post-infection and 30% WT mice was survival after 11 days
272	post-infection (Fig 8A). The body weights of infected NLRP3 ^{-/-} mice decreased continuously until
273	died, while the body weights of infected WT mice gradually decreased until 7 days post-infection
274	and then gradually increased (Fig 8B). Thus, NLRP3 deficiency mice are more susceptibility to
275	HSV-1 infection and exhibit early onset of death upon the infection.
276	Notably, in the mice blood, IL-1 β secretion was induced upon HSV-1 infection in WT mice,

277	whereas it was not induced in NLRP3 ^{-/-} mice (Fig 8C), IL-1 β mRNA level was higher in WT mice
278	as compared with NLRP3 ^{-/-} mice (Fig 8D), IL-6 mRNA and TNF- α mRNA were no significant
279	difference between WT and NLRP3 ^{-/-} mice (Fig 8E, F), and HSV-1 UL30 mRNA was expressed in
280	infected WT and NLRP3 ^{-/-} mice (Fig 8G). These results indicate that NLRP3 deficiency leads to the
281	repression of IL-1 β expression and secretion in mice. Interestingly, in HSV-1 infected mice lung and
282	brain, IL-1 β mRNA and IL-6 mRNA were significantly higher in WT mice as compared with
283	NLRP3 ^{-/-} mice (Fig 8H, I, K and L), however, the viral titers were much lower in WT mice as
284	compared with NLRP3 ^{-/-} mice (Fig 8J, M), suggesting that NLRP3 deficiency results in the
285	attenuation of IL-1 β expression and the promotion of HSV-1 replication in mice lung and brain.
286	Moreover, Hematoxylin and Eosin (H&E) staining showed that more infiltrated neutrophils and
287	mononuclear cells were detected in the lung and brain of infected WT mice as compared with
288	NLRP3 ^{-/-} mice (Fig 8N), and immunohistochemistry (IHC) analysis revealed that IL-1 β protein
289	level was higher in the lung and brain of infected WT mice as compared with NLRP3 ^{-/-} mice (Fig
290	8O), revealing that NLRP3 deficiency mice are more susceptibility to HSV-1 infection and elicit
291	weak inflammatory responses. Collectively, we propose that NLRP3 is essential for host defense
292	against HSV-1 infection by facilitating IL-1β activation (Fig 9).

Discussion

296	This study reveals a distinct mechanism by which the cGAS-STING-NLRP3 pathway promotes the
297	NLRP3 inflammasome activation and IL-1 β secretion upon DNA virus infection and cytosolic DNA
298	stimulation. The cGAS-STING pathway mediates immune defense against infection of
299	DNA-containing pathogens and detects tumor-derived DNA and generates intrinsic antitumor
300	immunity (Chen et al., 2016; Wu et al., 2013). More recent studies reported that in human
301	monocytes, the cGAS-STING pathway is essential for cytosolic DNA induced-NLRP3
302	inflammasome (Gaidt et al., 2017) and in mice BMDMs, the cGAS-STING pathway is required for
303	Chlamydia trachomatis-induced inflammasome activation and IL-1 β secretion (Webster et al., 2017;
304	Swanson et al., 2017). Our results are consistent with the reports and further support that
305	cGAS-STING pathway is essential not only for cytosolic DNA induced- or Chlamydia
306	trachomatis-induced NLRP3 inflammasome activation, but also for DNA virus-induced NLRP3
307	inflammasome activation. This study also further reveals that the cGAS-STING pathway is required
308	for the NLRP3 inflammasome activation not only in human monocytes and mice BMDMs, but also
309	in human embryonic kidney cells (HEK293T), Hela cells, human leukemic monocytes/macrophages
310	(THP-1), and mice primary mouse embryo fibroblasts (MEFs). More interestingly, our results reveal
311	a distinct mechanism underlying STING-mediated NLRP3 inflammasome activation, and
312	demonstrate for the first time that STING binds to NLRP3 and promotes the inflammasome
313	activation through two approaches. First, STING binds to and recruits NLRP3 to the ER to promote
314	the formation of the NLRP3 inflammasome. Second, STING interacts with NLRP3 and removes
315	K48- and K63-linked polyubiquitination of NLRP3 to induce the activation of the NLRP3

316	inflammasome. Notably, upon HSV-1 infection and HSV120 stimulation, STING binds to NLRP3,
317	promotes the NLRP3-ASC interaction (an indicator of inflammasome complex assembly) (Compan
318	et al., 2012), facilitates NLRP3-mediated ASC oligomerization (a critical step for inflammasome
319	activation) (Shenoy et al., 2012), enhances NLRP3 to form specks (an indicator of inflammasome
320	activation) (Martinon et al, 2009), and enhances IL-1 β secretion (a fundamental reaction of the
321	inflammatory responses) (Dinarello, 2009). Collectively, the cGAS-STING-NLRP3 pathway plays
322	key roles in the NLRP3 inflammasome activation and IL-1 β secretion upon DNA virus infection
323	and cytosolic DNA stimulation.
324	Notably, STING knock-down attenuates the NLRP3 inflammasome activation mediated upon
325	DNA virus infection or cytosolic DNA stimulation, but has no effect on the NLRP3 inflammasome
326	activation induced by RNA virus infection or Nigericin induction. Many RNA viruses induce the
327	NLRP3 inflammasome activation, including influenza A virus (IAV) (Kanneganti et al., 2006),
328	Vesicular mastitis virus (VSV) and Encephalomyocarditis virus (EMCV) (Rajan et al., 2011),
329	Measles virus (MV) (Komune et al., 2011), West Nile virus (WNV) (Ramos et al., 2012), Rabies
330	virus (RV) (Lawrence et al., 2013), Hepatitis C virus (HCV) (Negash et al., 2013), Dengue virus
331	(DENV) (Hottz et al., 2013), Enterovirus 71 (EV71) (Wang et al., 2017) and Zika virus (ZIKV)
332	(Wang et al., 2018). Some DNA viruses also regulate the NLRP3 inflammasome activation, such as
333	Adenovirus (AdV) (Muruve et al., 2008) and HSV-1 (Johnson et al., 2013). HSV-1 VP22 inhibits
334	AIM2-denpendent inflammasome activation so that HSV-1 infection of macrophages-induced
335	inflammasome activation is AIM2-independent (Maruzuru et al., 2018). Here, we demonstrate that
336	the cGAS-STING-NLRP3 pathway is required for HSV-1-induced NLRP3 inflammasome
337	activation and critical for host defense against DNA virus infection.

