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22 Abstract

23 We hypothesized that increased expression of antiviral host factors at portals of viral entry 

24 may protect exposed tissues from the constant threat of invading pathogens. Comparative 

25 transcriptomic analysis identified the broad-acting restriction factor TRIM22 (TRIpartite 

26 Motif 22) to be among the most abundantly expressed antiviral host factors in the lung, a 

27 major portal of entry for many respiratory pathogens. This was surprising, as TRIM22 is 

28 currently considered to be an interferon stimulated gene (ISG) product that confers protection 

29 following the activation of pathogen-induced cytokine-mediated innate immune defences. 

30 Using human respiratory cell lines and the airways of rhesus macaques, we experimentally 

31 confirmed high levels of constitutive TRIM22 expression in the lung. In contrast, TRIM22 

32 expression in many widely used transformed cell lines could only be observed following 

33 immune stimulation. Endogenous levels of TRIM22 in non-transformed cells were sufficient 

34 to restrict human and avian influenza A virus (IAV) infection by inhibiting the onset of viral 

35 transcription independently of cytokine-mediated innate immune defences. Thus, TRIM22 

36 confers a pre-existing (intrinsic) tissue-specific immune barrier to IAV infection in the 

37 respiratory tract. We investigated whether the constitutive expression of TRIM22 was a 

38 characteristic shared by other ISGs in human lung tissue. Transcriptomic analysis identified a 

39 large group of ISGs and IAV immuno-regulatory host factors that were similarly enriched in 

40 the lung relative to other mucosal tissues, but whose expression was downregulated in 

41 transformed cell-lines. We identify common networks of immune gene downregulation 

42 which correlated with enhanced permissivity of transformed cells to initiate IAV replication. 

43 Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-

44 existing immune gene expression in the intrinsic intracellular restriction of IAV; findings 

45 highly relevant to the immune regulation of many clinically important respiratory pathogens.

46
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47 Author Summary

48 The respiratory tract is a major portal of virus entry for many clinically important viruses, 

49 including seasonal and pandemic influenza A virus (IAV). We reasoned that cells within the 

50 respiratory tract might differentially express antiviral host factors to protect against the 

51 constant challenge of viral infection. We found the broad-acting antiviral protein TRIM22, 

52 conventionally regarded as an interferon stimulated gene (ISG) product upregulated in 

53 response to virus infection, to be constitutively expressed to high levels in the lung. We found 

54 that constitutive expression of TRIM22 restricted the initiation of human and avian IAV 

55 infection independently of cytokine-mediated innate immune defences.  We identified pre-

56 existing tissue-specific and cell-type dependent patterns of constitutive immune gene 

57 expression that strongly correlated with enhanced resistance to IAV replication from the 

58 outset of infection. Importantly, we show that these constitutive patterns of immune gene 

59 expression are lost or downregulated in many transformed cell lines widely used for 

60 respiratory virus research. Our data highlight the importance of pre-existing tissue-specific 

61 and cell-type dependent patterns of constitutive antiviral gene expression in the intracellular 

62 restriction of respiratory viral pathogens not captured in conventional cell culture model 

63 systems of infection. 

64

65

66
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67 Introduction

68 Exposure to viral pathogens is a constant threat to all living things and vertebrates have 

69 evolved multiple lines of defence to suppress infection. If viruses succeed in penetrating non-

70 specific barrier defences, the activation of pattern recognition receptors (PRRs) by pathogen- 

71 and damage-associated molecular patterns (PAMPs and DAMPs, respectively) leads to the 

72 activation of innate immune defences, culminating in the secretion of cytokines (including 

73 interferons) and the induction of hundreds of interferon stimulated gene (ISG) products [1-4]. 

74 ISGs include a wide range of antiviral effectors, and their induced expression from low basal 

75 levels to high functional levels plays an important role in limiting viral propagation to resolve 

76 pathogen infection [4-6]. However, the induction of this broad antiviral response necessitates 

77 pathogen detection by PRRs, which in the case of wild-type influenza A virus (IAV) requires 

78 the detection of aberrant viral RNAs (vRNAs) or defective interfering (DI) particles produced 

79 during virus replication for optimal induction [1, 3, 7-12]. Accordingly, delayed activation of 

80 innate immune defences provides a window of opportunity for viral pathogens to express 

81 immunosuppressive genes, which can inhibit or dampen the efficacy of host immune 

82 defences [13, 14]. A growing body of evidence suggests that this initial ‘gap’ in intracellular 

83 immunity is covered by intrinsic immunity, also known as intrinsic antiviral resistance or cell 

84 autonomous immunity [15-18]. 

85 Intrinsic immune effectors are constitutively expressed at levels sufficient to confer 

86 protection from the outset of infection. As a result, they can restrict the initiation or progress 

87 of viral replication prior to the pathogen-induced activation of PRRs and induction of innate 

88 immune defences [15, 16, 19-22]. Notably, many intrinsic antiviral host factors are 

89 themselves ISGs (intrinsically expressed ISGs; [18]), which can be further upregulated as a 

90 component of the innate immune response upon IFN production. Recent single-cell 

91 transcriptomic and reporter-assay studies have provided compelling evidence to support a 
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92 biological role for intrinsic immunity during IAV infection both in vitro and in vivo. Cell 

93 culture studies have shown individual infected cells of the same lineage to be differentially 

94 permissive to IAV infection but to rarely induce the expression of IFN leading to the 

95 induction of ISGs [8, 11, 12, 23, 24]. Animal studies have shown lineage-specific patterns of 

96 IAV restriction that vary between cell-types, including lung epithelial, fibroblast, endothelial, 

97 and resident immune cells [25, 26].  Importantly, these lineage-specific patterns of restriction 

98 in vivo were shown to occur independently of IRF7 (interferon response factor 7), a critical 

99 transcriptional regulator of host innate immune defences to IAV infection [25, 27-32]. These 

100 data suggest that intrinsic patterns of constitutive host gene expression are likely to play an 

101 important role in limiting IAV replication immediately upon pathogen entry into susceptible 

102 host cells, thereby reducing the need to prematurely activate potentially harmful pro-

103 inflammatory innate immune defences [2, 33, 34]. However, evidence for tissue-specific or 

104 cell-type intrinsic immune effectors that may restrict IAV replication has remained lacking.

105 We hypothesized that localized intrinsic immune barriers might exist due to tissue-

106 specific patterns of gene expression at common portals of viral entry. We tested this 

107 hypothesis in cells derived from the respiratory tract, a major portal of virus entry for many 

108 clinically important pathogens, including seasonal and pandemic influenza viruses [35]. In 

109 order to identify antiviral genes that might be differentially expressed in the respiratory tract, 

110 we initially focused on TRIpartite Motif (TRIM) proteins, a family of over 70 members that 

111 participate in a wide range of cellular processes, including multiple aspects of immune 

112 regulation and antiviral defence [36-39]. Many TRIM proteins are strongly upregulated in 

113 response to IFN signalling and are well established to act as regulators or effectors of innate 

114 immunity during virus infection [5, 36-38, 40-45]. Other TRIM proteins are constitutively 

115 expressed and known to directly mediate intrinsic immune defences [16, 17, 19, 46-49], 

116 including TRIM32 and TRIM41 which have been reported to restrict IAV replication through 
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117 the targeted degradation of PB1 (polymerase basic protein 1) and NP (nucleoprotein), 

118 respectively [21, 22].

119 We focussed particularly on TRIM22, which we identified to be amongst the most 

120 abundantly expressed TRIM family members in the respiratory tract. TRIM22 has been 

121 implicated in the cellular restriction of a broad range of viruses including 

122 encephalomyocarditis virus (EMCV), hepatitis B virus (HBV), hepatitis C virus (HCV), 

123 human immunodeficiency virus (HIV), and IAV [50-55]. Studies in transformed cultured 

124 cells and primary lymphocytes have shown TRIM22 to be an ISG, strongly upregulated by 

125 immune stimuli including type-I (α, β) and -II () IFNs; interleukins (IL-1β, -2 and -15); 

126 progesterone and tumour necrosis factor-α (TNF-α) [54-56]. Accordingly, TRIM22 has been 

127 shown to inhibit viral infection following its induced expression as an ISG by restricting the 

128 onset of viral transcription or by targeted degradation of viral proteins [50-54, 57-60]. With 

129 respect to IAV, transient transfection studies in transformed cells have shown TRIM22 to 

130 mediate the ubiquitination and proteasome-dependent degradation of NP [55, 61], and to 

131 restrict IAV propagation as an effector of the type-I IFN response [55]. 

132 Here, we show that TRIM22 is constitutively expressed to high levels in the 

133 respiratory tract and non-transformed cells of lung origin independently of immune stimulus 

134 or viral infection. We demonstrate that the endogenous levels of TRIM22 expression are 

135 sufficient to restrict human and avian IAV infection by inhibiting the onset of viral 

136 transcription independently of cytokine-mediated innate immune defences. Thus, we identify 

137 TRIM22 to confer a pre-existing (intrinsic) intracellular immune barrier to IAV infection 

138 within cells of the respiratory airway. Consistent with our hypothesis, these high levels of 

139 TRIM22 expression are not present in all cell-types or tissues. Equally importantly, 

140 transcriptomic analysis revealed TRIM22 to be amongst a large group of IAV immune 

141 regulators that are downregulated in transformed cells which share common networks of 
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142 immune system disruption correlating with enhanced permissivity to IAV replication. 

143 Collectively, our data demonstrate that tissue-specific and cell-type dependent patterns of 

144 pre-existing immune gene expression to play a critical role in the intrinsic intracellular 

145 restriction of IAV from the outset of infection. These findings are highly relevant to the 

146 immune regulation of many clinically important respiratory pathogens.

147

148 Results

149 TRIM22 is constitutively expressed at high levels in the respiratory tract independently 

150 of immune stimulus or virus infection.

151 As the respiratory tract is a major portal for virus entry, we hypothesized that cells in the 

152 respiratory mucosa might express antiviral proteins to higher levels than cells in less exposed 

153 locations, thereby creating localized pre-existing (intrinsic) immune barriers to virus 

154 infection. We initially explored this hypothesis using RNA-seq data and protein expression 

155 records from Human Protein Atlas (HPA; https://www.proteinatlas.org; [62, 63]) and 

156 Genotype-Tissue Expression (GTEx) project (https://gtexportal.org/home/; [64]). We 

157 focussed on the TRIM family of proteins, as many members of this family are known to 

158 directly or indirectly mediate antiviral immune responses to a wide range of viruses [37]. Of 

159 the TRIM family, RNA-seq data from HPA indicated that three members (TRIM8, 22, and 

160 28) had the highest transcript expression levels in human lung tissue (Fig 1A, red circles; 

161 S1A Table), with TRIM22 being the most abundantly expressed. Notably, expression of these 

162 TRIMs was substantially higher than that of TRIM32 and TRIM41, two previously identified 

163 intrinsic antiviral regulators of IAV (Fig 1A, blue circles; [21, 22]). TRIM22 transcript levels 

164 were most abundantly expressed in the spleen, lymph node, appendix, gallbladder, and lung 

165 (Fig 1B, TRIM22 coloured circles; S1B Table), with expression values exceeding the 95% 

166 confidence interval for median TRIM22 expression across all tissues. In contrast, transcript 
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167 levels for both TRIM32 and TRIM41 in the lung were close to their respective median tissue 

168 expression values (Fig 1B, TRIM32/41 red circles; S1B Table). Analysis of RNA-seq data 

169 obtained by the GTEx project independently confirmed TRIM8, 22, and 28 to be the most 

170 abundantly expressed TRIMs in human lung tissue (S1 Fig, S1A Table), with the highest 

171 levels of TRIM22 expression observed in the spleen and lung (S1 Fig, S1C Table). Together, 

172 these data demonstrate that TRIM22 transcript levels show tissue-specific patterns of gene 

173 expression and to be enriched within the lung relative to other tissues or TRIM family 

174 members. Analysis of HPA immunohistochemistry (IHC) expression records demonstrated 

175 the nasopharynx and bronchus to be among tissues with the highest levels of TRIM22 

176 expression (Fig 1C, D). These relatively high levels of tissue-specific protein expression 

177 suggest that TRIM22 could make a substantial contribution to a pre-existing and localized 

178 intrinsic immune barrier to respiratory airway infection.

