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Estimation of epidemic onset timing is an important com-
ponent of controlling the spread of seasonal infectious dis-
eases within community healthcare sites. The Above Local
Elevated Respiratory Illness Threshold (ALERT) algorithm
uses a threshold-based approach to suggest incidence levels
that historically have indicated the transition from endemic
to epidemic activity. In this paper, we present the first de-
tailed overview of the computational approach underlying
the algorithm. In the motivating example section, we eval-
uate the performance of ALERT in determining the onset
of increased respiratory virus incidence using laboratory
testing data from the Children’s Hospital of Colorado. At a
threshold of 10 cases per week, ALERT-selected interven-
tion periods performed better than the observed hospital
site periods (2004/2005-2012/2013) and aCUSUMmethod.
Additional simulation studies show how data
properties may effect ALERT performance on novel data.
We found that the conditions under which ALERT showed
ideal performance generally included high seasonality and
low off-season incidence.
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1 | INTRODUCTION

In healthcare settings, policies that enforce the use of enhanced personal protective equipment are some of the
important interventions that can reduce infectious disease spread [1]. The control of seasonal outbreaks within
community healthcare institutions is important for public health, particularly in healthcare settings where the young,
elderly, and immunocompromised are at the highest risk. One component of infectious disease control is early detection,
which is a goal of infectious disease surveillance systems at the local, state, and national levels [2]. This transition from
endemic to epidemic activity is critical, as it corresponds to an increase in demand for healthcare and necessitates the
implementation of protectivemeasures. During outbreak periods, the “epidemic onset” occurs when case counts rise
above a pre-defined background level [3].

Upper respiratory illnesses, caused by influenza A, influenza B or respiratory syncytial virus (RSV), are common
in temperate regions worldwide. Seasonal outbreaks of these viruses are one of the primary reasons that healthcare
facilities implement periods of timewhere enhanced infection precautions are enforced [1]. In one study of themortality
associated with these infections, influenza A (H3N2) caused the highest number of deaths, followed by RSV, influenza B,
and influenza A (H1N1) viruses [4]. The actual toll of these illnesses is difficult to calculate as upper respiratory viruses
are often accompanied by circulatory or pneumonia complications, especially in the young and elderly. Estimates of
average annual influenza-related deaths in the United States range from 10,682 to 28,169, while RSV-related average
annual deaths have been estimated at 6,211 to 17,199 [5].

In the United States, the Centers for Disease Control and Prevention (CDC) defines the influenza season as
beginning in November and ending in April, with influenza activity seen as early as October and as late asMay in some
regions. The exact dates related to the onset of the influenza season vary at the state and local level.

Many hospital sites currently use either a threshold-based or date-based trigger to signal the onset of respiratory
illness season. Selection of these triggers is often based on anecdotal observations based on historical incidence or
monitoring of local or regional influenza activity. Practical challenges to implementing seasonal policies may provide
motivation for healthcare sites to decrease the duration of these periods as soon as possible while still controlling
infection spread. Increased personal protective equipment is expensive and often unpopular among healthcareworkers,
patients, and visitors, which can be found documented in the personal protective equipment compliance literature
[6]. Efficient selection of the intervention periods would be financially savvy for hospitals and clinics while maximizing
patient protection. Increased numbers of patients during respiratory season drive the need for hospitals to add
additional staff (traveling nurses) to be able to provide safe care. Administration has the challenge of when to bring in
temporary support and how long to retain them each year. Predicting the increase in seasonal respiratory illness season
would enable them to limit the time for the contract and potentially decrease the expense.

Many approaches have been used to detect and characterize transitions between endemic and epidemic incidence
patterns. For the stochastic prediction of infectious disease spread between individuals, mechanistic models (such as
agent-based [7] and compartmental susceptible-infectious-recovered [8], among others) are well developed and have
been implemented as stand-alone forecastingmodels [9, 10]. Autoregressive integratedmoving average (ARIMA) or
seasonal ARIMA (SARIMA)models are well-known statistical approaches for modeling time-series, such as infectious
disease case counts, that correlate with past observations [11, 12]. Both statistical andmechanistic models have been
used successfully in infectious disease forecasting [13, 14]. However, these methods on their own are not designed
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F IGURE 1 Historical case counts of influenza A, influenza B, and RSV detections combined for the Children’s
Hospital of Colorado system are shown at left. A density plot of the case counts in the left panel. In both panels,
lab-confirmed respiratory illness incidence is shown on the vertical axis. ALERT calculates percentiles of interest from
non-zero cases using a quantile functionQp (y ), where the output is the pth percentile of y . The value ofQp (y ),
represented in this figure as a hypothetical value of 25 by the dashed line, is selected as a potential epidemic onset
threshold, τp .