338	The mechanisms of NLRP3 inflammasome activation have been intensely studied. The
339	mitochondria-associated adaptor protein (MAVS) promotes NLRP3 mitochondrial localization and
340	the inflammasome activation (Subramanian et al., 2013). PtdIns4P mediates the NLRP3
341	inflammasome activation in trans-Golgi network (TGN) (Chen & Chen, 2018). NLRP3 associates
342	with SCAP-SREBP2 to form a ternary complex that translocates to the Golgi apparatus for optimal
343	inflammasome assembly (Guo et al., 2018). Here we find that STING promotes NLRP3
344	translocation to the ER and facilitates the inflammasome activation. Moreover, post-translational
345	modifications of NLRP3 are critical for its activation, including phosphorylation (Song & Li, 2018),
346	SUMOylation (Barry et al., 2018), and ubiquitination (Py et al., 2013). MARCH7 and TRIM31
347	facilitate NLRP3 ubiquitination and proteasomal degradation (Song et al., 2016; Yan et al., 2015).
348	Pellino2 promotes K63-linked ubiquitination of NLRP3 as part of the priming phase (Humphries et
349	al., 2018). Interestingly, we demonstrate that STING removes K48- and K63-linked ubiquitination
350	of NLRP3 to promote the inflammasome activation, and reveal that HSV-1 infection induces
351	STING-mediated deubiquitination of NLRP3.
352	Moreover, NLRP3 is related to many human diseases. Fibrillar amyloid- β peptide, the major
353	component of Alzheimer's disease brain plaques, facilitates the NLRP3 inflammasome activation
354	(Halle et al., 2008). Monosodium urate (MSU) crystals induce the autoinflammatory disease gout
355	and activate the NLRP3 inflammasome (Martinon et al., 2006). NLRP3, IL-1 β , reactive oxygen
356	species (ROS), and TXNIP are implicated in the type 2 diabetes mellitus (T2DM) pathogenesis
357	(Schroder et al., 2010). Our study gains insights into the biological function of the
358	cGAS-STING-NLRP3 pathway in host defense against HSV-1 infection in mice. NLRP3 deficiency
359	mice are more susceptibility to HSV-1 infection, exhibit early onset of death upon infection,

360	represses IL-1 β secretion, and elicits robust inflammatory responses in the tissues. Collectively,
361	these results demonstrate that NLRP3 is essential for host defense against HSV-1 infection by
362	inducting IL-1β expression and secretion.
363	In conclusion, we reveal a distinct mechanism underlying the regulation of the NLRP3
364	inflammasome activation upon DNA virus infection. In this model, STING (the central molecule of
365	the antiviral and inflammatory immune pathways) interacts with NLRP3 (the key component of the
366	inflammasomes), removes NLRP3 polyubiquitination, recruits NLRP3 to the ER, and facilitates the
367	NLRP3 inflammasome activation, thereby inducing IL-1 β secretion upon DNA virus infection and
368	cytosolic DNA stimulation.

370 Materials and Methods

371

372 Animal study

- 373 C57BL/6 WT mice were purchased from Hubei Research Center of Laboratory Animals
- 374 (Wuhan, Hubei, China). C57BL/6 NLRP3^{-/-} mice were kindly provided by Dr. Di Wang of Zhejiang
- 375 University School of Medicine, China.
- The primary mouse embryo fibroblasts (MEFs) were prepared from pregnancy mice of
- 377 C57BL/6 WT mice and C57BL/6 NLRP3^{-/-} mice in E14 and cultured in Dulbecco modified Eagle
- medium (DMEM) containing 10% heat-inactivated fetal bovine serum (FBS).

379

380 Ethics statement.

All animal studies were performed in accordance with the principles described by the Animal Welfare Act and the National Institutes of Health Guidelines for the care and use of laboratory animals in biomedical research. All procedures involving mice and experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the College of Life Sciences, Wuhan University.

386

387 Cell lines and cultures

African green monkey kidney epithelial (Vero) cells, human cervical carcinoma (Hela) cells, and human embryonic kidney 293T (HEK 293T) cells were purchased from American Type Culture Collection (ATCC) (Manassas, VA, USA). Human acute monocytic leukemia (THP-1) cells were gift from Dr. Jun Cui of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen

392	University, Guangzhou 510275, China. THP-1 cells were cultured in RPMI 1640 medium
393	supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, and 100
394	μ g/ml streptomycin sulfate. Vero, Hela and HEK293T cells were cultured in Dulbecco modified
395	Eagle medium (DMEM) purchased from Gibco (Grand Island, NY, USA) supplemented with 10%
396	FBS, 100 U/ml penicillin and 100 μ g/ml streptomycin sulfate. Vero, Hela, HEK293T and THP-1
397	cells were maintained in an incubator at 37° C in a humidified atmosphere of 5% CO ₂ .
398	

Reagents 399

400	Lipopolysaccharide (LPS), adenosine triphosphate (ATP), Endoplasmic Reticulum Isolation
401	Kit (ER0100), phorbol-12-myristate-13-acetate (TPA) and dansylsarcosine piperidinium salt (DSS)
402	were purchased from Sigma-Aldrich (St. Louis, MO, USA). RPMI 1640 and Dulbecco modified
403	Eagle medium (DMEM) were obtained from Gibco (Grand Island, NY, USA). Nigericin and
404	Ac-YVAD-cmk were obtained from InvivoGene Biotech Co., Ltd. (San Diego, CA, USA). Antibody
405	against Flag (F3165), HA (H6908) and monoclonal mouse anti-GAPDH (G9295) were purchased
406	from Sigma (St. Louis, MO, USA). Monoclonal rabbit anti-NLRP3 (D2P5E), Ubiquitin mouse mAb
407	(P4D1), monoclonal rabbit anti-K63-linkage Specific Polyubiquitin (D7A11), monoclonal rabbit
408	anti-K48-linkage Specific Polyubiquitin (D9D5), monoclonal rabbit anti-STING(D2P2F),
409	monoclonal rabbit anti-calnexin(C5C9), monoclonal rabbit anti-IL-1ß (D3U3E), IL-1ß mouse mAb
410	(3A6) and monoclonal rabbit anti-Caspase-1 (catalog no. 2225) were purchased from Cell Signaling
411	Technology (Beverly, MA, USA). Monoclonal mouse anti-ASC (sc-271054) and polyclonal rabbit
412	anti-IL-1ß (sc-7884) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
413	Monoclonal mouse anti-NLRP3 (AG-20B-0014-C100) was purchased from Adipogen to detection

414	endogenous NLRP3 in THP1	cells and primar	y MEFs. Li	pofectamine 20	00, ER-Tracker TM
			,		

Blue-White DPX (E12353), normal rabbit IgG and normal mouse IgG were purchased from

- 416 Invitrogen Corporation (Carlsbad, CA, USA).
- 417

418 Viruses

419	Herpes simplex virus 1 (HSV-1) strain and Sendai virus (SeV) strain were gifts from Dr. Bo
420	Zhong of Wuhan University. Zika virus (ZIKV) isolate z16006 (GenBank accession number
421	KU955589.1) was used in this study. Vero cells were maintained at 37°C in DMEM (GIBCO)
422	supplemented with 10% heat-inactivated FBS with penicillin/streptomycin (GIBCO) (Grand Island,
423	NY, USA). HSV-1 stocks were propagated in Vero cells for 36 h at 0.03 MOI. The infected cells
424	were harvested and resuspended by PBS. HSV-1 was collected after three times of freezing and
425	thawing in the infected cells and titrated by plaque assay in 12-well plates in Vero cells.
426	
427	Plaque assay
428	Vero cells were cultured in a 12-well plate at a density of 2×10^5 cells per well, and infected
429	with 100 μ l serially diluted HSV-1 supernatant for 2 h. Then, the cells were washed by PBS and
430	then immediately replenished with plaque medium supplemented with 1% carboxylmethylcelluose.
431	The infected Vero cells were incubated for 2–3 days. After the incubation, plaque medium was

removed and cells were fixed and stained with 4% formaldehyde and 0.5% crystal violet.