179 However, the above data contrast with many previous studies of transformed cultured 

180 cells and primary lymphocytes, in which TRIM22 expression is strongly upregulated upon 

181 viral infection or immune stimulation [54-56]. To resolve this discrepancy, we first examined 

182 how TRIM22 expression in primary human bronchial epithelial (HBEp) cells responded to 

183 IFN stimulation. Using a validated TRIM22 antibody (S2 Fig), TRIM22 was readily 

184 detectable in unstimulated cells by immunofluorescence (Fig 1E), showing the same 

185 predominantly nuclear localisation observed by IHC in respiratory epithelia (Fig 1C). The 

186 addition of IFN-β caused an intense upregulation of the ISG Mx1 at both the transcript and 

187 protein level. In contrast, TRIM22 expression in the same cells was only increased at the 

188 transcript level and not detectably increased at the protein level (Fig 1F-H). We conclude that 

189 TRIM22 is constitutively expressed to high levels in non-transformed respiratory epithelial 

190 cells independently of immune stimulus. Next, we analysed how TRIM22 expression in the 

191 respiratory tract responded to viral infection. As mice lack an orthologue to human TRIM22 
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192 (https://www.ncbi.nlm.nih.gov/homologene/?term=trim22), we examined tissue from 

193 cynomolgus macaques (Macaca fascicularis), whose TRIM22 has 92% amino acid identity 

194 to human TRIM22. As in human tissue (Fig 1C, D), TRIM22 was constitutively expressed in 

195 the respiratory tract of uninfected macaques, specifically in epithelia of the airways, sub-

196 mucosal glands, alveoli, and in alveolar macrophages, with little staining observed in the sub-

197 epithelial connective tissue (Fig 1I, uninfected). In order to determine whether TRIM22 

198 expression increased during infection, we compared healthy macaques with those infected 

199 with IAV (A/California/04/2009 (H1N1); Cal). These macaques had previously been shown 

200 to be infected and to be undergoing an induced innate immune response at the point of 

201 euthanasia [65]. Automated staining and quantitation of sectioned samples demonstrated 

202 TRIM22 expression did not increase in the respiratory tract of IAV infected macaques (Fig 

203 1I, J). In contrast to its expression as an ISG in other settings [54, 55], these data demonstrate 

204 that the high levels of constitutive TRIM22 expression observed in primary HBEp cells is 

205 representative of its expression profile in the epithelium of the respiratory tract independently 

206 of immune stimulation. 

207

208 Constitutive TRIM22 expression correlates with low permissivity to IAV infection.

209 We next wished to investigate the antiviral properties of constitutively expressed TRIM22. 

210 However, while we could demonstrate strong constitutive expression of TRIM22 in HBEp 

211 cells, these primary cells are challenging to maintain at high densities for functional studies 

212 due to the rapid onset of cellular senescence. Accordingly, to identify a tractable cell line that 

213 maintained constitutive expression of TRIM22, we screened a panel of human cell lines for 

214 TRIM22 transcript and protein expression levels with and without IFN-β stimulation. In all 

215 virally-transformed cell lines examined (HEK 293T, HeLa, HEp2, and A549), TRIM22 was 

216 either absent or, as observed for the ISG Mx1, only detected following IFN-β stimulation 
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217 (Fig 2A-D, S3 Fig). Thus, IAV infection studies that have utilize transformed cell lines would 

218 not capture the endogenous antiviral properties of TRIM22 observed at the site of natural 

219 infection (Fig 1; [55, 61]). In contrast, both primary and human telomerase reverse 

220 transcriptase (hTERT)-immortalized human lung fibroblasts (MRC5 and MRC5t, 

221 respectively) retained constitutive expression of TRIM22 independently of IFN-β stimulation 

222 (Fig 2A-D, S3 Fig). As single-cell transcriptomics experiments have shown lung fibroblasts 

223 to be susceptible to IAV infection in vivo [25], we chose MRC5t cells as a model cell line to 

224 study the effects of constitutive TRIM22 expression on respiratory virus infection.

225 In order to investigate whether patterns of TRIM22 expression correlated with 

226 permissivity to IAV infection, we carried out IAV infections in a panel of cells with different 

227 TRIM22 expression phenotypes: constitutive (MRC5 and MRC5t), interferon-inducible 

228 (A549), or absent (HEK 293T). First, to determine if constitutive TRIM22 expression 

229 correlated with a block to viral entry, cells were infected with IAV (A/Puerto Rico/8/1934 

230 (H1N1); PR8) at a multiplicity of infection (MOI) of 1 PFU/cell (based on titres derived in 

231 MDCK cells) in the presence of cycloheximide to prevent viral protein synthesis and genome 

232 replication. Similar levels of genome segment 7 (Seg. 7) vRNA were detected in the nuclei of 

233 infected cells at 2 hours post-infection (hpi) independently of cell lineage, indicating that all 

234 cells were equally permissive to viral entry and genome translocation to the nucleus (Fig 2E, 

235 F). Next, we tested whether TRIM22 expression patterns correlated with an inhibition of viral 

236 replication. To do this we compared the plaque titre of IAV (A/WSN/33 (H1N1); WSN) in 

237 each cell type to that in MDCK cells. IAV formed plaques in A549 and HEK 293T cells with 

238 an efficiency approximately equal to that in MDCK cells. In contrast, plaque formation in 

239 MRC5 and MRC5t cells was strongly suppressed (80 to 100-fold relative to MDCK cells; Fig 

240 2G). The correlation of constitutive TRIM22 expression with restricted IAV plaque 
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241 formation in both MRC5 and MRC5t cells suggested that constitutive TRIM22 expression 

242 may confer a pre-existing (intrinsic) intracellular immune barrier to IAV replication.

243

244 Constitutively expressed TRIM22 restricts the initiation of IAV replication.

245 In order to examine in more detail how TRIM22 expression patterns influenced permissivity 

246 to IAV infection, we focussed on MRC5t cells, in which TRIM22 is constitutively expressed, 

247 and A549 cells, in which TRIM22 is an ISG (Fig 2A). First, we compared patterns of 

248 TRIM22 expression during IAV (WSN) infection. In MRC5t cells, TRIM22 showed similar 

249 levels of constitutive expression both before and during a single-cycle of infection (up to 8 

250 hpi; MOI of 1 PFU/cell based on MRC5t titres). In contrast, TRIM22 was barely detectable 

251 in A549 cells under equivalent infection conditions, as was the ISG Mx1 (Fig 3A). TRIM22 

252 and Mx1 were only detectable in A549 cells following multi-cycle replication (48 hpi; MOI 

253 of 0.01 PFU/cell based on A549 titres), indicative of the induction of innate immune defences 

254 and ISG expression in response to PAMPs (aberrant vRNAs and DI particles) produced 

255 during viral replication (Fig 3B; [1, 11]).

256 Next, in order to identify the specific effects of TRIM22 we generated stable MRC5t 

257 and A549 cell lines expressing non-targeting control and TRIM22-targeting short hairpin 

258 RNAs (shCtrl and shTRIM22, respectively). The expression of TRIM22 mRNA in MRC5t 

259 shTRIM22 cells was substantially depleted relative to control cells (Fig 3C, S2 Fig). As a 

260 result, the expression of TRIM22 protein was significantly knocked down in both MRC5t and 

261 A549 cells, with or without IFN-β stimulation (Fig 3D, E). To identify the contribution of 

262 TRIM22 to the cellular restriction of IAV replication, we infected these cells with IAV 

263 (WSN) at a low MOI (0.001 PFU/cell based on titres relative to each parental cell line) and 

264 used MDCK plaque assays to measure the release of infectious virus into the growth media 

265 over time. Depletion of TRIM22 enhanced IAV replication in both MRC5t and A549 cells 
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266 relative to their respective controls, confirming the ability of TRIM22 to restrict IAV 

267 replication (Fig 3F; [55]); a phenotype attributable in A549 cells to the ISG induction of 

268 TRIM22 during multi-cycle replication (Fig 3B; [55]). We next examined the relative plaque 

269 titre of IAV in TRIM22 depleted cells compared to that in their respective control cell lines, 

270 reasoning that the ability of the virus to form plaques in these cells would reflect the ability of 

271 constitutively expressed TRIM22 to restrict IAV replication from the outset of infection. We 

272 infected cells with serial dilutions of IAV (WSN) and counted the number of plaques formed 

273 by 36 hpi (Fig 3G). In MRC5t cells, depletion of TRIM22 significantly enhanced the plaque 

274 titre of IAV. In contrast, depletion of TRIM22 in A549 cells had no significant effect (Fig 

275 3H). We conclude that the constitutive expression of TRIM22 in non-transformed respiratory 

276 cells confers a pre-existing immune barrier to IAV infection that restricts viral replication 

277 leading to plaque formation.

278

279 Constitutively expressed TRIM22 provides broad protection against IAV independently 

280 of the IFN response.

281 Even though TRIM22 is constitutively expressed in MRC5t cells, it could act to restrict IAV 

282 infection by modulating innate immune signalling pathways, a widespread mode of action 

283 among the TRIM family [37, 45]. If this was the case, TRIM22 might be required to 

284 potentiate an innate antiviral immune response, but not provide a direct intracellular barrier to 

285 infection itself. To examine this, we tested the effects of TRIM22 in the presence of the Janus 

286 associated kinase (JAK) inhibitor Ruxolitinib (Ruxo), which has been shown to inhibit the 

287 induction of cytokine-mediated innate immune defences and ISG expression in response to 

288 IAV infection [66]. We first determined a concentration of Ruxo that would block ISG 

289 induction (Mx1 and ISG15) in MRC5t cells following IFN-β treatment (Fig 4A; 4 µM). 

290 Comparing the effects of Ruxo (4 M) or DMSO (carrier control) treatment on the relative 
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291 plaque titre of IAV in TRIM22 depleted or control MRC5t cells showed that TRIM22 

292 depletion caused the same increase in relative plaque titre regardless of the inhibition of JAK-

293 STAT signalling (Fig 4B). Thus, constitutively expressed TRIM22 restricts IAV replication 

294 independently of pathogen-induced cytokine-mediated innate immune defences.