specifically to detect onset periods or guide real-world policy. Other research has used thresholds in order to character-
ize influenza incidence into low, moderate and high categories using a “Moving EpidemicMethod”, which uses maximum
accumulated rates percentage (MAP) based on incidence rates per 100,000 inhabitants, or consultations [15, 16]. This
approach characterizes the intensity of influenza epidemics and can also trigger enhanced protective interventions,
but is intended to be used on a larger scale than that available at even the largest hospital sites. The most common
algorithms that are designed to trigger interventions during an outbreak are CUSUM-basedmethods and their variants
[17, 18], the exponential weightedmoving average (EWMA) [19, 20], and the space–time permutation scan statistic
model [21, 22]. All of thesemethods involve detections of deviations from expected values, or threshold values, based
on historical data. These statistical methodsmay require advanced statistical training and computational resources to
implement at the local level.

The Above Local Elevated Respiratory Illness Threshold (ALERT) algorithm [23] uses a threshold-based trigger
system to help healthcare workers determine the epidemic onset prior to the start of the outbreak period. It is available
online both as a free R software package and a graphical web applet (http://reichlab.github.io/alert.html). More detailed
instruction on using the package and application are available in the ALERT package documentation (Appendix 1)
(https://github.com/reichlab/ALERT/blob/master/vignettes/ALERTDocumentation.pdf).

Seasonal infectious disease surveillance data often shows regular patterns of onset, peak, and nadir [24]. The goal
of ALERT is to assign a static value to the incidence threshold level used to define epidemic onset. Using historical
information from a local surveillance system (e.g. a hospital or city), ALERT assists in the choosing of an appropriate time
to begin a particular intervention that would cover the period of highest seasonal respiratory virus activity. Prior work
has shown howALERT can assist in determining the timing of hospital-based interventions for influenza [23]. Likewise,
ALERT has been used previously to detect the onset of upper respiratory illness season in the Respiratory Protection
Effectiveness Clinical Trial (ResPECT, https://clinicaltrials.gov/ct2/show/NCT01249625), a comparison of N95 and
medical masks to protect healthcare workers from seasonal viruses. In this work, we provide a technical overview of the
ALERT algorithm, amotivating example, and a simulation study in which we characterize ALERT’s performance over
datasets with varying parameters derived from the influenza and RSV datasets.
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2 | METHODS

2.1 | Model Framework

The ALERT algorithm is a tool for triggering epidemic infection control measures that is designed to capture themost
epidemic activity while minimizing the duration of the identified period. The algorithm uses local, site-specific historical
data to establish a set of threshold case count values to represent the onset of the epidemic season. The "ALERT period"
is a window of time between this onset andwhen the seasonal peak has likely passed. An ALERT period begins when the
reported number of laboratory-confirmed cases in single time unit exceeds a given threshold. The ALERT period ends
when the reported number of cases falls below that same threshold after a pre-specifiedminimum amount of time.

Surveillance data is often provided to researchers as case counts ordered across time, as shown in the left panel of
figure 1. Let ys,t denote the number of cases of a single disease or multiple, pooled pathogens observed at a location in
season s , s = 1, . . . , S , at time unit t , t = 1, . . . ,T . For example, if data is aggregated into weekly time units,T = 52.

Percentiles of interest are calculated from all of the non-zero cases using a quantile function Qp (y ), where the
output is the pth percentile of y , as shown in the right panel of figure 1. A value of Qp (y ) is selected as a potential
epidemic onset threshold, τp , where τp = Qp (y ). The set of τ can be specified as, for instance, all integer thresholds
between the 10th and 60th percentile. When incidence exceeds the trigger value τp , which is selected by the user, this
represents the beginning of the ALERT period. The ALERT period extends until both the incidence falls below the trigger
and theminimumALERT duration—also set by the user—has elapsed.

