Tracing Autism Traits 1

1	Tracing Autism Traits in Large Multiplex Families to Identify Endophenotypes of the
2	Broader Autism Phenotype
3	Author List: Krysta J Trevis ^{#1,2} , Natasha J Brown ^{#3,4,5} , Cherie Green ^{1,2} , Paul Lockhart ^{6,7} , Peter
4	Hickey ^{^3} , Miriam Fanjul-Fernández ^{^8} , Catherine Bromhead ^{^3} , Tarishi Desai ^{2,1} , Tanya Vick ⁵ ,
5	Greta Gillies ⁶ , Hayley Mountford ⁶ , Elizabeth Fitzpatrick ⁶ , Lavinia Gordon ⁸ , Peter Hewson ⁵ ,
6	Vicki Anderson ^{8,2} , Martin B Delatycki ^{6,3,7} , Ingrid E Scheffer ^{+1,4,9,8} , Sarah J Wilson ^{+*1, 2}
7	#, ^, + These authors contributed equally
8	*Corresponding author: Professor Sarah Wilson, Melbourne School of Psychological Sciences,
9	The University of Melbourne, 3010, Australia. e-mail: sarahw@unimelb.edu.au
10	Affiliations
11	1. Department of Medicine, The University of Melbourne, Austin Health, Melbourne,
12	Australia
13	2. Melbourne School of Psychological Sciences, The University of Melbourne,
14	Melbourne, Australia
15	3. Victorian Clinical Genetics Services, Murdoch Children's Research Institute,
16	Victoria, Australia
17	4. Royal Children's Hospital Department of Paediatrics, The University of Melbourne,
18	Melbourne, Australia
19	5. Barwon Health, Geelong, Australia
20	6. Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research
21	Institute, Melbourne, Australia
22	7. Department of Paediatrics, The University of Melbourne, Melbourne, Australia
23	8. Murdoch Children's Research Institute, Melbourne, Australia
24	9. Florey Institute, Melbourne, Australia
25	Word Count: 4250

26

Tracing Autism Traits 2

27

Abstract

28	Families comprising many individuals with Autism Spectrum Disorder (ASD) may carry a
29	dominant predisposing mutation. Our aim was to use rigorous phenotyping of the 'Broader
30	Autism Phenotype' (BAP) in large multiplex ASD families to identify endophenotypes of the
31	BAP for future genetic studies. We evaluated ASD/BAP features using standardised tests and a
32	semi-structured interview to assess social, intellectual, executive and adaptive functioning in 109
33	individuals, including two large multiplex families (Family A: 30; Family B: 34) and an
34	independent sample of small families ($n=45$). Our protocol identified four psychological
35	endophenotypes of the BAP that were evident in both samples, and showed high sensitivity
36	(97%) and specificity (82%) for individuals classified with the BAP. The patterns of inheritance
37	of these endophenotypes varied in the two large families, supporting their utility for identifying
38	genes in autism.

39

40 *Keywords:* Broader autism phenotype, genetic, autism spectrum disorder, multiplex family

41	Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that spans deficits in two
42	domains: social communication, and restricted interests or repetitive behaviours APA 2013.
43	Recent estimates from the Center for Disease Control and Prevention indicate prevalence of
44	ASD is one in 68 children aged 8 years ¹ making ASD a critical international health problem.
45	Clinical and molecular research provides evidence for a genetic aetiology in ASD, yet despite
46	recent molecular advances the cause remains unidentified in the majority of cases.
47	Improved understanding of ASD has facilitated recognition of milder phenotypes. Early
48	clinical research identified autistic traits in relatives of children with ASD, described as the
49	'broader autism phenotype' (BAP) ^{2,3} . The BAP sits at the mildest end of the ASD spectrum and
50	includes a range of subtle behavioural and cognitive features that reflect the two core domains of
51	ASD. The Diagnostic and Statistical Manual of Psychiatric Disorders –V (DSM-V) stipulates
52	that a significant degree of impairment must be present to qualify for a diagnosis of ASD ⁴ ,
53	whereas BAP traits lie on a continuum of normal population behaviours ⁵ . Monozygotic twins
54	demonstrate 30% concordance for ASD ⁶ , increasing to 92% if the BAP is considered, while
55	dizygotic twin concordance is ~ $10\%^7$. Prevalence of the BAP in the general population is
56	unknown, whereas several studies have demonstrated higher rates of BAP traits (20-50%) among
57	relatives of children with ASD compared to controls, particularly in the areas of pragmatic
58	language ^{8,9} , personality ¹⁰ , social cognition ^{9,11,12} and executive function ^{13,14} . Together these
59	findings support the notion of complex inheritance of ASD.
60	The overall diagnostic rate of ASD is now >30%, including monogenic and chromosomal
61	aetiologies ^{15,16} . The remaining \sim 70% are likely to have a genetic basis, with polygenic
62	architecture in some, and unique <i>de novo</i> mutations in others ¹⁷ . Complementary techniques will
63	be necessary to unravel aetiology in unsolved cases. Typically, family studies combine many