295 As WSN is a highly laboratory-adapted strain, we tested whether constitutively 

296 expressed TRIM22 was effective against other IAV strains using an immunofluorescent 

297 focus-forming assay to measure the proportion of IAV NP positive cells at 8 hpi. Depletion 

298 of TRIM22 increased the focus-forming efficiency of a panel of influenza A viruses, 

299 including two avian strains (Fig 5A, B). Thus, constitutively expressed TRIM22 provides a 

300 broad-acting intrinsic immune barrier to IAV that restricts NP expression, protecting non-

301 transformed respiratory cells against human and avian IAV from the outset of infection.

302

303 TRIM22 provides intrinsic immunity against IAV by limiting the onset of viral 

304 transcription.

305 Having established that the constitutive expression of TRIM22 confers a pre-existing intrinsic 

306 immune barrier to IAV, we wished to determine the point in viral replication at which it 

307 acted. We infected TRIM22 depleted or control MRC5t cells with IAV (PR8; MOI of 0.05 

308 PFU/cell based on titres derived from MRC5t cells) in the presence of cycloheximide to 

309 inhibit viral protein synthesis and genome replication. Nuclei were isolated at 4 hpi and the 

310 relative levels of input vRNA were quantified by qRT-PCR. Western blotting for histone H3 

311 and actin confirmed successful cell fractionation (Fig 6A). TRIM22 depletion did not 

312 significantly alter the nuclear accumulation of IAV genomes (Fig 6B), demonstrating that 

313 constitutive TRIM22 expression was not a barrier to viral genome entry into the nucleus of 

314 infected cells.
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315 We next asked whether TRIM22 might affect the stability of incoming viral genomes 

316 via degradation of NP, as transient transfection studies in HEK 293T cells have shown 

317 TRIM22 to target NP for ubiquitination and proteasome-mediated degradation [55, 61]. 

318 However, we were unable to detect any alteration of NP accumulation caused by TRIM22 in 

319 HEK 293T cells using an equivalent assay (Fig 6C, D). Nor were we able to detect any 

320 difference in genome stability between TRIM22 depleted or control MRC5t cells within the 

321 first four hours of IAV infection, prior to the onset of viral genome replication (Fig 6B and 

322 Fig 6E, 0 to 4 hpi). Thus, endogenous levels of constitutive TRIM22 expression can restrict 

323 IAV replication without influencing the stability of incoming viral ribonucleoproteins 

324 (vRNPs). However, following the onset of de novo vRNA synthesis higher levels of vRNA 

325 accumulated in TRIM22 depleted cells compared to control cells (Fig 6E, 4 to 8 hpi). These 

326 data suggested that endogenous TRIM22 affects viral genome replication. In order to 

327 replicate, IAV genomes must be encapsidated by newly synthesized viral proteins [35]. We 

328 therefore used qRT-PCR and western blotting to measure the transcription and expression 

329 profiles of the viral NP, M1 and NS1 genes, each encoded by independent genome segments, 

330 over a time course of infection. TRIM22 depletion increased transcription of all three genes 

331 (Fig 6F), correlating in each case with an increase in viral protein synthesis (Fig 6G, H). 

332 While transcription and replication of the IAV genome are intimately linked, the differences 

333 in mRNA levels were detectable prior to differences in de novo vRNA synthesis under 

334 equivalent infection conditions (Fig 6E, F). Thus, TRIM22 provides intrinsic immunity to 

335 IAV infection by suppressing the onset of viral transcription to restrict, either directly or 

336 indirectly, the initiation of viral genome replication. Collectively, these data highlight that 

337 constitutively expressed TRIM22 inhibits IAV replication early in the infectious cycle (2 to 4 

338 hpi; Fig 6F) prior to the accumulation of viral immuno-evasion genes (for example NS1, Fig 

339 6G, H; [13, 14]). 
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340

341 Human lung tissue is enriched for constitutive ISG expression.

342 Having identified TRIM22 to be a constitutively expressed ISG product within the 

343 respiratory tract that confers protection to IAV infection (Fig 1, 3, 5), we next examined 

344 whether other ISGs were constitutively expressed to high levels in the lung relative to other 

345 mucosal (gastrointestinal tract; esophagus, colon, and small intestine) or non-mucosal (liver, 

346 skin, and kidney) tissues. Using GTEx project (https://gtexportal.org/home/; [64]) RNA-seq 

347 data obtained from human tissue biopsies, we examined the transcript expression profiles of 

348 200 ISGs previously identified to be upregulated in response to universal IFN stimulation in 

349 primary cell culture (≥ 8-fold change; [67]) (Fig 7, S2A Table). This analysis showed that 

350 individual tissues expressed distinct profiles of ISG transcript expression (Fig 7A, ranked by 

351 lung expression), with TRIM22 amongst the top 50 most abundantly expressed ISGs in the 

352 lung (Fig 7B, ranked by lung expression). Significantly higher levels of median ISG 

353 transcript expression were observed in the lung relative to all other tissues examined (Fig 7C, 

354 200 ISGs). Principle component analysis (PCA) and clustering demonstrated that individual 

355 ISGs were not equally expressed in all tissues (Fig 7D), with lung tissue sharing the highest 

356 degree of ISG profile similarity to that of the small intestine (Fig 7E). Transcript levels of 

357 type-I (, ), -II (), and -III () IFNs were either not detectible or extremely low (≤ 1.3 

358 TPM; Fig 7F, G, S2B Table), indicating that ISG enrichment in these tissues occurred 

359 independently of high levels of constitutive IFN transcription. While a role for IFN in the 

360 tissue-dependent enrichment of specific ISGs cannot be ruled out [18, 68, 69], these data 

361 demonstrate the existence of tissue-specific profiles of constitutive ISG transcription and 

362 show that lung tissue is enriched in ISG transcripts relative to other tissues.

363 Notably, many well established antiviral ISGs (BST2, IFITM1, and SAMHD1) and 

364 IAV associated host restriction factors, including the GBP (guanylate-binding protein) 
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365 family, were observed to have high levels of constitutive ISG transcript expression in the 

366 lung (Fig 7B) [70, 71]. These data suggest that enriched levels of pre-existing ISG expression 

367 in the lung may combine to confer enhanced antiviral protection against respiratory airway 

368 infection immediately upon pathogen entry into susceptible host cells.

369

370 The disruption of intracellular immune networks in transformed cells increases 

371 permissivity to IAV replication.

372 Since the constitutive expression of TRIM22 is lost in many transformed cell lines (Fig 2A-

373 D, S3 Fig), we hypothesized that other constitutively expressed ISGs might also be 

374 downregulated. Using cell-line RNA-seq data sets obtained from HPA 

375 (https://www.proteinatlas.org; [62, 63]), we compared the ISG transcript expression profile of 

376 non-treated hTERT-immortalized human bronchial epithelial cells (HBEC3-KT; HBEC3) to 

377 that of three widely used transformed cell lines (A549, HEK 293, and HeLa). Out of the 200 

378 ISGs previously examined (Fig 7A), 178 ISGs were identified in RNA-seq cell line data sets 

379 (S3A Table) with 87 ISGs having values ≥ 5 TPM (Fig 8A; median 3.5 TPM per gene across 

380 all cell lines). Relative to HBEC3 cells, many of these ISGs were downregulated in 

381 transformed cells in an ISG-specific and cell-line dependent manner (Fig 8B; HBEC3 ≥ 5-

382 fold change). Out of the 34 ISGs identified to be differentially downregulated in transformed 

383 cells (S3B Table), several were downregulated in all three (defined as core) or in two 

384 (defined as shared) transformed cell lines (Fig 8B, C). Importantly, the profile of ISG 

385 expression in unstimulated HBEC3 cells for this subset of ISGs was similar to that observed 

386 in lung tissue (Fig 8B; 34 ISGs); although the overall ISG expression profile significantly 

387 varied between lung tissue and all cell lines examined (S4 Fig; 178 ISGs). Network analysis 

388 using STRING (https://string-db.org; [72]) demonstrated that many of these downregulated 

389 ISGs were connected in the immune system network (17 of 34 genes; Fig 8C, D), and as a 
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390 gene set to show pathway enrichment for defence response to virus and IAV infection (Fig 

391 8D). Collectively, these data demonstrate that transformed cells display lineage-specific 

392 patterns of constitutive ISG expression, with a significant number of ISGs being 

393 downregulated relative to HBEC3 cells or lung tissue.

394 Having identified a subset of constitutively expressed ISGs known to restrict IAV to 

395 be downregulated in transformed cells (Fig 8), we extended our analysis to determine 

396 whether other immune system-related genes were downregulated relative to HBEC3 cells 

397 (HBEC3 ≥ 5-fold change; blue circles in Fig 9A; S4A Table). Gene Ontology (GO) analysis 

398 identified that a significant percentage of differentially downregulated genes in A549 

399 (18.09%), HEK 293 (17.39%), and HeLa (16.46%) cells map to the immune system (S4B, C 

400 Tables). Out of the 174 unique immune genes identified to be downregulated, 95 (54.6%) 

401 were common to at least two transformed cell lines (Fig 9B, core + shared; S4D Table). 

402 STRING analysis identified a significant degree of network connectivity between these 

403 downregulated immune genes (141 of 174 genes; Fig 9C, S5 Fig), with common (core + 

404 shared) immune genes located across the entire network. We conclude that transformed cells 

405 share common networks of immune system disruption which arise through lineage-specific 

406 patterns of immune gene downregulation. Notably, this gene network was also enriched for 

407 host factors known to restrict IAV (Fig 9C; KEGG pathway [hsa05164]), suggesting that 

408 transformed cells are deficient in multiple host factors known to contribute to the intracellular 

409 restriction of IAV.

410 To investigate this observation further, we curated an extended IAV KEGG network 

411 which included recently identified host factors that influence IAV restriction (Fig 10A, S5A 

412 Table; [70, 71]). Out of the 184 genes analyzed, 39 (21.2%) were identified to be 

413 significantly downregulated in transformed cells relative to HBEC3 cells (≥ 5-fold change; 

414 Fig 10B, C, S5B Table) or lung tissue.  Consistent with both ISG and immune system 
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415 profiling (Fig 8C, 9B, respectively), many of these genes were downregulated in two or more 

416 transformed cell lines and showed significant network connectivity (29 of 39 genes; Fig 

417 10D).  The expression profiles of a subset of these proteins were tested in unstimulated cells 

418 by western blotting, which confirmed that UBA7, TRIM22 (positive control), IFITM1, 

419 GBP1, IFIH1 and TLR3 were expressed to significantly lower levels in A549 cells relative to 

420 HBEC3 cells (Fig 10E, F). In order to determine if the disruption of this immune system 

421 network influenced IAV replication, we compared the relative plaque titre of IAV in HBEC3 

422 and A549 cells to that of MDCK cells. Similar to diploid lung fibroblasts (Fig 2G, H), human 

423 bronchial epithelial cells were highly restrictive to the initiation of IAV plaque formation 

424 relative to MDCK cells (≥ 70-fold) or A549 cells (≥ 30-fold) (Fig 9G, H). Ruxolitinib 

425 inhibition of JAK-STAT signalling did not influence the initiation of IAV plaque formation 

426 in any of the cell-types examined (Fig 9I), although a significant increase in plaque diameter 

427 could be observed in each cell-type (Fig 9J). Thus, pharmacological inhibition of cytokine-

428 mediated innate immune defences enhances virus propagation and spread, but not the 

429 initiation of viral replication leading to plaque formation [11, 66]. We conclude that the 

430 constitutive expression of IAV immuno-regulatory genes in the context of non-transformed 

431 respiratory cells confers a significant pre-existing immune barrier to IAV infection prior to 

432 the induction of pathogen-induced cytokine-mediated innate immune defences. Importantly, 

433 this intrinsic barrier is compromised in many transformed cell lines currently being used for 

434 IAV immunobiology research. 

435

436

437
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438 Discussion

439 Recent single-cell transcriptomic studies have identified individual cells to be differentially 

440 permissive to IAV infection [24, 25]. These observations suggest that pre-existing (intrinsic) 

441 patterns of cellular gene expression within (or between) specific cell-types may differentially 

442 influence the outcome of IAV infection. However, biological evidence to support the 

443 importance of such cell-type specific patterns of host gene expression in the intracellular 

444 restriction of IAV has remained lacking. Consequently, the concept of intrinsic immunity has 

445 yet to be firmly accepted within the IAV field or wider respiratory virus research community. 