After τ is determined, the observed ys,t are used to calculate additional metrics for each τp . For each τp , the ALERT
algorithm summarizes data from previous years as if that threshold had been applied. If we have historical data on S
seasons, letDs be the duration of the ALERT period for season s and threshold τp . Ds is determined by the number of
time units (often weeks) from the first instance of ys,t ≥ τp to the following ys,t ≤ τp , provided thatDs is larger than a
pre-determinedminimum duration set by the user. This prevents an ALERT period from being prematurely terminated
by early-season fluctuations around the trigger threshold. Additionally, to account for reporting delays and possible
delays in implementation of any policies, the user may specify a lag period: a number of time periods between the
reporting date associatedwith the trigger and the date the ALERT period becomes effective. For instance, lag periods
may be helpful in tuning ALERT to accommodate a municipal or state health department wanting to implement an
increased upper respiratory protection program that needs to wait for reporting from area hospital or requires time to
distribute or set up the intervention. LetXs be the percentage of cases captured in the ALERT period for each season.

The followingmetrics are calculated and reported to the user for each τ :

1. Across all seasons, themedian percentage of all cases containedwithin the ALERT period,medi an(Xs ).
2. Across all seasons, theminimum andmaximum ofXs .
3. Across all seasons, themedian ALERT period duration,medi an(Ds ).
4. The proportion of seasons in which the ALERT period containedmaxt (ys t ), or the “epidemic peak”, PCs .
5. The proportion of seasons in which the ALERT period contained the peak week ± k weeks, where k is specified by

the user.
6. Themean number of “lowweeks” included in the ALERT period; weeks with counts less than τp ,WCs .
7. Themean difference between, for each season, the duration of the ALERT period and the duration of the shortest

period needed to capture a pre-determined target percent of cases for that season.
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F IGURE 2 Each panel shows the weekly case counts of combined influenza A, influenza B, and RSV from the
Children’s Hospital of Colorado (CHCO) from 2004/2005-2012/2013. Cases to the left of the vertical dashed line were
used as the training set for this example, while the testing set appears on the right side of the dashed line. The light gray
blocks below the bar graph represent the dates when CHCO implemented increased respiratory protectionmeasures.
These periods had amedianDs of 19.5 weeks, withmedianXs of 92.5%. The darker horizontal bars show the periods
that ALERTwould have determined based on the threshold of 6, 10, and 21 cases, or the CUSUMmethod. Applied to
the full dataset, thresholds of 6, 10, and 21 cases yields amedian ALERTDs of 22, 19, and 14weeks, respectively, with
medianXs of 96.9%, 94.5%, and 85.0%. ALERT captures the peak of the 2009H1N1 outbreak for all thresholds, but
ends too early to capture the non-H1N1 seasonal outbreak at τs = 21.

3 | MOTIVATING EXAMPLE

The datasets used in the following example were provided by the Children’s Hospital of Colorado (CHCO), a 444-
bed hospital in Aurora, Colorado serving the Denvermetropolitan and surrounding areas. CHCO employs a passive
surveillance systemwhere patients with respiratory symptoms are tested for common respiratory viruses at clinicians’
discretion. During the study period, initial methods of virus detection were culture and antigen testing, with poly-
merase chain reaction used exclusively from 2009 on. In some years, the respiratory cases seen at CHCO after the
increased respiratory virus protection policies had already been triggered were not tested, resulting in mid-season
under-reporting.

In anticipation of the respiratory virus season each year, CHCO implements additional protective measures for
patients and providers including enhanced personal protective equipment (PPE) and restrictions in the visitor policy.
The periods of increased upper respiratory protection used historically by CHCO varied across the dataset used in this
paper. The initial trigger to declare increased interventions in response to seasonal increased upper respiratory virus
incidencewas 3 ormore lab confirmed cases per day. Later CHCO switched to a date-based system (Dec 1-April 30)
derived from anecdotal local incidence patterns.

We compared the ALERT algorithm to a CUSUMbaselinemodel for a portion of the combined RSV, influenza A, and
influenza B data from the respiratory virus incidence starting in 2004 to 2012. We chose the 2004/2005-2012/2013
subset of the full data (2002/2003-2012/2013) because data on the time periods of increased protection implemented
at the hospital site are not available prior to the 2004 season.