433

434 **THP-1 macrophages stimulation**

THP-1 cells were differentiated into macrophages with 100 ng/ml

436	phorbol-12-myristate-13-acetate (TPA) for 12 h, and cells were cultured for 24 h without TPA.
437	Differentiated cells were then stimulated with HSV-1 infection, HSV120 transfection, DNA90
438	transfection, Sendai virus (SeV) infection, Zika virus (ZIKV) infection, or Nigericin treatment.
439	Supernatants were collected for measurement of IL-1 β by Enzyme-linked immunosorbent assay
440	(ELISA). Cells were harvested for real-time PCR or immunoblot analysis.
441	
442	Plasmid construction
443	The cDNAs encoding human STING, NLRP3, ASC, pro-Casp-1, and IL-1 β were obtained by
444	reverse transcription of total RNA from TPA-differentiated THP-1 cells, followed by PCR using
445	specific primers. The cDNAs were sub-cloned into pcDNA3.1(+) and pcagg-HA vector. The
446	pcDNA3.1(+)-3×Flag vector was constructed from pcDNA3.1(+) vector through inserting the
447	3×Flag sequence between the NheI and HindIII site. Following are the primers used in this study.
448	Flag-NLRP3: 5'-CGCGGATCCATGAAGATGGCAAGCACCCGC-3',
449	5'-CCGCTCGAGCTACCAAGAAGGCTCAAAGAC-3'; Flag-ASC:
450	5'-CCGGAATTCATGGGGCGCGCGCGCGCGCGCGCCAT-3',
451	5'-CCGCTCGAGTCAGCTCCGCTCCAGGTCCTCCA-3'; Flag-Casp-1:
452	5'-CGCGGATCCATGGCCGACAAGGTCCTGAAG-3',
453	5'-CCGCTCGAGTTAATGTCCTGGGAAGAGGTA-3'; Flag-IL-1β:
454	5'-CCGGAATTCATGGCAGAAGTACCTGAGCTC-3',
455	5'-CCGCTCGAGTTAGGAAGACACAAATTGCAT-3'; Flag-STING:
456	5'-CCGGAATTCTATGCCCCACTCCAGCCTGCA-3',
457	5'-CCGCTCGAGTCAAGAGAAATCCGTGCGGAG-3'. HA-NLRP3:

- 458 5'-TACGAGCTCATGAAGATGGCAAGCACCCGC-3',
- 459 5'-CCGCTCGAGCCAAGAAGGCTCAAAGACGAC-3'; HA-ASC:
- 460 5'-CCGGAATTCATGGGGCGCGCGCGCGCGACGCC-3',
- 461 5'-CCGCTCGAGGCTCCGCTCCAGGTCCTCCAC-3'; HA-Casp-1:
- 462 5'-CCGGAATTCATGGCCGACAAGGTCCTGAAG-3',
- 463 5'-CCGCTCGAGATGTCCTGGGAAGAGGTAGAA-3'.
- 464 The STING truncates was cloned into pcDNA3.1(+) and the PYRIN, NACHT, and LRR
- domain of NLRP3 protein was cloned into pcDNA3.1(+) and pcaggs-HA vector using specific
- 466 primers, which are listed as follows. Flag-STING(1-160):
- 467 5'-CGCGGATCCATGCCCCACTCCAGCCTGCAT-3',
- 468 5'-CCGGAATTCTGCCAGCCCATGGGCCACGTT-3'; Flag-STING(1-240):
- 469 5'-CGCGGATCCATGCCCCACTCCAGCCTGCAT-3',
- 470 5'-CCGGAATTCGTAAACCCGATCCTTGATGCC-3; Flag-STING(41-379):
- 471 5'-CGCGGATCCATGGAGCACACTCTCCGGTAC-3',
- 472 5'-CCGGAATTCTCAAGAGAAATCCGTGCGGAG-3'; Flag-STING(81-379):
- 473 5'-CGCGGATCCATGTACTGGAGGACTGTGCGG-3',
- 474 5'-CCGGAATTCTCAAGAGAAATCCGTGCGGAG-3'; Flag-STING(111-379):
- 475 5'-CGCGGATCCATGGCGGTCGGCCCGCCCTTC-3',
- 476 5'-CCGGAATTCTCAAGAGAAATCCGTGCGGAG-3'; Flag-STING(151-379):
- 477 5'-CGCGGATCCATGAATTTCAACGTGGCCCAT-3',
- 478 5'-CCGGAATTCTCAAGAGAAATCCGTGCGGAG-3', Flag-STING(211-379):
- 479 5'-CGCGGATCCATGCTGGATAAACTGCCCCAG-3',

- 480 5'-CCGGAATTCTCAAGAGAAATCCGTGCGGAG-3'; HA-PYRIN:
- 481 5'-CCGGAATTCATGAAGATGGCAAGCACCCGC-3',
- 482 5'-CCGCTCGAGTAAACCCATCCACTCCTCTTC-3'; HA-NACHT:
- 483 5'-CCGGAATTCATGCTGGAGTACCTTTCGAGA-3', HA-LRR:
- 484 5'-ATCGAGCTCATGTCTCAGCAAATCAGGCTG-3',
- 485 5'-CCGCTCGAGCCAAGAAGGCTCAAAGACGAC-3'.
- 486
- 487 Lentivirus production and infection.
- The targeting sequences of shRNAs for the human STING, NLRP3, ASC and Casp-1 were as
- 489 follows: sh-STING: GCCCGGATTCGAACTTACAAT; sh-NLRP3:
- 490 5'-CAGGTTTGACTATCTGTTCT-3'; sh-ASC: 5'-GATGCGGAAGCTCTTCAGTTTCA-3';
- 491 sh-caspase-1: 5'-GTGAAGAGATCCTTCTGTA-3'. A PLKO.1 vector encoding shRNA for a
- 492 negative control (Sigma-Aldrich, St. Louis, MO, USA) or a specific target molecule (Sigma-Aldrich)
- 493 was transfected into HEK293T cells together with psPAX2 and pMD2.G with Lipofectamine 2000.
- 494 Culture supernatants were harvested 36 and 60 h after transfection and then centrifuged at 2,200
- rpm for 15 min. THP-1 cells were infected with the supernatants contain lentiviral particles in the
- 496 presence of 4 μ g/ml polybrene (Sigma). After 48 h of culture, cells were selected by 1.5 μ g/ml
- 497 puromycin (Sigma). Hela cells were selected by $2.5 \mu g/ml$ puromycin (Sigma). The results of each
- 498 sh-RNA-targeted protein were detected by immunoblot analysis.
- 499

500 Enzyme-linked immunosorbent assay (ELISA)

501 Concentrations of human IL-1 β in culture supernatants were measured by ELISA kit (BD

502 Biosciences, San Jose, CA, USA). The mouse IL-1 β ELISA Kit was purchased from R&D.

503

504	Activated caspase-1 and mature IL-1β measurement
505	Supernatant of the cultured cells was collected for 1 ml in the cryogenic vials (Corning). The
506	supernatant was centrifuged at 12,000 rpm for 10 min each time by Amicon Ultra (UFC500308)
507	from Millipore for protein concentrate. The concentrated supernatant was mixed with SDS loading
508	buffer for western blotting analysis with antibodies for detection of activated caspase-1 (D5782
509	1:500; Cell Signaling) or mature IL-1 β (Asp116 1:500; Cell Signaling). Adherent cells in each well
510	were lysed with the lyses buffer described below, followed by immunoblot analysis to determine the
511	cellular content of various protein.
512	
513	Western blot analysis
514	HEK293T whole-cell lysates were prepared by lysing cells with buffer (50 mM Tris-HCl,
515	pH7.5, 300 mM NaCl, 1% Triton-X, 5 mM EDTA and 10% glycerol). The TPA-differentiated
516	THP-1 cells lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5, 150 mM
517	NaCl, 0.1% Nonidetp 40, 5 mM EDTA and 10% glycerol). Protein concentration was determined by
518	Bradford assay (Bio-Rad, Hercules, CA, USA). Cultured cell lysates (30 µg) were electrophoresed
519	in an 8-12% SDS-PAGE gel and transferred to a PVDF membrane (Millipore, MA, USA). PVDF
520	membranes were blocked with 5% skim milk in phosphate buffered saline with 0.1% Tween 20
521	(PBST) before being incubated with the antibody. Protein band were detected using a Luminescent
522	image Analyzer (Fujifilm LAS-4000).