446 Here, we demonstrate that non-transformed human lung cells possess patterns of constitutive 

447 antiviral gene expression that differ markedly from the transformed cell culture model 

448 systems that have been widely used for respiratory virus research over many decades. We 

449 show that these differential patterns of constitutive antiviral gene expression can directly 

450 influence the outcome of IAV infection, independently of pathogen-induced cytokine-

451 mediated innate immune defences. Thus, we have identified a biologically important and 

452 previously overlooked role for intrinsic immunity in the regulation of IAV infection; findings 

453 relevant to the intracellular immune regulation of many respiratory pathogens. 

454 Our initial hypothesis that cells in the respiratory mucosa might differentially express 

455 antiviral proteins at higher levels than in cells at less exposed locations led to the 

456 identification of TRIM22 to be amongst the most abundantly expressed TRIM proteins in 

457 lung tissue and non-transformed cells of lung origin (Fig 1, 2A, S1, S6 Fig). This high level 

458 of constitutive TRIM22 expression contrasts with many previous studies, which have 

459 reported TRIM22 to be strongly upregulated as an effector ISG in primary lymphocytes and 

460 transformed cell lines in response to virus infection or immune stimulation (Fig 2, S3 Fig; 

461 [54, 55]). We note that TRIM22 (formerly known as Staf50) has been shown to be 

462 upregulated by p53 and its expression has been found to correlate with cell differentiation 
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463 and proliferation status [54, 73]. Thus, the downregulation of constitutive TRIM22 

464 expression in many virally-transformed cells may occur as a direct result of p53 inactivation 

465 by viral proteins to sustain cellular proliferation. However, it is evident that many 

466 transformed and carcinoma cell lines have variable gene copy numbers and an extensive 

467 array of single nucleotide polymorphisms (SNPs) that can directly influence cellular protein 

468 expression profiles, protein functionality, and immune competence [74-76]. Indeed, analysis 

469 of Cancer Cell Line Encyclopaedia (CCLE; [75]) records demonstrate that TRIM22 transcript 

470 levels and copy number are downregulated in many lung carcinoma cell-types 

471 (https://portals.broadinstitute.org/ccle/page?gene=TRIM22). Such issues of genetic variance 

472 raise concerns over the suitability of using carcinoma cells for virus-related immunity studies. 

473 For example, it is becoming increasingly evident that many cancers downregulate multiple 

474 immune regulators to minimize immune clearance and carry unique epigenetic signatures that 

475 influence gene transcriptional regulation and proliferation [74, 75, 77, 78]. Consequently, the 

476 utilization of such genetically variable populations of cells for in vitro experimentation is 

477 likely to have a significant bearing on viral intracellular immune regulation due to lineage-

478 specific patterns of immune gene regulation acquired through transformation.

479 We demonstrate that multiple immune regulators, known to influence the replication 

480 of a wide variety of viral pathogens, are downregulated in transformed cell lines widely used 

481 for respiratory virus research (Fig 8-10).  The loss or downregulation of these constitutively 

482 expressed host factors correlates strongly with enhanced permissivity of these cell-types to 

483 the initiation of IAV replication leading to plaque formation (Fig 2G, 10H). Many of these 

484 immune genes, although downregulated in a lineage-specific manner (Fig 9), share common 

485 networks of immune-system regulation known to influence IAV replication (Fig 8C, 9C, 

486 10D). These observations may account for much of the gene-specific variability, but 

487 interrelated pathway connectedness, observed between genome-wide RNA interference 
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488 screens that utilized carcinoma model systems to identify host factors that influence IAV 

489 replication [79-81]. Collectively, our data highlight the importance of utilizing more 

490 physiologically relevant cell culture model systems to improve experimental reproducibility 

491 between independent groups and research fields. 

492 Using a cell culture system that retained the constitutive expression of TRIM22 

493 observed at the natural site of infection (Fig 1, 2), we corroborate previous reports that 

494 TRIM22 acts as a restriction factor to inhibit IAV replication (Fig 3F-H; [55, 61]). 

495 Importantly, we show that constitutive expression of TRIM22 is sufficient to restrict the 

496 initiating cycle of both human and avian IAV replication from the outset of infection by 

497 inhibiting the efficient onset of viral transcription (Fig 5, 6). We show that pharmacological 

498 inhibition of cytokine-mediated JAK-STAT signalling did not reduce the ability of 

499 endogenous TRIM22 to restrict IAV infection (Fig 4; [66]), demonstrating the TRIM22 can 

500 work independently of the IFN pathway. Thus, high levels of constitutive TRIM22 

501 expression can confer immediate protection to airway infection, thereby reducing the need to 

502 prematurely activate potentially harmful pro-inflammatory innate immune defences [2, 33, 

503 34]. 

504 Our work exemplifies two important features of intrinsic immunity. Firstly, we 

505 identify TRIM22 to be an intrinsically-expressed ISG, similar to PML (TRIM19) and 

506 TRIM5 [19, 46, 48, 49 ], which can be further upregulated in response to cytokine 

507 signalling in a manner dependent on the pre-existing basal levels of endogenous expression in 

508 a given cell-type (Fig 1F-H, 2A, B, S3 Fig). Secondly, TRIM22 demonstrates that intrinsic 

509 immune defences can be upregulated in a tissue-specific manner. Like TRIM32 and TRIM41 

510 [21, 22], TRIM22 can restrict the initiation of IAV infection (Fig 5, 6), but unlike these 

511 TRIM proteins TRIM22 is upregulated in a tissue-specific manner, being enriched within the 

512 lung relative to other tissues (Fig 1A, B, 7A, B). Collectively, these observations point to a 
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513 series of distinct ways in which constitutive levels of immune gene expression can influence 

514 the outcome of IAV replication independently of pathogen-induced host defences. Further 

515 investigation is warranted to determine the accumulative and strain-dependent effects of such 

516 intrinsic barriers to IAV infection.

517 We found that constitutively-expressed TRIM22 could restrict the replication of 

518 multiple human (H1N1, including WSN) and avian (H3N2 and H7N1) strains of IAV (Fig 5). 

519 These data contrast with recent studies in transformed cells [61], which lack constitutive 

520 TRIM22 expression (Fig 2A, S3; [55, 61]), that reported the WSN strain to be resistant to 

521 TRIM22 mediated restriction. In these studies, TRIM22 was found to target IAV NP for 

522 ubiquitination and proteasome-dependent degradation [55, 61], with WSN NP being resistant 

523 to ubiquitination due to the substitution of lysine acceptor residues for arginines [61]. In 

524 contrast, we found that constitutively-expressed TRIM22 was effective against the WSN 

525 strain (Fig 3F-H) independently of detectible NP degradation, either alone or in the context of 

526 incoming vRNPs (Fig 6C-E).  While we cannot discount a role for ubiquitination in the 

527 TRIM22 mediated restriction of IAV, we show endogenous levels of TRIM22 are sufficient 

528 to restrict de novo NP expression by inhibiting the onset of viral transcription (Fig 5, 6). 

529 These differences may reflect cell-type (transformed vs non-transformed cells) or expression 

530 level (ectopic vs endogenous) dependent differences in TRIM22 restriction of IAV and 

531 suggest that TRIM22 may adopt multiple approaches to restrict IAV infection. For example, 

532 endogenous levels of TRIM22 may sterically hinder the onset of viral transcription 

533 independently of NP degradation when in complex with vRNPs, but upon saturation under 

534 high genome loads to target de novo synthesized free pools of NP for ubiquitination leading 

535 to its proteasome-degradation. Such differences in substrate-targeting could result in a switch 

536 in intracellular immune ‘status’ from intrinsic to innate defences, induced by the onset of 

537 viral replication or sensing of PAMPs in a strain-dependent manner. Such a mechanism is not 
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538 unprecedented, as we have recently shown that PML (TRIM19) plays spatiotemporally 

539 distinct roles in the regulation of intrinsic and innate immune defences to HSV-1 infection 

540 [19, 82]. Further biochemical investigation will be required to determine whether TRIM22 

541 has differential modes of substrate-targeting dependent on the kinetics of infection or cellular 

542 immune status.

543 A surprising discovery in our study was the identification of enriched levels of 

544 constitutive ISG expression in human lung tissue relative to that of other mucosal and non-

545 mucosal tissues (Fig 7). Our analysis suggests that human lung tissue could confer 

546 heightened levels of pre-existing immune protection against multiple respiratory viruses 

547 immediately upon pathogen entry. Importantly, this was not due to the elevated expression of 

548 all ISGs, but rather tissue-specific profiles of individual ISG expression (Fig 7A-E, S2A 

549 Table). These data demonstrate that human tissues confer distinct profiles of ISG expression 

550 in a tissue-dependent manner which may confer enhanced protection at exposed surfaces. 

551 While it remains to be determined how such distinct patterns of ISG expression occur, some 

552 plausible explanations include: (i) the presence of commensal microbiota or natural turnover 

553 of cells, stimulating low levels of PRR activation and IFN secretion through the release of 

554 PAMPs or DAMPs, respectively [18, 83]; (ii) differential patterns of cytokine secretion 

555 between tissues, including low basal levels of ‘tonic’ IFN signalling to maintain immune-

556 readiness and fitness [68, 69, 84, 85]; (iii) tissue-specific patterns of transcriptional regulation 

557 occurring through cellular differentiation, which may be further influenced by inherited 

558 genetic traits or epigenetic status  [85-88]. Importantly, these explanations are not mutually 

559 exclusive, which may account for the variance in individual ISG expression profiles observed 

560 between human tissue samples (Fig 7B). Further work is required to determine how such 

561 tissue-specific signatures of pre-existing antiviral gene expression influence the initiation and 

562 outcome of respiratory virus infection. 
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563 In conclusion, we identify pre-existing tissue-specific and cell-type dependent 

564 patterns of constitutive immune gene expression which confer a significant intracellular 

565 immune barrier to IAV replication from the outset of infection and independently of 

566 pathogen-induced cytokine-mediated innate immune defences. These intrinsic barrier 

567 defences are downregulated in many transformed cell lines currently used for respiratory 

568 virus research, which share common networks of immune system disruption relevant to the 

569 immune regulation of many respiratory pathogens. 