Thedatasetwasdivided into training seasons (2004/2005-2007/2008) and testing seasons (2008/2009-2011/2012).
We applied the ALERT algorithm to the training set to choose a set of threshold values and compared those to hospital-
derived PPE periods, results of which are shown in Table 1. The CUSUMapproachwas calibrated to give amedian (Ds )
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TABLE 1 ALERT performance on combined Children’s Hospital of Colorado RSV, influenza A, and influenza B case
data for the training (2004/2005-2008/2009) and testing (2009/2010-2012/2013) portions of the dataset. We
compared ALERT’s performance at 3 different thresholds to the intervention periods used at the hospital site and a
CUSUMapproach. For each threshold (τp ), ALERT calculates themedian duration (Ds ), themedian, minimum, and
maximum percentage of cases covered (Xs ), the percentage of peaks covered, andmean number of weeks below the
threshold (mean lowweeks). The observed intervention period triggers varied among seasons in the hospital dataset, as
described in the text. As these were determined sometimes based on case numbers and sometimes on date-based
cutoffs, a meaningful mean lowweeks included in the intervention period for the observed data was not calculable.
Data Threshold τp MedianDs MedianXs MinXs MaxXs Peaks covered (%) Mean lowweeks

Training 6 21.50 96.90 94.00 97.40 100.00 1.00
10 19.00 94.50 90.60 96.20 100.00 1.50
21 15.50 89.60 84.80 92.50 100.00 1.25

CUSUM 19.00 88.20 70.50 91.50 100.00 0.20
Observed 19.00 94.50 93.40 96.40 100.00 NA

Testing 6 23.00 95.00 91.50 99.50 100.00 1.50
10 19.50 90.70 79.50 98.30 100.00 1.50
21 13.00 72.10 57.20 85.20 100.00 1.00

CUSUM 20.00 81.60 32.40 97.50 100.00 4.00
Observed 19.50 85.00 73.30 91.50 100.00 NA

of 19.0 weeks, to match the observed intervention periods. In the training portion of the dataset, the hospital-derived
increased PPE periods lasted amedian (Ds ) of 19.0 weeks, ranging from 20.0 weeks in the 2005/2006 and 2006/2007
seasons to 18.0 weeks in 2007/2008 and 2008/2009. We chose trigger thresholds of 6, 10, and 21 cases as illustrative
examples, as shown in Table 1 and Figure 2. Notably, τp = 10 results in amedianDs that is equivalent to themedianDs
of the hospital-derived respiratory protection period.

The testing portion of the dataset shows that CHCOwould have benefited from implementing the ALERT algorithm
in their hospital from2009-2012 at τs = 10. Across all years, the sumof all ALERT periodswas 145weeks long, while the
as-implemented intervention time totaled 155.4weeks long. The ALERT periodwould have covered 5.7%more patients
over an equivalent medianDs , and saved the hospital a total of 10.4 weeks of intervention time. Furthermore, ALERT
would have triggered during the onset of the H1N1 epidemic in 2009, demonstrating that it provides useful information
both in seasonal outbreaks settings as well as anomalous pandemic scenarios. Neither τs = 6 or τs = 21 offered a clear
benefit over the periods that were implemented in reality. When τs = 6, themedianXs was 95%, but with a concomitant
increase in medianDs by 3.5 weeks. Conversely, when τs = 21, the medianDs was 6.5 weeks shorter than the observed
periods, but yielded a 15.2% decrease inXs . All the ALERT τs and that of the observed periods covered 100% of the
seasonal peaks. The CUSUMmethodwas calibrated on the training dataset to produce amedian intervention period
of 19weeks, similar to the ALERT and observational methods. In both the training and testing datasets, CUSUMdid
not capture asmany cases as the other twomethods, however, in the training dataset CUSUM captured the smallest
number of low weeks. This did not translate to the testing dataset, however. CUSUM captured the highest number
of lowweeks in the testing data, and themedianXs was the highest of all themethods. A different CUSUMapproach
might have performed better than the general approach, but comparison of multiple specialized CUSUMmethodologies
to find the best fit was outside the scope of this work.
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TABLE 2 Estimatedmean and standard error for themodel parameters for the observedweekly case counts from
the Children’s Hospital of Colorado data. Parameters are defined in additional detail in equation 2.
Parameter Estimate Standard Error

λ (autoregressive component) -0.2233 0.0577
α (intercept) 0.2134 0.1853
β (slope) -0.0009 0.0007
γ (noise) -1.0733 0.1654
δ (season length) -2.0676 0.1518
ψ (overdispersion parameter) 1.1497 0.1255

S IMULAT ION STUDY

In order to characterize the performance of the ALERT algorithm on time series datasets with varying features, we
implemented a simulation study. Using a statistical framework developed byHeld, Höhle, andHofmann, we decomposed
the CHCO dataset into a model with parameters that represent known mechanistic attributes, which were varied
across a gradient and used to producemany simulated infectious disease datasets [11]. We used the R package [25],
surveillance [26] for the estimation and simulation.