524 Co-immunoprecipitation assays

525	HEK293T whole-cell lysates were prepared by lysing cells with buffer (50 mM Tris-HCl,
526	pH7.5, 300 mM NaCl, 1% Triton-X, 5 mM EDTA, and 10% glycerol). TPA-differentiated THP-1
527	cells lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl, 0.1%
528	Nonidetp40, 5 mM EDTA, and 10% glycerol). Lysates were immunoprecipitated with control
529	mouse immunoglobulin G (IgG) (Invitrogen) or anti-Flag antibody (Sigma, F3165) with Protein-G
530	Sepharose (GE Healthcare, Milwaukee, WI, USA).

531

532 Confocal microscopy

HEK293T cells and Hela cells were transfected with plasmids for 24–36 h. Cells were fixed 533 in 4% paraformaldehyde at room temperature for 15 min. After being washed three times with PBS, 534 permeabilized with PBS containing 0.1% Triton X-100 for 5 min, washed three times with PBS, and 535 finally blocked with PBS containing 5% BSA for 1 h. The cells were then incubated with the 536 monoclonal mouse anti-Flag antibody (F3165, Sigma) and Monoclonal rabbit anti-HA (H6908, 537 Sigma) overnight at 4°C, followed by incubation with FITC-conjugate donkey anti-mouse IgG 538 (Abbkine) and Dylight 649-conjugate donkey anti-rabbit IgG (Abbkine) for 1 h. After washing three 539 times, cells were incubated with DAPI solution for 5 min, and then washed three more times with 540 PBS. Finally, the cells were analyzed using a confocal laser scanning microscope (Fluo View 541 FV1000; Olympus, Tokyo, Japan). 542

543

544 **Real-time PCR**

545

Total RNA was extracted with TRIzol reagent (Invitrogen), following the manufacturer's

- 546 instructions. Real-time quantitative-PCR was performed using the Roche LC480 and SYBR
- 547 qRT-PCR kits (DBI Bio-science, Ludwigshafen, Germany) in a reaction mixture of 20 μl SYBR
- 548 Green PCR master mix, 1 µl DNA diluted template, and RNase-free water to complete the 20 µl
- volume. Real-time PCR primers were designed by Primer Premier 5.0 and their sequences were as
- 550 follows: HSV-1 ICP27 forward, 5'-GCATCCTTCGTGTTTGTCATT-3', HSV-1 ICP27 reverse,
- 551 5'-GCATCTTCTCCGACCCCG-3'. HSV-1 UL30 forward,
- 552 5'-CATCACCGACCCGGAGAGGGAC-3', HSV-1 UL30 reverse,
- 553 5'-GGGCCAGGCGCTTGTTGGTGTA-3'. SeV P protein forward, 5'-
- 554 CAAAAGTGAGGGCGAAGGAGAA-3', SeV P protein reverse, 5'-
- 555 CGCCCAGATCCTGAGATACAGA-3'. ZIKV forward,
- 556 5'-GGTCAGCGTCCTCTCTAATAAACG-3', ZIKV reverse,
- 557 5'-GCACCCTAGTGTCCACTTTTTCC-3'. IL-1β forward,
- 558 5'-CACGATGCACCTGTACGATCA-3', IL-1β reverse, 5'-GTTGCTCCATATCCTGTCCCT-3'.
- 559 GAPDH forward, 5'-AAGGCTGTGGGCAAGG-3', GAPDH reverse,
- 560 5'-TGGAGGAGTGGGTGTCG-3'. Mouse GAPDH forward, 5'-TGGCCTTCCGTGTTCCTAC-3',
- 561 Mouse GAPDH reverse, 5'-GAGTTGCTGTTGAAGTCGCA-3'. Mouse IL-1 β forward,
- 562 5'-GAAATGCCACCTTTTGACAGTG-3', Mouse IL-1 β reverse,
- 563 5'-TGGATGCTCTCATCAGGACAG-3'. Mouse IL-6 forward,
- 564 5'-ACAAAGCCAGAGTCCTTCAGA -3', Mice IL-6 reverse,
- 565 5'-TCCTTAGCCACTCCTTCTGT-3'. Mice TNF- α forward,
- 566 5'-ACTGAACTTCGGGGTGATCG-3', Mice TNF- α reverse,
- 567 5'-TCTTTGAGATCCATGCCGTTG-3'.

568	
-----	--

569 ASC oligomerization detection

570	HEK293T cells were transfected with plasmids for 24-36 h. Cell lysates were centrifugated at
571	6000 rpm for 15 min. The supernatants of the lysates were mixed with SDS loading buffer for
572	western blot analysis with antibody against ASC. The pellets of the lysates were washed with PBS
573	for three times and cross-linked using fresh DSS (2 mM, Sigma) at 37°C for 30 min. The
574	cross-linked pellets were then spanned down and the supernatant was mixed with SDS loading
575	buffer for western blotting analysis.
576	
577	Statistical analyses
578	All experiments were reproducible and repeated at least three times with similar results.
579	Parallel samples were analyzed for normal distribution using Kolmogorov-Smirnov tests. Abnormal
580	values were eliminated using a follow-up Grubbs test. Levene's test for equality of variances was
581	performed, which provided information for Student's t-tests to distinguish the equality of means.
582	Means were illustrated using histograms with error bars representing the SD; a P value of <0.05 was
583	considered statistically significant.
58/	