570

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/679159doi: bioRxiv preprint 

https://doi.org/10.1101/679159
http://creativecommons.org/licenses/by/4.0/


571 Materials and Methods

572 Antibodies

573 Polyclonal antibodies were used to detect TRIM22 (Sigma-Aldrich; HPA003575), Mx1 

574 (Santa Cruz; sc-50509), GBP1 (Proteintech; 15303-1-AP), IFIH1 (Proteintech; 21775-1-AP), 

575 TLR3 (Proteintech; 17766-1-AP), histone H3K27ac (AbCam; ab4729), and actin (Sigma-

576 Aldrich; A5060). IAV hybridoma antisera were used to detect NP, M1, and NS1, as 

577 previously described [89].  Monoclonal antibodies were used to detect UBA7 (AbCam; 

578 ab133499), Actin (DSHB; 224-236-1), IFITM1 (Proteinech; 60074-1g), and IAV NP 

579 (AbCam; ab20343). Secondary antibodies were Alexa 488 and 555 donkey anti-mouse and -

580 rabbit (Invitrogen; A21202, A21206, and A31572), DyLight 680- or 800-conjugated anti-

581 rabbit (Thermo Fisher Scientific; 35568 and SA5-35571), and peroxidase conjugated anti-

582 mouse (Sigma-Aldrich; A4416). 

583 Animals and ethics

584 No animals were directly subjected to experimentation as part of this scientific study. All 

585 animal tissues were obtained from material produced in previously described experiments 

586 [65] with permission from Public Health England (PHE). Procedures associated with this 

587 earlier study were approved by the PHE Ethical Review Committee (Porton Down, UK) and 

588 authorized under UK Home Office project licence 30/3083. 

589 Quantitative Histopathology of cynomolgus macaque tissue sections

590 Formalin fixed and paraffin embedded tissue samples were processed for haematoxylin and 

591 TRIM22 immunohistochemistry (IHC) staining, as previously described [65]. Tissue sections 

592 were independently assessed for TRIM22 expression by a qualified pathologist. Automated 

593 quantitation of TRIM22 expression levels in stained tissue sections was performed using 

594 whole-slide scans and Image-Pro Premier (Media Cybernetics), as previously described [90, 

595 91].
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596 Quantitative Histopathology of human tissue sections

597 IHC data from human tissue samples was obtained from the Human Protein Atlas (HPA; 

598 http://www.proteinatlas.org; [62, 63]) under a Creative Commons Attribution-ShareAlike 3.0 

599 International License. The original images consulted were TRIM22 Bronchus 

600 (http://www.proteinatlas.org/ENSG00000132274-TRIM22/tissue/bronchus#img) and 

601 TRIM22 Nasopharynx (http://www.proteinatlas.org/ENSG00000132274-

602 TRIM22/tissue/nasopharynx#img).

603 RNA-seq analysis of human cell lines and tissues

604 RNA-seq data for human cell lines (HBEC3-KT, A549, HEK 293, and HeLa) and human 

605 tissue biopsies (as indicated) were obtained from Human Protein Atlas (HPA; 

606 http://www.proteinatlas.org, version 18.1; [62, 63]) under a Creative Commons Attribution-

607 ShareAlike 3.0 International License or Genotype-Tissue Expression (GTEx; 

608 https://gtexportal.org/home/, V7; [64]) project (as stated) supported by the Common Fund of 

609 the Office of Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, 

610 NIDA, NIMH, and NINDS. Principle Component Analysis (PCA) cluster plots were 

611 generated using kmeans and clusplot packages and prcomp function in R (https://www.r-

612 project.org). Heatmaps were generated using Prism 8 (GraphPad) or pheatmap (v1.0.12) and 

613 cluster (v2.0.7-1) package in R. Network analysis was conducted using STRING 

614 (https://string-db.org; [72]).

615 Cells, viruses, and drugs

616 Primary human foetal lung fibroblast (MRC5) cells were purchased from the 

617 European Collection of Authenticated Cell Cultures (ECACC; 05072101). MRC5t cells are 

618 immortalized MRC5 cells expressing the catalytic subunit of human telomerase (hTERT), 

619 and were generated as previously described [92]. MRC5 and MRC5t cells were cultured in 

620 Dulbecco's Modified Eagle Medium (DMEM; Life Technologies; 41966) supplemented with 
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621 10 % foetal bovine serum (FBS; Life Technologies; 10270), 100 U/ml of penicillin and 100 

622 μg/ml of streptomycin (P/S; Life Technologies; 15140-122), and 1× non-essential amino 

623 acids (NEAA; Life Technologies 11140-035). MRC5t cells were supplemented with 5 μg/mL 

624 hygromycin B (Thermo Fisher Scientific; 10687010) to maintain hTERT expression. MRC5t 

625 cells were transduced with lentiviruses to express short hairpin (sh) RNAs based on the 19-

626 mer sequences; non-targeting control (shCtrl; 5’-TTATCGCGCATATCACGCG-3’) or 

627 TRIM22 targeting (shTRIM22 clone B7 [3’ UTR]; 5’-TATTGGTGTTCAAGACTAT-3’, 

628 clone B8; 5’-CTGTACGCACCTGCACATT-3’, clone B9; 5’-

629 GTGTCTTCGGCTGCCAATA-3’), as previously described [46]. Pooled, stably transduced 

630 cells were maintained in growth media supplemented with 0.5 µg/ml puromycin (Sigma-

631 Aldrich; P8833). Primary human bronchial epithelial (HBEp) cells were purchased from 

632 Sigma-Aldrich (502-05a). hTERT and CDK4 immortalized human bronchial epithelial cells 

633 (HBEC3-KT) were purchased the Hamon Center for Therapeutic Oncology Research (UT 

634 Southwestern Medical Center; [93]). Cells were cultured according to supplier guidelines. 

635 Madin Darby Canine Kidney (MDCK; a gift from Ben Hale University of Zurich), human 

636 lung adenocarcinoma epithelial (A549; PHE Culture Collections, 86012804), human 

637 embryonic kidney (HEK 293T; a gift from Roger Everett MRC-UoG CVR) and human 

638 cervical carcinoma (HeLa [a gift from Juergen Hass University of Edinburgh] or HEp2 [a gift 

639 from Roger Everett MRC-UoG CVR]) cells were cultured in DMEM with 10 % FBS and 

640 P/S. All cells were maintained at 37°C in 5 % CO2. IAV strains A/WSN/1933(H1N1) 

641 (WSN), A/Puerto Rico/8/1934(H1N1) (PR8), A/Udorn/307/1972(H3N2) (Udorn), and 

642 A/California/04/2009(H1N1) (Cal) were propagated in MDCK cells. 

643 A/Duck/Singapore/5/1997(H5N3) (Duck H5N3) and A/Chicken/Italy/1067/1999(H7N1) 

644 (Chicken H7N1) were propagated in embryonated chicken eggs. WSN titres were calculated 

645 by immunocytochemistry (ICC) plaque assay, as described below. PR8, Udorn, Duck H5H3 
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646 and Chicken H7N1 titres were calculated based on fluorescence forming units (FFU), 

647 calculated from the proportion of NP-positive MRC5t cells detected at 8 hours post-infection 

648 (hpi) by immunofluorescence confocal microscopy. Cells were interferon stimulated by the 

649 addition of 100 IU/ml recombinant interferon-β (IFN-β; Merck, 407318) to the growth media 

650 for 24 h. Cycloheximide (CHX; Sigma-Aldrich, C-7698) was prepared in Milli-Q water and 

651 used at 10 μg/ml. Ruxolitinib (Ruxo; Selleckchem; S1378) was prepared in DMSO and used 

652 at the concentrations indicated. 

653 Plaque and virus yield assays

654 For plaque assays, cells were seeded at 2 × 105 cells/well in 12-well dishes and incubated for 

655 a minimum of 16 h prior to manipulation. Cells were infected with serial dilutions of virus for 

656 1 h at 37oC prior to overlay with conditioned growth medium supplemented with 1.2 % 

657 Avicel (Biopolymers; RC-591), 0.1 % sodium bicarbonate (Life Technologies; 25080-060), 

658 and 0.01 % DEAE Dextran (Sigma-Aldrich; D9885). Cell monolayers were processed for 

659 ICC staining at 24 to 72 hpi depending on virus replication kinetics (as previously described 

660 [94]) or stained with Giemsa stain (VWR; 35086). Relative plaque titre was calculated as the 

661 plaque titre of a virus stock under the indicated condition divided by its titre under a control 

662 condition. For virus yield assays, cells were infected with IAV (WSN) at the indicated 

663 multiplicity of infection (MOI) for 1 h at 37oC, washed twice with PBS, then overlaid with 

664 growth medium. Supernatants were collected at the indicated time points post-infection and 

665 the released virus was titred by plaque assay in MDCK cells. Plaque diameters were 

666 measured using an automated Celigo imaging cytometer (Nexcelom biosciences), as per the 

667 manufacturer’s instructions. 

668 Immunofluorescence confocal microscopy

669 1 × 105 cells were seeded on 13 mm glass coverslips in 24-well dishes and incubated for a 

670 minimum of 16 h prior to manipulation. After treatment, cell monolayers were fixed, 
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671 permeabilized, and immunostained at the indicated time points, as previously described [94]. 

672 Nuclei were stained with DAPI (Sigma-Aldrich, D9542). Coverslips were mounted on glass 

673 slides using Citiflour AF1 mounting medium (AgarScientific; R1320) and sealed with nail 

674 enamel. Samples were examined with a Zeiss LSM 880 or LSM 710 confocal microscope 

675 with 405, 488, 543, and 633-nm laser lines. Images were captured under a Plan-Apochromat 

676 63×/1.4 oil immersion or Plan-Neofluar 20×/0.5 air objective lenses. The proportion of IAV 

677 NP antigen positive cells was calculated from a minimum of five wide field images, imaging 

678 more than 1000 cells per coverslip per condition. The proportion of NP positive cells was 

679 determined and the fold increase in NP positive cells between IAV infected shTRIM22 and 

680 shCtrl MRC5t cells calculated for each biological repeat.