We simulated surveillance data using an autoregressive negative binomial model with endemic seasonality. The
mean disease incidence µt contains autoregressive and endemic components λ and νt , respectively, which aremodeled
as

µt = λyt−1 + νt (1)

log(νt ) = α + β t + {γs sin((2π/52)t ) + δs cos((2π/52)t )} (2)

where λ > 0 and νt > 0. In equation 2, α is an intercept, β is a long-term linear trend parameter, and the bracketed
terms represent seasonal variation. S is the number of harmonics used (in this case, 1). γ and δ are parameters that
affect noise and season length and timing. ψ is an overdispersion parameter which increases the conditional variance of
µt to µt (1 + µtψ) forψ > 0.

The range of parameter values that we chose for our simulation study is based on those observed in the CHCO
dataset. First, we estimated themean and standard error for themodel parameters for the combined RSV, influenza A
and B dataset (Table 2). Second, we set themaximum andminimum simulation values by adding or subtracting twice the
standard error from the estimated value for each parameter. Third, we selected 50 evenly-spaced values within this
interval. Fourth, for each parameter, we produced 20 simulated time series for each of the 50 values while holding the
other parameters constant at their point estimate, resulting in 1000 simulated time series per parameter.

We set up our simulation study to approximate how the ALERT algorithmwould perform in practice; by first tuning
the parameters based on some previously observed data, then evaluating the algorithm’s performance on the remainder
of the time series. For each time series, the first 260weeks were used as the training dataset, while weeks 261 through
590 were reserved as the testing dataset. Performance could likely be improved by training on more years of data,
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however, we chose 5 years to represent a realistic duration of historical data that may be available tomany healthcare
facilities. ALERTwas applied to each training dataset to determine tuning parameters required by the algorithm that
would, in practice, be supplied by a knowledgeable clinician or epidemiologist. Ultimately, performance was evaluated
by comparing the performance of ALERT in the training phase to that in the testing phase. If there is little change
between training and testing phase this implies that the ALERT algorithm can be used to reliably estimate themetrics of
interest prospectively.

The best-performing threshold in the training set was determined to be the threshold with the shortest median
duration (Ds ) whosemedian cases captured (Xs ) was greater than 85%. The best-performing training threshold was
then applied to the testing dataset, which comprised 5 years of simulated data. From these simulations we are able to
evaluate the performance of the ALERT algorithm across the values of each parameter. Example simulated datasets for
each parameter are represented in Figure 3.

ALERT’s performancewas remarkably consistent across training and testing datasets for all 4 of themetrics we
present here. Across all of the parameters, Ds decreased by 1.5 weeks in the testing datasets, with a concomitant
decrease inXs by 3%. There was no difference in training and testing performance scores in terms ofWCs , while PCs
increased for the testing data by 3.3%.

training testing
Ds Xs Ds Xs

α 21.0 [11.0, 40.0] 90.5 [42.4, 99.8] 19.5 [8.5, 31.0] 87.7 [46.5, 99.0]
β 21.0 [10.0, 41.5] 90.6 [60.2, 99.7] 19.5 [8.5, 31.0] 87.7 [46.5, 99.0]
δ 21.0 [8.0, 38.0] 90.8 [18.1, 99.8] 19.5 [8.5, 31.0] 88.3 [46.5, 99.0]
γ 21.0 [8.0, 38.0] 90.6 [31.1, 99.7] 19.5 [8.5, 31.0] 87.7 [46.5, 99.0]
λ 22.0 [8.0, 42.0] 90.7 [35.4, 99.7] 19.5 [8.5, 31.0] 88.3 [46.5, 99.0]
ψ 21.0 [8.0, 43.0] 91.1 [36.3, 99.5] 19.5 [8.5, 31.0] 87.7 [46.5, 99.0]

Overall 21.0 [8.0, 43.0] 90.7 [18.1, 99.8] 19.5 [8.5, 31.0] 87.7 [46.5, 99.0]
TABLE 3 Summarymedian value of eachmetric for each parameter. Measures were derived from training and
testing datasets by simulation parameter and presented as themedian [minimum, maximum] of ALERT duration (Ds )
and percentage of cases captured (Xs ).