584

586 Acknowledgments

587	We thank Dr. Di Wang of Zhejiang University School of Medicine, China for kindly providing
588	C57BL/6 NLRP3 ^{-/-} mice, Dr. Jun Cui of Sun Yat-Sen University, Guangzhou 510275, China for
589	Human acute monocytic leukemia (THP-1) cells, and Dr. Bo Zhong of Wuhan University, China,
590	for kindly providing Herpes simplex virus 1 strain, Sendai virus strain, and plasmids encoding
591	ubiquitin and mutants.
592	This work was supported by National Natural Science Foundation of China (81730061 and
593	81471942), Postdoctoral Science Foundation of China (2018T110923), National Health and Family
594	Planning Commission of China (National Mega Project on Major Infectious Disease Prevention)
595	(2017ZX10103005 and 2017ZX10202201), and Guangdong Province "Pearl River Talent Plan"
596	Innovation and Entrepreneurship Team Project (2017ZT07Y580).
597	
597 598	Author contributions:
597 598 599	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization.
597 598 599 600	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization. W.W., D.H., Y.F., C.W., A.L., Y.W., K.C., M.T., F.X., Q.Z., M.A.S., W.C., P.P., P.W., and W.L.
597 598 599 600 601	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization. W.W., D.H., Y.F., C.W., A.L., Y.W., K.C., M.T., F.X., Q.Z., M.A.S., W.C., P.P., P.W., and W.L. contributed the methodology, conduction of experiments, and investigation. W.W., F.L., K.W., G.L.,
597 598 599 600 601 602	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization. W.W., D.H., Y.F., C.W., A.L., Y.W., K.C., M.T., F.X., Q.Z., M.A.S., W.C., P.P., P.W., and W.L. contributed the methodology, conduction of experiments, and investigation. W.W., F.L., K.W., G.L., Y.L., and J.W. contributed the reagents and resources. W.W., and J.W. contributed the writing the
597 598 599 600 601 602 603	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization. W.W., D.H., Y.F., C.W., A.L., Y.W., K.C., M.T., F.X., Q.Z., M.A.S., W.C., P.P., P.W., and W.L. contributed the methodology, conduction of experiments, and investigation. W.W., F.L., K.W., G.L., Y.L., and J.W. contributed the reagents and resources. W.W., and J.W. contributed the writing the original draft of the paper. W.W., and J.W. contributed the review and editing the paper. F.L., K.W.,
597 598 599 600 601 602 603 604	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization. W.W., D.H., Y.F., C.W., A.L., Y.W., K.C., M.T., F.X., Q.Z., M.A.S., W.C., P.P., P.W., and W.L. contributed the methodology, conduction of experiments, and investigation. W.W., F.L., K.W., G.L., Y.L., and J.W. contributed the reagents and resources. W.W., and J.W. contributed the writing the original draft of the paper. W.W., and J.W. contributed the review and editing the paper. F.L., K.W., G.L., and Y.L. contributed the visualization or funding acquisition. J.W. contributed the supervision
597 598 599 600 601 602 603 604 605	Author contributions: W.W., D.H., Y.F., Q.Z., W.L., F.L., K.W., G.L., Y.L., and J.W. contributed the conceptualization. W.W., D.H., Y.F., C.W., A.L., Y.W., K.C., M.T., F.X., Q.Z., M.A.S., W.C., P.P., P.W., and W.L. contributed the methodology, conduction of experiments, and investigation. W.W., F.L., K.W., G.L., Y.L., and J.W. contributed the reagents and resources. W.W., and J.W. contributed the writing the original draft of the paper. W.W., and J.W. contributed the review and editing the paper. F.L., K.W., G.L., and Y.L. contributed the visualization or funding acquisition. J.W. contributed the supervision and funding acquisition.

608 References

609

610	Abe T,	Barber	GN	(2014)	Cytosolic-DNA-mediated,	STING-dependent	proinflammatory	gene
-----	--------	--------	----	--------	-------------------------	-----------------	-----------------	------

- 611 induction necessitates canonical NF-kappaB activation through TBK1. J Virol 88: 5328-5341
- Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN (2013)
- 613 STING recognition of cytoplasmic DNA instigates cellular defense. *Mol Cell* 50: 5-15
- Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. *Cell* 124:
 783-801
- Barry R, John SW, Liccardi G, Tenev T, Jaco I, Chen CH, Choi J, Kasperkiewicz P,
 Fernandes-Alnemri T, Alnemri E, Drag M, Chen Y, Meier P (2018) SUMO-mediated regulation

of NLRP3 modulates inflammasome activity. *Nat Commun* 9: 3001

- Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome
 activation. *Nature* 564: 71-76
- 621 Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic
- 622 DNA sensing. *Nat Immunol* 17: 1142-1149
- 623 Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, Montero MT,
- Herranz AS, Bazan E, Reimers D, Mulero V, Pelegrin P (2012) Cell volume regulation
- modulates NLRP3 inflammasome activation. *Immunity* 37: 487-500
- Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. *Annu Rev Immunol* 27: 519-550
- Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, O'Duill F, Schmid-Burgk JL, Hoss
- F, Buhmann R, Wittmann G, Latz E, Subklewe M, Hornung V (2017) The DNA inflammasome

- in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. *Cell*171: 1110-1124
- Guo C, Chi Z, Jiang D, Xu T, Yu W, Wang Z, Chen S, Zhang L, Liu Q, Guo X, Zhang X, Li W, Lu
- L, Wu Y, Song BL, Wang D (2018) Cholesterol homeostatic regulator SCAP-SREBP2
- 634 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in
 635 macrophages. *Immunity* 49: 842-856
- Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E,
- Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune
 response to amyloid-beta. *Nat Immunol* 9: 857-865
- Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. *Nat Immunol* 13: 817-822
- 641 Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT, Da PA, Weyrich AS,
- Zimmerman GA, Bozza FA, Bozza PT (2013) Platelets mediate increased endothelium
 permeability in dengue through NLRP3-inflammasome activation. *Blood* 122: 3405-3414
- 644 Humphries F, Bergin R, Jackson R, Delagic N, Wang B, Yang S, Dubois AV, Ingram RJ, Moynagh
- PN (2018) The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. *Nat Commun* 9: 1560
- Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate
 immune signalling. *Nature* 455: 674-678
- Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I
 interferon-dependent innate immunity. *Nature* 461: 788-792
- Johnson KE, Chikoti L, Chandran B (2013) Herpes simplex virus 1 infection induces activation and

652	subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol 87: 5005-5018
653	Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES (2012) Non-transcriptional
654	priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 287:
655	36617-36622
656	Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF,
657	Miller D, Patton JT, Inohara N, Nunez G (2006) Critical role for Cryopyrin/Nalp3 in activation
658	of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:
659	36560-36568
660	Komune N, Ichinohe T, Ito M, Yanagi Y (2011) Measles virus V protein inhibits NLRP3
661	inflammasome-mediated interleukin-1beta secretion. J Virol 85: 13019-13026
662	Lawrence TM, Hudacek AW, de Zoete MR, Flavell RA, Schnell MJ (2013) Rabies virus is
663	recognized by the NLRP3 inflammasome and activates interleukin-1beta release in murine
664	dendritic cells. J Virol 87: 5848-5857
665	Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as
666	activator of the NALP3/cryopyrin inflammasome. Curr Biol 14: 1929-1934
667	Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev
668	Immunol 27: 229-265
669	Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals
670	activate the NALP3 inflammasome. Nature 440: 237-241
671	Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T, Suzuki T, Koshiba T, Koyanagi N, Tsuda S,
672	Watanabe M, Arii J, Kato A, Kawaguchi Y (2018) Herpes simplex virus 1 VP22 inhibits
673	AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host

- *Microbe* 23: 254-265 674
- Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The 675
- inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune 676
- response. Nature 452: 103-107 677
- Negash AA, Ramos HJ, Crochet N, Lau DT, Doehle B, Papic N, Delker DA, Jo J, Bertoletti A, 678
- Hagedorn CH, Gale MJ (2013) IL-1beta production through the NLRP3 inflammasome by 679 hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS
- Pathog 9: e1003330 681

- Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 682 critically regulates inflammasome activity. Mol Cell 49: 331-338 683
- Rajan JV, Rodriguez D, Miao EA, Aderem A (2011) The NLRP3 inflammasome detects 684 685 encephalomyocarditis virus and vesicular stomatitis virus infection. J Virol 85: 4167-4172
- Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, Brassil MM, Sodhi K, Treuting PM, 686
- Busch MP, Norris PJ, Gale MJ (2012) IL-1beta signaling promotes CNS-intrinsic immune 687 control of West Nile virus infection. PLoS Pathog 8: e1003039 688
- Roizman, B., Knipe, D.M., and Whitley, R.J. (2013) Herpes simplex viruses. In Fields Virology. 689
- Knipe, D. M. (ed) pp 1823–1897. Lippincott-Williams & Wilkins Press. 690
- Schroder K, Tschopp J (2010) The inflammasomes. Cell 140: 821-832 691
- Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? 692 Science 327: 296-300 693
- Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) 694
- GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336: 695

696 481-485

697	Song H, Liu B	, Huai W, Yu	Z, Wang W	', Zhao J, Han L	, Jiang G	, Zhang L,	Gao C, Zha	o W (2016)
-----	---------------	--------------	-----------	------------------	-----------	------------	------------	------------

- The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting
 proteasomal degradation of NLRP3. *Nat Commun* 7: 13727
- Song N, Li T (2018) Regulation of NLRP3 Inflammasome by Phosphorylation. *Front Immunol* 9:
 2305
- Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN (2013) The adaptor MAVS
 promotes NLRP3 mitochondrial localization and inflammasome activation. *Cell* 153: 348-361
- 704 Swanson KV, Junkins RD, Kurkjian CJ, Holley-Guthrie E, Pendse AA, El MR, Petrucelli A, Barber
- GN, Benedict CA, Ting JP (2017) A noncanonical function of cGAMP in inflammasome
 priming and activation. *J Exp Med* 214: 3611-3626
- Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. *Cell* 140: 805-820
- 708 Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik
- A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura
- Y, Otten LA, Philpott D, Reed JCet al (2008) The NLR gene family: a standard nomenclature.
- 711 *Immunity* 28: 285-287
- Wang H, Lei X, Xiao X, Yang C, Lu W, Huang Z, Leng Q, Jin Q, He B, Meng G, Wang J (2015)
- Reciprocal Regulation between Enterovirus 71 and the NLRP3 Inflammasome. *Cell Rep* 12:
 42-48
- 715 Wang W, Li G, De Wu, Luo Z, Pan P, Tian M, Wang Y, Xiao F, Li A, Wu K, Liu X, Rao L, Liu F,
- Liu Y, Wu J (2018) Zika virus infection induces host inflammatory responses by facilitating
- 717 NLRP3 inflammasome assembly and interleukin-1beta secretion. *Nat Commun* 9: 106

718	Wang W, Xiao F, Wan P, Pan P, Zhang Y, Liu F, Wu K, Liu Y, Wu J (2017) EV71 3D Protein binds
719	with NLRP3 and enhances the assembly of inflammasome complex. PLoS Pathog 13:
720	e1006123
721	Webster SJ, Brode S, Ellis L, Fitzmaurice TJ, Elder MJ, Gekara NO, Tourlomousis P, Bryant C,
722	Clare S, Chee R, Gaston H, Goodall JC (2017) Detection of a microbial metabolite by STING
723	regulates inflammasome activation in response to Chlamydia trachomatis infection. PLoS
724	Pathog 13: e1006383
725	Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous

- second messenger in innate immune signaling by cytosolic DNA. *Science* 339: 826-830
- Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic
 inflammation through inhibition of NLRP3 inflammasome. *Cell* 160: 62-73
- Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene
 family. *Curr Opin Immunol* 20: 3-9
- 731 Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S,
- Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded
- RNA-induced innate antiviral responses. *Nat Immunol* 5: 730-737
- 734
- 735
- 736

737 Figure Legends

738

Figure 1 – STING interacts with NLRP3 to facilitate the inflammasome activation.

- 740 A-C HEK293T cells were co-transfected with pFlag-STING and pHA-NLRP3 (A and B), or with
- 741 pFlag-STING, pHA-NLRP3, pHA-ASC, and pHA-Casp-1 (C).
- 742 **D** Diagrams of NLRP3, PYRIN, NACHT, and LRR.
- **E**, **F** HEK293T cells were co-transfected with pHA-STING and pFlag-NLRP3, pFlag-PYRIN,
- pFlag-NACHT, or pFlag-LRR (E), or with pFlag-STING and pHA-NLRP3, pHA-PYRIN,
- 745 pHA-NACHT, or pHA-LRR (F).
- 746 G Diagrams of STING and its truncated proteins.
- 747 H HEK293T cells were co-transfected with pHA-NLRP3 and pFlag-STING or truncated proteins.
- 748 I HEK293T cells were co-transfected with plasmids encoding NLRP3, ASC, pro-Casp-1, and
- pro-IL-1β to generate a pro-IL-1β cleavage system (NACI), and transfected with pFlag-STING or
- truncated proteins. IL-1 β in supernatants was determined by ELISA.
- J HEK293T cells were co-transfected with pFlag-ASC, pHA-NLRP3, or pFlag-STING.
- A-C, E, F, H and J Cell lysates were subjected to co-immunoprecipitation (Co-IP) using IgG
- (Mouse) and anti-Flag antibody (A, F), IgG (Rabbit) and anti-HA antibody (B, J), anti-HA antibody
- (C), and anti-Flag antibody (E, H), and analyzed by immunoblotting using anti-HA or anti-Flag
- antibody (top) or subjected directly to Western blot using anti-Flag or anti-HA antibody (input)

756 (bottom).

- 757 K HEK293T cells were co-transfected with pFlag-ASC, pHA-NLRP3, and pMyc-STING. Pellets
- vere subjected to ASC oligomerization assays (top) and lysates were prepared for Western blots

- 759 (bottom).
- L, M HEK293T cells (L) or Hela cells (M) were co-transfected with pFlag-STING and/or
- 761 pHA-NLRP3. Sub-cellular localization of Flag-STING (green), HA-NLRP3 (red), and DAPI (blue)
- 762 were examined by confocal microscopy.
- 763 Data shown are means \pm SEMs; ^{**} p < 0.01, ***p < 0.0001; ns, no significance.
- 764

Figure 2 – HSV-1 infection promotes the STING-NLRP3 interaction.

- A, B TPA-differentiated THP-1 macrophages were mock-infected or infected with HSV-1 (MOI=1)
- 767 for 4 h.
- 768 C, D HEK293T cells (C) and Hela cells (D) were co-transfected with pFlag-STING and
- pHA-NLRP3, and then infected with HSV-1 (MOI=1) for 2–4 h.
- **E** TPA-differentiated THP-1 macrophages were transfected with HSV120 (3 μg/ml) by Lipo2000
- 771 for 4 h.
- F, G HEK293T cells (F) and Hela cells (G) were co-transfected with pFlag-STING and
- pHA-NLRP3 and then transfected with HSV120 (3 μ g/ml) for 4 h.
- H Primary MEFs were primed with LPS (1 μ g/ml) for 6 h, and then infected with HSV-1 (MOI=1)
- for 4 h or transfected with HSV120 (3 μ g/ml) for 4 h.
- A-H Cell lysates were subjected to Co-IP using IgG (Mouse) or anti-NLRP3 antibody (A),
- anti-STING antibody (B), IgG (Mouse) or anti-Flag antibody (C), anti-Flag antibody (D), IgG
- (Mouse) or anti-NLRP3 antibody (E), IgG (Mouse) or anti-Flag antibody (F), anti-Flag antibody (G),
- and IgG (Mouse) or anti-NLRP3 antibody (H), and then analyzed by immunoblotting using
- anti-NLRP3 and anti-STING antibody (top) or analyzed directly by immunoblotting using

anti-NLRP3 and anti-STING antibody (as input) (bottom).