681 Western Blotting

682 Cells were seeded at 2 × 105 cells/well in 12-well dishes and incubated for a minimum of 16 

683 h prior to manipulation. Treated or infected cell monolayers were washed twice in PBS and 

684 whole cell lysates (WCLs) collected in Laemmli buffer. Proteins were resolved on NOVEX 

685 NU-PAGE (4-12%) Bis-Tris gels (Invitrogen; NP0322), transferred onto 0.22 µm 

686 nitrocellulose membranes (Amersham; 15249794), and probed by western blotting, as 

687 previously described [94]. Membranes were imaged using an Odyssey Infrared Imager (Li-

688 Cor). Band intensities were quantified using Image Studio Software (Li-Cor).

689 qRT-PCR

690 For viral or cellular mRNA quantitation, cells were seeded at 2 × 105 cells/well in 12-well 

691 dishes and incubated for a minimum of 16 h prior to manipulation. Treated or infected cell 

692 monolayers were washed once in PBS prior to RNA extraction using an RNAeasy Plus Kit 

693 (Qiagen; 74134). mRNA was reverse transcribed (RT) using the TaqMan Reverse 

694 Transcription Reagents kit (Life Technologies; N8080234) with oligo (dT) primers. Samples 

695 were analysed in triplicate using the TaqMan Fast Universal PCR Master Mix (Life 
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696 Technologies, 4352042) and TaqMan GAPDH (4333764F), TRIM22 (Hs01001179_m1), Mx1 

697 (Hs00895608_m1) or ISG15 (Hs01921425_s1) specific primer-probe (FAM/MGB; Thermo 

698 Fisher Scientific) mixes or custom IAV (NP, M1, NS1/NEP) primer-probes mixes (S7 Table). 

699 The ΔΔCt method was used to normalize transcript levels to those of GAPDH mRNA. For 

700 vRNA analysis, cells were seeded at 4 × 105 cells/well in 6-well plates and incubated for a 

701 minimum of 16 h prior to manipulation. Cells were infected either in the presence or absence 

702 of CHX. At the indicated time points, cell monolayers were washed in PBS, harvested by 

703 trypsinization, and cell pellets washed twice in ice cold PBS. Nuclear and cytoplasmic 

704 fractions were isolated using NucBuster (Novagen 71183-3). If appropriate, fractions were 

705 divided for both western blot and qRT-PCR analysis. For vRNA analysis, total RNA was 

706 isolated from nuclear pellets using an RNAeasy Plus Kit. An IAV segment 7 specific primer 

707 (5’-AGCCGAGATCGCACAGAGACTT-3’) was used for reverse transcription, as 

708 previously described [95]. Samples were analysed in triplicate using the M1 primer-probe 

709 mix relative to a synthetic segment 7 (M) vRNA reference standard. The segment 7 vRNA 

710 standard was produced as previously described [95]. Briefly, vRNA was extracted from 

711 infected MDCK cells using the QIAamp Viral RNA Mini kit (Qiagen, 52904) and extracted 

712 RNA was reverse transcribed using the Uni12 universal IAV segment primer (5’-

713 AGCAAAAGCAGG-3’) and TaqMan Reverse Transcription Reagent kit. The cDNA was 

714 used as a template to amplify the IAV segment 7 ORF, incorporating a T7 promoter sequence 

715 that was used to generate synthetic segment 7 vRNA using the TranscriptAID T7 high yield 

716 transcription kit (Thermo Fisher Scientific; K0441). Synthetic vRNA was purified using an 

717 RNAeasy column and used as a reference standard for reverse transcription and qRT-PCR 

718 analysis. 
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719 Plasmids and transfections

720 A cDNA encoding wild-type (WT) human TRIM22 (a gift form Professor Juergen Hass, 

721 University of Edinburgh) was inserted into pcDNA.3.1 (Invitrogen) in frame with a 5’ Myc-

722 tag oligo to generate a pcDNA.Myc.TRIM22. Clones were verified by Sanger sequencing. 

723 The IAV (WSN) pcDNA-NP (WSN) expression plasmid has been described previously [96, 

724 97]. All transfections were performed using Lipofectamine 2000 (Thermo Fisher Scientific; 

725 11668). For NP stability assays, 1 x 105 HEK 293T cells/well were seeded onto poly-lysine 

726 (Sigma; 7405) coated 24-well plates. 24 h post-seeding, cells were co-transfected with 150 ng 

727 of pcDNA-NP (WSN) and 0, 100, 200, or 250 ng of pcDNA.Myc.TRIM22. Input levels of 

728 DNA were equalized by the inclusion of pcDNA.3.1 empty vector. Cells were harvested 24 h 

729 post-transfection and WCLs analysed by western blotting. 

730

731 Acknowledgements

732 We thank Professor Juergen Hass (University of Edinburgh) and Dr Benjamin Hale 

733 (University of Zurich), Professor Roger Everett (MRC-UoG CVR) for the provision of 

734 reagents, and Dr Seema Jasim (University of Edinburgh) for experimental assistance. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/679159doi: bioRxiv preprint 

https://doi.org/10.1101/679159
http://creativecommons.org/licenses/by/4.0/


735 Figure Legends

736 FIG 1. TRIM22 is constitutively expressed in the respiratory tract independently of IAV 

737 infection. (A) mRNA transcript levels (log2 transcripts per million; TPM) of TRIM family 

738 members in human lung tissue (S1A Table). Black line: median TRIM transcript expression; 

739 whisker: 5th to 95th percentile range. (B) TRIM22, TRIM32, and TRIM41 transcript levels 

740 across a range of human tissues (S1B Table). Black line: median; whisker: 5th to 95th 

741 percentile range. (C) Histological sections of human respiratory epithelium from the upper 

742 (nasopharynx; patient ID 3624) and lower (bronchus; patient ID 3987) airway. TRIM22 is 

743 labelled by immunohistochemistry (IHC; brown) and tissue counterstained with 

744 haematoxylin and eosin. Scale bars are 50 µm. (D) Quantitation of TRIM IHC staining across 

745 a range of tissue (as indicated). Red bars: Quantitation of TRIM22 in lung tissue sections. (A-

746 D) Data adapted under creative commons license from the Human Protein Atlas (HPA; 

747 https://www.proteinatlas.org; [62, 63]). (E) Confocal micrographs of primary human 

748 bronchial epithelial (HBEp) cells stained for TRIM22 by indirect immunofluorescence 

749 (green). Nuclei stained with DAPI (blue). Scale bars; 10 µm (top panel) and 20 µm (bottom 

750 panel). (F-H) Primary HBEp cells were treated with (+) or without (-) IFN-β (100 IU/ml) for 

751 24 h. (F) Western blots of HBEp whole cell lysates (WCLs) probed for TRIM22 and Mx1 

752 expression. Actin is shown as a loading control. (G) Quantitation of western blots (as shown 

753 in F). Values normalized to actin and expressed relative to no IFN treatment; n=3, means and 

754 standard deviation (SD) shown. (H) qRT-PCR for TRIM22 and Mx1 mRNA transcript levels 

755 in control or IFN treated HBEp cells. Values normalized to no IFN treatment; n=3, means 

756 and SD shown. (I) Histological sections of uninfected or influenza A virus (IAV; 

757 A/California/04/09(H1N1), Cal) infected cynomolgus macaque respiratory epithelium from 

758 the bronchus and alveoli (as indicated). TRIM22 is labelled by IHC (brown) and tissue 

759 counterstained with haematoxylin. Scale bars; 50 and 20 µm (left and right panels, 
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760 respectively). (J) Automated quantitation of TRIM22 IHC staining in uninfected or infected 

761 cynomolgus macaque respiratory tissue from whole-slide scans. Means and SD from four 

762 uninfected and three infected animals are shown. 

763

764 FIG 2. TRIM22 is constitutively expressed in human diploid lung cells. (A-C) Primary 

765 and hTERT immortalized human lung fibroblast (MRC5 and MRC5t, respectively), human 

766 lung adenocarcinoma epithelial (A549), and SV40-transformed human kidney epithelial 

767 (HEK 293T; 293T) cells were treated with (+) or without (-) IFN-β (100 IU/ml) for 24 h. (A) 

768 Western blots of WCLs probed for TRIM22 expression. Actin is shown as a loading control. 

769 (B/C) qRT-PCR quantitation of TRIM22 and Mx1 mRNA transcript expression levels, 

770 respectively. Values normalized to MRC5t cells without IFN treatment; n=3, means and SD 

771 shown. (D) Confocal micrographs of MRC5t and A549 cells with or without IFN treatment 

772 (as described in A). TRIM22 labelled by indirect immunofluorescence. Nuclei stained with 

773 DAPI. (E) MDCK, 293T, A549, and MRC5t cells were infection with IAV (A/Puerto 

774 Rico/8/1934(H1N1), PR8) at a MOI of 1 PFU/cell (based on MDCK cell titres) in the 

775 presence of cycloheximide at 2 h prior to nuclear extraction and RNA isolation. qRT-PCR 

776 quantitation of PR8 segment 7 (seg. 7) viral RNA (vRNA) levels in isolated nuclei. Black 

777 circles: synthetic seg. 7 vRNA loading control standards (ng); Black line: semilog non-linear 

778 regression (R2 = 0.99); Red squares: seg. 7 vRNA levels detected in the nuclei of infected 

779 cells (as indicated). (F) Seg. 7 vRNA levels (as shown in E) expressed relative to vRNA 

780 levels isolated from infected MDCK nuclei. (E/F) n=3, means and SD shown. (G) Cell 

781 monolayers were infected with serial dilutions of IAV (A/WSN/1933(H1N1), WSN). Plaque 

782 numbers in each cell line were expressed relative (rel.) to MDCK cells (rel. plaque titre); n=3, 

783 means and SD shown. One-way ANOVA Kruskal-Wallis test (*** P < 0.001; ns, not 

784 significant).
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785

786 FIG 3. Constitutive TRIM22 expression confers intrinsic antiviral immunity. (A) 

787 MRC5t and A549 cells were mock-treated, IFN- β (100 IU/ml) stimulated or infected with 

788 IAV (A/WSN/1933(H1N1), WSN) at a MOI of 1 PFU/cell (based on MDCK titres) for the 

789 indicated times (h). Western blots of infected or treated WCLs (as indicated) probed for 

790 TRIM22, Mx1, and viral protein (NP and NS1) expression. Actin is shown as a loading 

791 control. (B) A549 cells were infected with IAV (WSN; MOI of 0.01 PFU/cell based on 

792 MDCK titres) and harvested at the indicated times prior to western blotting (as in A). (C-E) 

793 MRC5t and A549 cells were stably transduced to express non-targeting control (shCtrl) or 

794 TRIM22-targeting (shTRIM22) shRNAs. (C) qRT-PCR quantitation of TRIM22 mRNA 

795 levels in MRC5t shCtrl and shTRIM22 cells. Values normalized to shCtrl; n=3, means and 

796 SD shown. (D) MRC5t shCtrl and shTRIM22 cells were treated with (+) or without (-) IFN-β 

797 (100 IU/ml) for 24 h.  WCLs were analysed by western blotting for TRIM22 and Mx1. Actin 

798 is shown as a loading control. (E) Western blot analysis of A549 shCtrl and shTRIM22 

799 treated cells (as in D).  (F) MRC5t and A549 shCtrl and shTRIM22 cells were infected with 

800 IAV (WSN) at 0.001 PFU/cell (based on parental cell line titres). Media were harvested at the 

801 indicated time points and IAV plaque titres determined on MDCK cells; n=3, means and SD 

802 shown. (G) Representative immunocytochemistry images of IAV plaque formation (NP 

803 staining) in MRC5t and A549 infected shCtrl and shTRIM22 cell monolayers (50-100 

804 PFU/monolayer based on parental cell line titres). (H) Relative (rel.) IAV plaque titre (plaque 

805 titre in shTRIM22 cells / plaque titre in shCtrl cells) in MRC5t and A549 infected cell 

806 monolayers. All data points shown; line: mean. One-sample two-tailed t test (hypothetical 

807 mean of 1; ** P < 0.005; ns, not significant).