Variations in parameters α , δ , and γ had the greatest impact on ALERT performance metrics. ALERT was less
sensitive to changes inψ , β , and λ. Figure 4 shows that the percent peaks captured remainedmore than 76% even in the
poorest performers. Increasing values for α decreased the percent cases captured by about 10%, while increasing δ had
the opposite effect. Neither β nor λ had amarked impact onwhether or not seasonal peaks were captured across the
range of parameter values that were tested. For the remaining parameters, γ andψ , parameter values had a variable
impact on percentage of peaks captured, with no obvious linear trend.

ALERTwasmost sensitive to the parameters that contributed to varying levels of off-season noise and seasonality,
α , δ , and γ. In conditions of a noisy baseline, the threshold valuemay activate the ALERTwindow too soon in the season,
resulting in highWCs and longDs . In datasets with low seasonality, the triggermay be activated too early by smaller,
mini-epidemics preceding the primary seasonal outbreak. This resulted in low PCs if the incidence falls below the
threshold before themain peak is captured.
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F IGURE 3 Example simulated time series (vertical bars) for each parameter and the ALERT periods (horizontal
bars) corresponding to the threshold that had themedian shortest ALERT duration that capturedmore than 85% of
cases during the training set. The vertical dashed line shows the division between the training dataset (left of the line)
and testing dataset (right of the line).
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F IGURE 4 Each panel shows a different parameter used in simulation with its value on the x-axis. The smoothed
conditional mean percentage of seasonal peaks included in the ALERT periods in the test data is shown by the black line.
Shaded zones show the 95% confidence interval for the smoothed line.
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training testing
WCs PCs WCs PCs

α 2.4 [1.0, 5.8] 80.0 [60.0, 100.0] 2.5 [1.8, 5.2] 83.3 [50.0, 100.0]
β 2.4 [1.0, 5.4] 80.0 [60.0, 100.0] 2.3 [1.8, 5.3] 83.3 [50.0, 100.0]
δ 2.4 [1.0, 5.4] 80.0 [40.0, 100.0] 2.3 [1.8, 5.3] 83.3 [50.0, 100.0]
γ 2.4 [1.0, 5.4] 80.0 [40.0, 100.0] 2.3 [1.8, 5.2] 83.3 [50.0, 100.0]
λ 2.6 [1.0, 5.0] 80.0 [40.0, 100.0] 2.3 [1.8, 5.3] 83.3 [50.0, 100.0]
ψ 2.4 [1.0, 5.2] 80.0 [60.0, 100.0] 2.3 [1.8, 5.3] 83.3 [50.0, 100.0]

Overall 2.4 [1.0, 5.8] 80.0 [40.0, 100.0] 2.4 [1.8, 5.3] 83.3 [50.0, 100.0]
TABLE 4 Performancemeasures ([minimum, maximum]) on training and testing datasets by simulation parameter
showingmedian lowweeks captured (WCs ) during the ALERT period andmedian percentage of seasonal peaks
captured (PCs ).

D I SCUSS ION

The ALERT algorithm is a decision-making tool for predicting the appropriate timing of epidemic infection control
measures. In this work we explained the ALERT algorithm, demonstrated howALERTmight be used on a real hospital-
collected upper respiratory dataset, and used simulated datasets to test the performancemeasures of a training versus
testing dataset.

ALERT performs best on datasets with a strong seasonal component and moderate to low off-season endemic
noise. This observation is in line with themotivation behind the development of ALERT: to detect seasonal outbreaks
of influenza in community healthcare settings. Across the simulations derived from the CHCO combined influenza
and RSV dataset estimated parameters, ALERTwas robust tomodest positive and negative linear trends β , however,
steep trends in baseline incidencewill likely require a simple baseline correction before analysis. ALERT is currently
designed to produce an errormessage if this is necessary. Similarly, ALERTwas relatively unaffected by changes in λ,
the autoregressive component, andψ , the overdispersion parameter.