782

Figure 3 – HSV-1 infection induces IL-1β expression and secretion.

- A-K TPA-differentiated THP-1 macrophages were treated with 2 μM Nigericin for 2 h, and infected
- 785 with HSV-1 at MOI=0.1, 0.2, 0.4, and 0.8 for 8 h (A, C, E and G), infected with HSV-1 at MOI=0.8
- for 2, 4, 6, and 8 h (B, D, F and H), or transfected with HSV120 ($3 \mu g/ml$) for 2, 4, and 6 h (I–K).
- **L-O** Mice primary MEFs were primed with LPS (1 μ g/ml) for 6 h, and then treated with 5 mM ATP
- for 2 h or infected with HSV-1 (MOI=1) (L and N) or transfected with HSV120 (3 µg/ml) (M, O)
- 789 for 2, 4, and 6 h.
- 790 **A**, **B**, **I**, **L** and **M** IL-1 β protein was determined by ELISA.
- 791 **C**, **D** and **J** Matured IL-1 β (p17) and cleaved Casp-1 in supernatants (top) and pro-IL-1 β production

in lysates (bottom) were determined by Western-blot analyses.

- **E**, **F**, **G**, **H**, **K**, **N** and **O** IL-1β mRNA and GAPDH mRNA (E, F), HSV-1 ICP27 mRNA and
- GAPDH mRNA (G, H and N), and IFN-β mRNA and GAPDH mRNA (K, O) were quantified byRT-PCR.
- Data shown are means \pm SEMs; *p < 0.05, **p < 0.01, ***p < 0.0001; ns, no significance.
- 797

Figure 4 – The NLRP3 inflammasome is required for HSV-1-induced IL-1β activation.

- 799 A–F TPA-differentiated THP-1 macrophages were treated with 2 μM Nigericin for 2 h, infected
- with HSV-1 at MOI=0.8 for 8 h, and then treated with Glybenclamide (25 μ g/ml) (A, B and E) or
- 801 Ac-YVAD-cmk (10 μ g/ml) (C, D and F).
- 802 G-K THP-1 cells stably expressing shRNAs targeting NLRP3, ASC or Casp-1 were generated and

803	then treated with 2 μ M Nigericin for 2 h (G, H) or infected with HSV-1 at MOI=0.8 for 8 h (I–K).
804	L–N Primary MEFs of C57BL/6 WT mice and C57BL/6 NLRP3 ^{-/-} mice were primed with LPS (1
805	μ g/ml) for 6 h, and then treated with 5 mM ATP for 2 h or infected with HSV-1 (MOI=1) for 6 h.
806	NLRP3 and GAPDH protein in lysates were determined by Western blot (L). IL-1 β levels were
807	determined by ELISA (A, C, G and M). Matured IL-1 β (p17) and cleaved Casp-1 (p22/p20) in
808	supernatants (top) or pro-IL-1 β and pro-Casp-1 in lysates (bottom) were determined by Western-blot
809	(B, H and J). HSV-1 ICP27 mRNA and GAPDH mRNA were quantified by RT-PCR (E, F, K and N).
810	Data shown are means \pm SEMs; ***p < 0.0001; ns, no significance.
811	
812	Figure 5 – STING recruits NLRP3 to the ER and promotes the inflammasome formation.
813	A–D Hela cells were co-transfected with pFlag-STING and pHA-NLRP3 (A), transfected with
814	pFlag-NLRP3 and infected with HSV-1 (MOI=1) for 4 h or transfected with HSV120 (3 μ g/ml) for
815	4 h (B, C and D). Sub-cellular localization of HA-NLRP3 (green) (A), Flag-STING (red) (A), ER
816	Blue (blue) (A, D), Flag-NLRP3 (red) (B, C), Calnexin (green) (B), DAPI (blue) (B and C),
817	Calnexin (green) (C) and HA-NLRP3 (red) (D) were examined by confocal microscopy.
818	E-G Hela cells were co-transfected with pFlag-STING and pHA-NLRP3 (E). THP-1 macrophages
819	were infected with HSV-1 (MOI=1) for 4 h (F). Mice primary MEFs were primed with LPS (1
820	μ g/ml) for 6 h and infected with HSV-1 (MOI=1) for 4 h (G). Flag-NLRP3, HA-STING, Calnexin,
821	and GAPDH in whole cell lysate (WCL) and purified ER were determined by Western-blot
822	analyses.
823	H, I Hela cells stably expressing sh-STNG were transfected with pFlag-NLRP3 and infected with

HSV-1 (MOI=1) for 4 h or transfected with HSV120 (3 μg/ml) for 4 h. Sub-cellular localization of

- Flag-NLRP3 (red) (H), Calnexin (green) (H), DAPI (blue) (H), HA-NLRP3 (red) (I) and ER blue (I)
 were examined by confocal microscopy.
- **J–L** Hela cells stably expressing sh-STING were transfected with pHA-NLRP3 and infected with
- HSV-1 (MOI=1) for 4 h (J). THP-1 cells stably expressing sh-STING were differentiated to
- macrophages, and infected with HSV-1 (MOI=1) for 4 h (K). Primary MEFs stably expressing
- sh-STING were primed with LPS (1 μ g/ml) for 6 h, and infected with HSV-1 (MOI=1) for 4 h (L).
- HA-NLRP3 (J), NLRP3 (K, I), STING (J–L), Calnexin (ER) (J–L), and GAPDH (J–L) in WCL and
- purified ER fraction were determined by Western-blot analyses.
- 833

Figure 6 – STING deubiquitinates NLRP3 to activate the NLRP3 inflammasome.

- A-E Hela cells were co-transfected with pFlag-NLRP3, pHA-Ubiquitin, and pMyc-STING (A),
- with pFlag-NLRP3, pHA-Ubiquitin, pHA-Ubiquitin mutations (K48R), pHA-Ubiquitin mutations
- (K63R) and pMyc-STING (B), with pFlag-NLRP3, pHA-Ubiquitin, pHA-Ubiquitin
- mutations(K48O), pHA-Ubiquitin mutations(K63O), and pMyc-STING (C), with pFlag-NLRP3 and
- pHA-Ubiquitin and then infected with HSV-1(MOI=1) for 2 and 4 h (D), and transfected with
- HSV120 (3 μg/ml) for 2 and 4 h (E). Cell lysates were prepared and subjected to denature-IP using
- anti-Flag antibody and then analyzed by immunoblotting using an anti-HA or anti-Flag antibody
- (top) or subjected directly to Western blot using an anti-Flag, anti-HA or anti-Myc antibody (as
- 843 input) (bottom).
- **F–I** TPA-differentiated THP-1 macrophages were infected with HSV-1 (MOI=1) for 2 and 4 h (F),
- and transfected with HSV120 (3 µg/ml) for 2, 4 and 6 h (G). Mice primary MEFs were infected
- 846 with HSV-1 (MOI=1) for 2 h (H). THP-1 cells stably expressing sh-NC or sh-STING were

847	generated and differentiated to macrophages and then infected with HSV-1 (MOI=1) for 4 h (I). Cell
848	lysates were prepared and subjected to denature-IP using anti-NLRP3 antibody and then analyzed
849	by immunoblotting using an anti-Ubiquitin, anti-K48-Ubiquitin, anti-K63-Ubiquitin or anti-NLRP3
850	antibody (top) (F) or using anti-NLRP3 antibody (G, H and I), or subjected directly to Western blot
851	using an anti- Ubiquitin or anti-NLRP3 antibody (as input) (bottom).