808
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809 FIG 4. Constitutive TRIM22 expression restricts IAV infection independently of the 

810 induction of cytokine-mediated innate immune defences. (A) MRC5t cells were pre-

811 treated for 1 h with increasing concentrations (µM) of Ruxolitinib (Ruxo) or DMSO (carrier 

812 control) prior to stimulation with (+) or without (-) IFN-β (100 IU/ml) for 24 h (in the 

813 presence or absence of drug, as indicated). qRT-PCR quantitation of ISG (Mx1 and ISG15) 

814 mRNA levels from RNA extracted from treated cells. Values normalized to DMSO-only 

815 treatment; RQ and RQmin/max plotted. (B) Quantitation of relative (rel.) IAV (WSN) plaque 

816 titre (# plaques shTRIM22/# plaques shCtrl) in MRC5t cell monolayers treated with Ruxo (4 

817 µM) or DMSO (as in A). Values normalized to infected shCtrl cell monolayers treated with 

818 DMSO per experiment. All data points shown; line: mean. One-sample two-tailed t test 

819 (hypothetical mean of 1; ** P < 0.005; ns, not significant).

820

821 FIG 5. Constitutive TRIM22 expression restricts the initiation of IAV infection in a 

822 strain independent manner. MRC5t shCtrl or shTRIM22 cells were individually infected 

823 with a panel of human (WSN, PR8, and A/Udorn/307/1972(H3N2); Udorn) or avian 

824 (A/Duck/Singapore/5/1997(H5N3); Duck and A/Chicken/Italy/1067/1999(H7N1); Chicken) 

825 IAVs at a MOI of 0.05 FFU/cell (based on MRC5t titres) for 8h. (A) Representative confocal 

826 micrographs of PR8 infected MRC5t shCtrl or shTRIM22 cells. TRIM22 and IAV NP 

827 labelled by indirect immunofluorescence. Nuclei stained with DAPI. (B) Relative (Rel.) fold 

828 increase in NP antigen positive cells (shTRIM22/shCtrl) in IAV infected MRC5t cell 

829 monolayers. n ≥ 3, all data points shown; line: mean.

830

831 FIG 6. Constitutive TRIM22 expression restricts IAV transcription. (A-B) MRC5t shCtrl 

832 and shTRIM22 cells were infected with IAV (PR8) at a MOI of 0.05 PFU/cell (based on 

833 MDCK titres) in the presence of cycloheximide for 4 h prior to nuclear (nuc.) or cytosolic 
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834 (cyto.) fractionation. (A) Western blot analysis showing histone H3 (nuc.) and actin (cyto.) 

835 expression profiles in fractionated lysates. (B) qRT-PCR quantitation of IAV PR8 seg. 7 

836 vRNA levels in nuclear fraction lysates. Values normalized to shCtrl per experiment (dotted 

837 line). All data points shown; line: mean. One-sample two-tailed t test (hypothetical mean of 

838 1; ns, not significant). (C, D) HEK 293T cells were transfected with increasing amounts of 

839 myc-tagged TRIM22 expression plasmid, 150 ng of NP (WSN) expression plasmid, and 

840 varying concentrations of empty vector control to balance DNA content for 24 h. (C) Western 

841 blot analysis of WCLs showing TRIM22 and NP expression levels. Actin is shown as a 

842 loading control. (D) Quantitation of NP expression protein levels (as in C). Values 

843 normalized to actin and expressed relative to NP in the absence of TRIM22. n=3, means and 

844 SD shown. (E-H) MRC5t shCtrl and shTRIM22 cells were infected with IAV (PR8) at a MOI 

845 of 0.05 (E) or 0.2 (F-H) PFU/cell (based on MRC5t titres) and harvested at the indicated time 

846 points. (E) Quantification of IAV vRNA seg. 7 levels by qRT-PCR. Values normalized to 

847 infected shCtrl samples at 0.25 hpi. n=3, means and SD shown. (F) qRT-PCR quantitation of 

848 IAV NP, M1, and NS1/NEP mRNA levels. Values normalized to infected shCtrl samples at 4 

849 hpi. n=3, means and SD shown. (G) Western blots of infected WCLs showing viral (NP, M1, 

850 and NS1) protein expression levels. Actin is shown as a loading control. (H) Quantitation of 

851 viral protein expression levels (as in G). Values normalized to actin and expressed relative to 

852 levels in infected shCtrl cells at 10 hpi. n=3, means and SD shown.

853

854 FIG 7. Lung tissue is enriched for constitutive ISG expression. (A) log2 median TPM 

855 expression values of 200 ISGs [67] across a range of human tissue biopsies (n); lung (n=427), 

856 small intestine (Int.; terminal ileum; n=137), esophagus (Espho.; mucosa; n=407), colon 

857 (sigmoid; n=233), liver (n=175), skin (suprapubic; n=387), and kidney (cortex; n=45). Every 

858 second gene labelled (full gene list in S2A Table). (B) Violin plots showing individual ISG 
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859 expression profiles of the top 50 constitutively expressed lung ISGs and associated 

860 expression profiles in small intestine, skin, and kidney tissues. White line; median. Box; 5th 

861 and 95th percentile range. (C) Violin plot showing tissue expression profile of 200 ISGs 

862 across human tissues (as in A). Horizontal solid lines; median ISG expression per tissue. 

863 Horizontal dotted lines; 5th and 95th percentile range per tissue. (D) Principle component (PC) 

864 plot showing clustered ISG expression profiles across all tissues. (E) Heatmap showing 

865 clustered ISG transcript expression profiles between tissues. (F) log2 median TPM tissue 

866 expression values of IFN-related receptors and cytokines across human tissues (as in A; S2B 

867 Table). (G) Violin plot showing the median tissue expression values of IFN-related receptors 

868 and cytokines across human tissues (as in F). Horizontal solid lines; median. Horizontal 

869 dotted lines; 5th and 95th percentile range. Paired one-way ANOVA (Friedman multiple 

870 comparison test); **** P < 0.0001; ns, not significant. RNA-seq data adapted under creative 

871 commons licence from GTEx portal (https://gtexportal.org/home/; [64]).

872

873 FIG 8. Virally-transformed cells have downregulated levels of constitutive ISG 

874 expression. (A) log2 TPM expression values of constitutive expressed ISGs (≥ 5 TPM per 

875 gene; 87 of 178 genes, S3A Table) in non-treated HBEC3, A549, HEK 293 (293), and HeLa 

876 cells. (B) Differentially downregulated ISGs (HBEC3 ≥ 5-fold change; as in A) plotted 

877 against the equivalent log2 median TPM ISG tissue expression values obtained from human 

878 lung tissue biopsies (n=427) (S3B Table). Downregulated ISGs common to three transformed 

879 cell lines; core: common to two transformed cell lines; shared: unique to one transformed cell 

880 line; unique. (D/E) High-confidence (> 0.7) STRING (https://string-db.org; [72]) protein-

881 protein interaction (PPI) network of identified downregulated ISGs (as in B). Core; blue 

882 circles: shared; purple circles: unique; grey circles. Network PPI enrichment: P < 1.0e-16. 

883 Ranked biological process (GO), KEGG pathways (green circles in D), and reference 
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884 publications (red and blue circles in D; [70, 71]) with associated counts in gene sets (count) 

885 and FDR (false discovery rate) values shown. Cell line and tissue RNA-seq data adapted 

886 under creative commons licence from HPA and GTEx portal, respectively [62-64].

887

888 FIG 9. Transformed cells are deficient in the constitutive expression of multiple immune 

889 regulators. (A) Scatter plots highlighting downregulated genes (blue circles) identified 

890 between non-treated HBEC3 cells (≥ 3 TPM; median HBEC3 TPM per gene, horizontal 

891 dotted line) and A549 (median 3 TPM per gene), HEK 293 (293; median 3 TPM per gene), or 

892 HeLa cells (median 4 TPM per gene; ≤ 4 TPM, vertical dotted line; HBEC3 ≥ 5-fold change, 

893 diagonal dotted line; S4A Table). Differentially downregulated genes were mapped and used 

894 for pathway analysis using Reactome (https://reactome.org; Table S4B). The number of 

895 downregulated genes and percentage mapped to the immune system (% immune-related; 

896 Table S4C) is shown. (B) log2 TPM gene expression profiles of downregulated immune 

897 system genes (as in A; 174 unique genes identified, every second labelled). Downregulated 

898 genes common to three transformed cell lines; core: common to two transformed cell lines; 

899 shared: unique to one transformed cell line; unique (as highlighted; S4D Table). (C) High-

900 confidence (> 0.7) STRING protein-protein interaction (PPI) network of identified 

901 downregulated immune system genes (as in B). Core; blue circles: shared; purple circles: 

902 unique; grey circles. Network PPI enrichment: P < 1.0e-16. Ranked biological process (GO) 

903 and KEGG pathways with associated counts in gene sets (count) and FDR (false discovery 

904 rate) values shown. An enlarged annotated map is presented in S5 Fig. Cell line RNA-seq 

905 data adapted under creative commons licence from HPA [62, 63].

906

907 FIG 10. Transformed cells are permissive to IAV replication independently of 

908 pathogen-induced cytokine-mediated innate immune defences. (A) log2 TPM expression 
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909 values of 184 IAV immuno-regulatory genes (extended IAV KEGG network (hsa05164); 

910 [70]; S5A Table) in non-treated HBEC3, A549, HEK 293 (293), and HeLa cells. Every 

911 second gene labelled. (B) Differentially downregulated IAV immuno-regulatory IAV genes 

912 (HBEC3 ≥ 5-fold change, ≥ 3 TPM per gene) plotted against the equivalent log2 median 

913 TPM gene expression values obtained from human lung tissue biopsies (n=427) (S5B Table). 

914 (A, B) Cell line and tissue RNA-seq data adapted under creative commons licence from HPA 

915 and GTEx portal, respectively [62-64]. (C) Violin plot showing log2 TPM expression values 

916 of downregulated IAV immuno-regulatory genes (as in B). Horizontal solid lines; median 

917 gene expression. Horizontal dotted lines; 5th and 95th percentile range. Paired one-way 

918 ANOVA (Friedman multiple comparison test); ** P < 0.01; **** P < 0.0001; ns, not 

919 significant. (D) High-confidence (> 0.7) STRING protein-protein interaction (PPI) network 

920 of identified downregulated KEGG associated IAV genes (as in B). Core; blue circles: 

921 shared; purple circles: unique; grey circles. Network PPI enrichment: P < 1.0e-16. (E) 

922 Western blots of non-treated HBEC3 and A549 WCLs showing UBA7, GBP1, IFIH1, TLR3, 

923 IFITM1, and TRIM22 (+ve control) protein expression levels. Actin is shown as a loading 

924 control. (F) Quantitation of protein expression levels (as in E). Values normalized to actin 

925 and expressed relative to levels in HBEC3 cells. n≥3, means and SD shown. One-sample 