In the comparison of ALERT performance versus real historical periods of increased infectious disease protection
implemented in a hospital setting, we found that ALERT’s performance during seasons showing multiple peaks are
especially sensitive to the user’s selection of trigger value for the ALERT period. Multiple peaks during a season is
common in data of mixed upper respiratory disease incidences, or even for data containingmultiple strains of the same
disease, where peak timing can vary. The respective heights of the peaks do not affect which one triggers the ALERT
period. If a season contains two ormore separate peaks, the first peakwill trigger theALERT period if the peak incidence
exceeds the threshold value. If the threshold selected by the user is too high, the second peakmay bemissed if the nadir
incidence drops below the trigger before the onset of the second peak. As ALERTwas intended to apply to seasonal
infectious diseases, users should proceed with caution if their data contains regular patterns of multiple peaks that
they wish to capture. Likewise, users should consider recalculating potential thresholds yearly as their training dataset
grows, which should help to refine the best target threshold value for their specific application.

For the training data, Ds and median Xs of the observed increased respiratory protection periods was most
comparable to a τp of 10 as defined by ALERT. If τp = 10 had been used to determine increased respiratory protection
periods in the testing data rather than the observed periods, ALERTwould have captured amedian of 5.7%more upper
respiratory incidents without increasing the period duration. Both the observational method and the ALERT algorithm
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at τp of 10 capturedmore cases and fewer lowweeks in the testing portion of the dataset.
The CUSUM-derived intervention periodswere comparable to ALERT and the observed periods in terms of percent

peaks covered, but didn’t perform aswell for any of the othermetrics. For this dataset, CUSUM intervention periods
tended to continue past the outbreak nadir longer than necessary, so the trigger came much later than in the other
twomethods. This caused CUSUM to miss many cases at the beginning of the season in order to match the median
duration of the other methods. CUSUMvariants could likely be further optimized for use with this dataset to improve
performance, as discussed in [17, 18]: however, these specializedmodels are difficult to implement and unlikely to be
accessible to hospital epidemiologists without advanced statistical training.

Although our findings indicate that ALERT is sensitive to data seasonality and may have a tendency to trigger
earlier than necessary in datasets with a noisy baseline or multiple peaks, our simulation study also shows that it is
robust to a wide variety of data characteristics. Our results show promise that ALERT could be used for a variety of
seasonal outbreak situations to derive a “trigger” value for the onset of epidemic periods. While we focus on influenza
and RSV-derived datasets here, the simulation study results show that ALERT functions well within a broad range of
dataset types, presumably includingmany of those derived from other seasonal diseases. Furthermore, the approach
taken by ALERT and outlined in this paper has the advantage of not requiring advanced statistical training or expensive
equipment. Because of these advantages, ALERTmay offer an evidence-based decision-making strategy for combating
infection spread in low resource settings in addition to larger hospitals that may employ an in-house epidemiologist.

Two important challenges for use of ALERT in clinical settings are 1) availability of local historical data, and 2)
determining an appropriate τs . While many large healthcare facilities track incidences of lab-confirmed infectious
diseases, smaller facilities may not currently have the capacity for multi-year incidence recordkeeping. While there
is some evidence from performance on the influenza A, influenza B and RSV combined dataset that ALERT may be
used on symptom-based rather than lab-confirmed illness, this has not been studied directly to date. If only a few
years of historical data is available for a site, the reliability of ALERT’s triggers may be in doubt and the threshold
trigger should be re-calibrated by repeated ALERT runs as additional data becomes available. Likewise, in real data,
as opposed to simulated data, we should expect that seasonality parameters may vary over time. Some of the inter-
season variability we observedmay be due to temporal differences in these parameters. ALERTwas intended for use
with strongly seasonal datasets, but can accommodate some variability in these parameters. Our observations in this
paper show that inconsistency resulting in occasional multiple peaks may be problematic. Likewise, differences in
simulation parameters between the training and testing seasons in the simulated data would likely result in reduced
ALERT performance, which is whywe recommend re-calibrating the chosen threshold to new data when it becomes
available. The duration of recorded historical data needed to derive useful trigger thresholds will likely vary based on
seasonality and randomness characteristics of the historical data. ALERT relies on the assumption that past respiratory
illness seasons will be similar to the future, which is why it performswell on seasonal data. We can observe in themore
random and less seasonal simulations and in 2009 of the real data that violations of this assumption will impact ALERT’s
performance. ALERTwill stop with an error message if the data is not a good fit for the program, either due to unclear
peak patterns or increasing or decreasing baseline. Future studies should compare the performance of ALERT to the
other threshold-basedmethodologies for outbreak detection.
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