Figure 7 – STING is required for the NLRP3 inflammasome activation upon DNA virus infection.

- A-H THP-1 cells stably expressing sh-NC or sh-STING were generated and differentiated to
- macrophages, and then infected with HSV-1 at MOI=0.8 for 2, 4, and 8 h (A–C), transfected with
- 857 DNA90 (3 μg/ml), HSV120 (3 μg/ml) or infected with HSV-1 at MOI=0.8 for 8 h (D, E), and
- treated with 2 μ M Nigericin for 2 h and infected with HSV-1 at MOI=0.8 for 8 h (F–H). IL-1 β
- levels were determined by ELISA (A, D and F). Matured IL-1 β (p17) and cleaved Casp-1 (p22/p20)
- in supernatants or STING, pro-IL-1 β and pro-Casp-1 in lysates were determined by Western-blot (B,
- 861 C and G). HSV-1 ICP27 mRNA and GAPDH mRNA were quantified by RT-PCR (C, H).
- 862 I–M THP-1 cells stably expressing shRNA targeting STING was generated and differentiated to

macrophages, then infected with SeV (MOI=1) for 24 h, ZIKV (MOI=1) for 24 h or HSV-1

- (MOI=0.8) for 8 h. IL-1 β levels were determined by ELISA (I). Matured IL-1 β (p17) and cleaved
- Casp-1 (p22/p20) in supernatants or STING, pro-IL-1 β and pro-Casp-1 in lysates were determined
- by Western-blot (J). SeV P mRNA (K), ZIKV mRNA (L), HSV-1 ICP27 mRNA (M) and GAPDH
- 867 mRNA were quantified by RT-PCR.
- 868 Data shown are means \pm SEMs; *p < 0.05, **p < 0.01, ***p < 0.0001; ns, no significance.

870 Figure 8 – NLRP3 is critical for host defense against HSV-1 infection in mice.

- A, B C57BL/6 WT mice (8-week-old, female, n=9) and C57BL/6 NLRP3^{-/-} mice (8-week-old,
- female, n=5) were infected i.p. with HSV-1 at 1×10^7 pfu for 11 days. The survival rates (A) and
- body weights (B) of mice were evaluated.
- 874 C–G WT mice (8-week-old, female) and NLRP3^{-/-} mice (8-week-old, female) were mock-infected
- i.p. with PBS (WT and NLRP3^{-/-} mice, n=3) or infected i.p. with HSV-1 (WT mice, n=4, NLRP3^{-/-}
- mice, n=3) at 1×10^7 pfu for 6 h. IL-1 β in mice sera was determined by ELISA (C). IL-1 β mRNA (D),
- 877 IL-6 mRNA (E), TNF-α mRNA (F), HSV-1 UL30 mRNA (G) and GAPDH mRNA in mice blood
 878 were quantified by RT-PCR.
- **H-J** WT mice (8-week-old, female, n=4) and NLRP3^{-/-} mice (8-week-old, female, n=4) were
- infected i.p. with HSV-1 at 1×10^7 pfu for 1 days. IL-1 β mRNA (H), IL-6 mRNA (I), and GAPDH
- mRNA in mice lung were quantified by RT-PCR. HSV-1 viral titers were measured by plaque assays
 for mice lung (J).
- **K-M** WT mice (8-week-old, female, n=7) and NLRP3^{-/-} mice (8-week-old, female, n=7) were
- infected i.p. with HSV-1 at 1×10^7 pfu for 4 days. IL-1 β mRNA (K), IL-6 mRNA (L) and GAPDH
- mRNA in mice brain were quantified by RT-PCR. HSV-1 viral titers were measured by plaque
 assays for mice brain (M).
- **N**, **O** WT mice (8-week-old, female) and NLRP3^{-/-} mice (8-week-old, female) were infected i.p.
- with HSV-1 at 1×10^7 pfu for 1 day. The lung tissue (N) and brain tissue (O) were stained with
- histological analysis (H&E or IL-1 β).
- By Data shown are means \pm SEMs; *p < 0.05, **p < 0.01, ***p < 0.0001; ns, no significance.

891

892 Fig. 9. A proposed model for the regulation of NLRP3 inflammasome activation mediated by

893 the cGAS-STING-NLRP3 pathway.

- 894 In resting cells and under normal physiological conditions, CUL1 interacts with NLRP3 to disrupt
- the inflammasome assembly, and catalyzes NLRP3 ubiquitination to repress the inflammasome
- activation (left). However, in response to inflammatory stimuli, CUL1 disassociates from NLRP3 to
- release the repression of inflammasome assembly and activation (right).

898

Hela

IgG Flag Flag

-

Acres 1

+ +

.

2h 4h

G

IP:

IB:HA

IB:Flag

Input

IB:Flag

HA-NLRP3

Flag-STING

HSV120

IB:HA

D

н

NLRP3

IgG-H

STING

NLRP3

STING

+

Mock

HSV-1

н

Mock

HSV-1

HSV120

Mock

I-V2H

HSV120

Flag-NLRP3 sh-STING

Flag-NLRP3 sh-NC

ib.oamexin					
IB:GAPDH	-	-	GAPDH		
HSV-1	-	+	•	+	

Б		Hela	
	Flag	DAPI	Merge
Mock	00		
HSV-1	1	• *	• *
HSV120	19 1944	-	and the second s

С

Flag-NLRP3

HSV

ISV120

Flag

-	-	Hela	
	НА	ER Blue	Merge
Mock	0		O
1-VS	-	a	de la

Hela

DAPI

Merge

J

κ

Calnexin

D

HA-NLRP3

-NSH

HA

Hela ER Blue

Merge

		-					-	_	
	_	Total				ER			
	sh-l	NC	sh-S	TING	sh-	NC	sh-S	TING	
IB:NLRP3	-	-	-	-	****	-	-	-	NLRP3
IB:STING	-	-	-	-	-	-	-	-	STING
B:Calnexin	-	-		-	-	-	-	-	Calnexin
IB:GAPDH	-	-	-	-					GAPDH
Lane	1	2	3	4	5	6	7	8	
HSV-1	-	+	-	+	-	+	-	+	
L									

	Mice MEF								
	Total				ER				
	sh	-NC	sh-	STING	sh	NC	sh-S	TING	
IB:NLRP3	-	-	6. șe ma		*****	-	-	-	NLRP3
IB:STING	17-	-	-	TRAC .		maint or	-		STING
IB:Calnexin	-	-	-	-	-	-	-		Calnexin
IB:GAPDH	-	-	-		160	000		22.02	GAPDH
Lane	1	2	3	4	5	6	7	8	
HSV-1		+		+	-	+	-	+	