926 two-tailed t test (hypothetical mean of 1; ** P < 0.005, **** P < 0.0001). (G) Representative 

927 immunocytochemistry images of IAV plaque formation (NP staining) in MDCK, A549, and 

928 HBEC3 cells infected with equivalent serial dilutions of IAV (WSN). (H) Quantitation of 

929 plaque numbers in each cell line expressed relative (rel.) to MDCK cells (rel. plaque titre); 

930 n≥3, means and SD shown. Mann-Whitney U-test; **** P < 0.0001. (I) MDCK, A549, and 

931 HBEC3 cells were pre-treated for 1 h in the presence of Ruxolitinib (Ruxo; 5 µM) or DMSO 

932 (carrier control) prior to infection with serial dilutions of IAV (WSN; in the presence of drug 

933 or carrier control). Quantitation of rel. plaque titre (plaque titre with Ruxo / plaque titre with 
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934 DMSO) for each cell line is shown. n≥3, means and SD shown. One-sample two-tailed t test 

935 (hypothetical mean of 1; ns, not significant). (J) Quantitation of the fold increase in IAV 

936 plaque diameter in Ruxo or DMSO-treated infected cell monolayers (as in I). Values 

937 normalized to the median DMSO plaque diameter in each cell line (DMSO or Ruxo/median 

938 DMSO). n≥3, means and SD shown. Mann-Whitney U-test; **** P < 0.0001.

939

940 Supplemental Figure Legends

941 S1 FIG. TRIM22 is constitutively expressed to high level in lung tissue. (A) Transcript 

942 expression levels (log2 median TPM) of 67 TRIM family members in human lung tissue 

943 biopsies (n=457; S1A Table). Black line: median TRIM transcript expression; whisker: 5th to 

944 95th percentile range. (B) Transcript expression levels (log2 median TPM) of TRIM22 across 

945 a range of human tissues (S1C Table). Lung and spleen tissues are highlighted (red and blue 

946 circles, respectively). Black line: median; whisker: 5th to 95th percentile range. (C, D) Violin 

947 plots showing individual TRIM family member (C, lung) or TRIM22 (D, all tissues) 

948 expression profiles (log10 TPM), respectively. White line; median. Box; 5th and 95th 

949 percentile range. (A-D) Data adapted under creative commons license from GTEx portal 

950 [64].

951

952 S2 FIG. TRIM22 antibody validation. MRC5t cells were stably transduced to express non-

953 targeting control (shCtrl) or TRIM22-targeting (shTRIM22, clones B7-B9) shRNAs. (A) 

954 qRT-PCR quantitation of TRIM22 mRNA levels in MRC5t shCtrl and shTRIM22 cells. 

955 Values normalized to shCtrl. Mean RQ and RQ min/max shown. (B) Western blot of WCLs 

956 derived from MRC5t shCtrl and shTRIM22 (clone B7) cells showing TRIM22 (detected 

957 using pAb HPA003575; Sigma-Aldrich) expression levels. Actin is shown as a loading 

958 control. (C) Confocal micrographs showing the nuclear localization of TRIM22 in MRC5t 
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959 shCtrl or shTRIM22 (clone B7) cells. TRIM22 was detected by indirect immunofluorescence 

960 (pAb HPA003575; Sigma-Aldrich). Nuclei were stained with DAPI. 

961

962 S3 FIG. Constitutive TRIM22 expression is lost in many transformed cell lines. MRC5 

963 (primary lung fibroblast), MRC5t (telomerase immortalized MRC5), A549, HEK 293T 

964 (293T), HeLa, and HEp2 cells were treated for 24 h with (+) or without (-) IFN-β stimulation 

965 (100 IU/ml). (A) qRT-PCR quantitation of TRIM22 mRNA transcript levels across the panel 

966 of cell lines. Values normalized to TRIM22 levels in MRC5t cells without IFN-β stimulation. 

967 n=3, means and SD shown. (B) Western blots showing TRIM22 expression levels in WCLs 

968 derived from the panel cell lines. Actin is shown as a loading control.

969

970 S4 FIG. Identification of tissue-specific and cell-type dependent patterns of constitutive 

971 ISG expression. (A) Transcript expression profiles (log2 TPM) of 178 ISGs in HBEC3, 

972 A549, HEK 293 (293), and HeLa cells plotted against the equivalent gene set from human 

973 lung tissue biopsies (n=427; log2 median TPM shown). Every second gene labelled (S3A 

974 Table). (B) Violin plot showing cell line and lung tissue ISG expression profiles (as in A). 

975 Horizontal solid lines; median ISG expression. Horizontal dotted lines; 5th and 95th percentile 

976 range. Paired one-way ANOVA (Friedman multiple comparison test); **** P < 0.0001. (C) 

977 Heatmap showing clustered distribution of ISG transcript levels between cell lines and 

978 human lung tissue (as in B). Cell line and tissue RNA-seq data adapted under creative 

979 commons licence from HPA and GTEx portal, respectively [62-64].

980

981 S5 FIG. Annotated STRING network of downregulated immune system genes in 

982 virally-transformed cells. Annotated high-confidence (> 0.7) STRING network of identified 

983 differential downregulated immune system genes in virally-transformed cells (as shown in 
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984 Fig 9C; S4D Table). Downregulated ISGs common to three transformed cell lines; core, blue 

985 circles: common to two transformed cell lines; shared, purple circles: unique to one 

986 transformed cell line; unique, grey circles. Network PPI enrichment: P < 1.0e-16. Ranked 

987 biological process (GO) and KEGG pathways with associated counts in gene sets (count) and 

988 FDR (false discovery rate) values shown. 

989

990 S6 FIG. TRIM family expression profile in human lung tissue and lung epithelial 

991 (HBEC3 and A549) cells. (A) Transcript expression profile of 67 TRIM family members 

992 derived from human lung tissue, hTERT immortalized (HBEC3), or virally-transformed 

993 (A549) human lung epithelial cells. Data adapted under creative commons license from 

994 Human Protein Atlas (HPA; [62, 63]) and Genotype-Tissue Expression (GTEx; [64]) project. 

995 (B) Scatter plots showing the differential transcript expression of individual TRIM family 

996 members between lung tissue data sets (GTEx and HPA), lung tissue (GTEx) and either 

997 HBEC3 or A549, or between HBEC3 and A549 (as indicated). Solid coloured lines; linear 

998 regression. Solid black lines; 95% confidence interval. R-squared (R2) values indicated. 

999 Selected TRIMs are highlighted for reference.

1000

1001 Supplemental Tables

1002 S1 Tables. TRIM family member transcript expression values across a range of human 

1003 tissues. (S1A) HPA and GTEx transcript expression values of 67 TRIM family member 

1004 genes in human lung tissue. (S1B) HPA transcript expression values of TRIM22, TRIM32, 

1005 and TRIM41 across a range of human tissues (as indicated). (S1C) GTEx TRIM22 transcript 

1006 expression values across a range of human tissues (as indicated). Data adapted under creative 

1007 commons license from Human Protein Atlas (HPA; [62, 63]) and Genotype-Tissue 

1008 Expression (GTEx; [64]) project.
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1009

1010 S2 Tables. ISG transcript expression values across a range of human tissues. (S2A) 

1011 Transcript expression values for 200 ISGs (previously shown to be upregulated ≥ 8-fold 

1012 change in response to universal IFN treatment in primary cell culture; [67]) across a range of 

1013 mucosal (lung, small intestine [int.; terminal ileum], esophagus [mucosa], colon [sigmoid]), 

1014 and non-mucosal (liver, skin [suprapubic], and kidney [cortex] tissues. (S2B) Transcript 

1015 expression values of IFN-related receptors and cytokines across human tissues (as in S2A). 

1016 Data adapted under creative commons license from Genotype-Tissue Expression (GTEx; 

1017 [64]) project.

1018

1019 S3 Tables. Constitutive ISG transcript expression values across a range of cell lines and 

1020 lung tissue. (S3A) Transcript expression values for 178 ISGs (previously shown to be 

1021 upregulated ≥ 8-fold change in response to universal IFN treatment in primary cell culture; 

1022 [67]) across a range of non-treated transformed (A549, HEK 293, and HeLa) cells, hTERT 

1023 immortalized (HBEC3) cells, or lung tissue. (S3B) ISG expression values of differentially 

1024 downregulated ISGs between cell lines (HBEC3 ≥ 5-fold change, ≥ 5 TPM) and equivalent 

1025 gene set tissue expression values obtained from human lung tissue biopsies (n=427, log2 

1026 median TPM). Data adapted under creative commons license from Human Protein Atlas 

1027 (HPA; [62, 63]) and Genotype-Tissue Expression (GTEx; [64]) project.

1028

1029 S4 Tables. Constitutive immune system transcript expression values across a range of 

1030 cell lines. (S4A) Transcript expression values for differentially downregulated genes 

1031 identified between non-treated HBEC3 (≥ 3 TPM [median TPM all genes]) and A549 

1032 [median 3 TPM all genes], HEK 293 [median 3 TPM all genes], or HeLa [median 4 TPM all 

1033 genes] cells (≤ 4 TPM; HBEC3 ≥ 5-fold change; blue circles in Fig 9A). (S4B) Reactome 
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1034 (https://reactome.org) pathway analysis of downregulated mapped genes (as in S4A; blue 

1035 circles in Fig 9A). Red text highlights pathways relating to the immune system. (S4C) 

1036 Uniprot IDs for downregulated genes mapped to the immune system (as in B; Reactome 

1037 immune system). (S4D) Ranked transcript expression values for downregulated immune 

1038 system genes identified in all three (core; blue), common to two (shared; purple), or unique to 

1039 one (unique) transformed cell line(s). Data adapted under creative commons license from 

1040 Human Protein Atlas (HPA; [62, 63]).

1041

1042 S5 Tables. Extended IAV KEGG network transcript expression values across a range of 

1043 cell lines and lung tissue. (S5A) Transcript expression values of 184 IAV immuno-

1044 regulatory genes (extended (ext.) IAV KEGG network (hsa05164), [70]) in non-treated 

1045 HBEC3, A549, HEK 293, and HeLa cells. (S5B) Transcript expression values of 

1046 differentially downregulated IAV immuno-regulatory genes (HBEC3 ≥ 5-fold change, ≥ 3 

1047 TPM) and equivalent gene set expression values obtained from human lung tissue biopsies 

1048 (n=427; log2 median TPM). Data adapted under creative commons license from Human 

1049 Protein Atlas (HPA; [62, 63]) and Genotype-Tissue Expression (GTEx; [64]) project.

1050

1051 S6 Table. TRIM family member transcript expression values across a range of cell lines 

1052 and lung tissue. Transcript expression values of 67 TRIM family member genes across a 

1053 range of non-treated cells (HBEC3, A549, HEK 293, and HeLa) and human lung tissue 

1054 biopsies (n=427; log2 median TPM). Data adapted under creative commons license from 

1055 Human Protein Atlas (HPA; [62, 63]) and Genotype-Tissue Expression (GTEx; [64]) project.

1056

1057  S7 Table. Custom IAV primer-probe sequences. Nucleotide sequences for custom IAV 

1058 (NP, M1, NS1/NEP) primer-probes mixes used in the study.
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