Tracing Autism Traits 4

64	small families (2-3 affected individuals), however, these are likely to be confounded by genetic
65	heterogeneity. Very large multiplex families (> 8 affected) where ASD traits appear dominantly
66	inherited are rare, but more genetically homogeneous. In other complex disorders, such as
67	epilepsy, phenotypic characterisation of such families has proved powerful in gene discovery ¹⁸ ,
68	however this approach has received limited attention in ASD ¹⁸¹⁸ . In multiplex ASD families, the
69	identification of family members with BAP traits, or endophenotypes, may serve as markers of
70	carrier status ^{19,20} . In turn, this may facilitate gene identification ²¹ .

71 Endophenotypes are measurable features within a disorder that are proposed to reduce its 72 complexity into more quantifiable elements²². They have been hypothesised to reflect more 73 aetiologically homogeneous subgroups within genetically heterogeneous conditions. There are 74 several BAP traits that may be considered "endophenotypes" from within the domains of 75 language, executive function, and social cognition²¹. In the context of a single large family where 76 numerous individuals demonstrate ASD or the BAP, recognition of BAP endophenotypes should 77 allow granular identification of an autism gene of dominant effect. This study is the first known 78 to the authors to apply this approach in autism.

79 The aim of our study was to analyse autistic traits within large multiplex families to 80 examine inheritance of ASD by identifying endophenotypes of the BAP. We achieved this aim 81 using an iterative process, first rigorously phenotyping many members of large multiplex 82 families to delineate the full range of BAP traits for potential endophenotypes. We then assessed 83 these traits in a separate sample of 20 small families, each with at least one member with ASD, 84 to independently validate the endophenotypes. We then applied these endophenotypes to two of 85 our fully characterised large multiplex families (from step 1) to assess their utility for examining 86 inheritance patterns. We hypothesised that (1) multiple individuals in large families would

Tracing Autism Traits 5

87 demonstrate the BAP, (2) specific BAP endophenotypes would be identifiable across the	87	demonstrate the BAP,	(2) specific	e BAP endoph	enotypes would	be identifiable across the
--	----	----------------------	--------------	--------------	----------------	----------------------------

traditional BAP domains, and (3) these endophenotypes would vary in presentation between

89 large multiplex families.

90

Methods

91 Large Multiplex Families

92 Large multiplex families were primarily ascertained from the Barwon Autism Database as part of a broader Collaborative Autism Study²³. For inclusion as a multiplex family, > 8 individuals with 93 94 a diagnosis or suspected diagnosis of ASD or the BAP were required. The two fully 95 characterised large multiplex families used to examine inheritance patterns using BAP 96 endophenotypes are referred to as 'Family A', ascertained from the Barwon Autism Database, 97 and 'Family B', who was self-referred. All available relatives were recruited, including those 98 with and without reported BAP traits. Informed consent was obtained from all participants or a 99 parent/guardian, following approval of the study by the Human Research Ethics Committees of 100 Barwon Health and the Royal Children's Hospital, Melbourne.

101

(Figure 1)

102 Protocol for Diagnosing ASD in Large Multiplex Families

ASD diagnoses were confirmed using the Autism Diagnostic Observation Schedule-Generic²⁴ (ADOS-G), the Autism Diagnostic Interview-Revised²⁵ (ADI-R), or DSM-IV-TR criteria²⁶. For adults, the structured Family History Interview² (FHI) was administered by NJB, while for adolescents, a detailed developmental and medical history was obtained. Quantitative measures of intellect, executive functions, adaptive behaviour and social functioning were also completed (Table 1). Testing was undertaken over a number of days to minimise fatigue effects. A physical

109	examination was conducted for dysmorphic and neurocutaneous features and growth parameters.
110	Standard genetic testing (karyotype, fragile X testing) and metabolic investigations were
111	performed on probands.
112	Across Family A and B, 65 individuals were recruited: 16 children (2 -12 years), 9
113	adolescents (13-17 years) and 40 adults (18-79 years) spanning 4 generations. Of these, 16/65
114	met criteria for a diagnosis of ASD. Family B also reported a deceased family member who had
115	a diagnosis of ASD (generation V) and an additional family member with ASD (generation 4)
116	who was not recruited. Scrambled pedigrees of affected status are presented to preserve
117	participant anonymity (Fig.1). In each family, a matriarch was identified. Individuals directly
118	related to each matriarch are classified as 'core family'; others are referred to as 'married-in'.
119	Family A comprised 30 individuals, including 7 diagnosed with ASD (6/9 children, 1/6 adults;
120	Fig.1a). Nineteen were core family; 11 were married-in. In Family B, we fully phenotyped 35
121	individuals, not including the matriarch (who was not assessed). Three children and three
122	adolescents participated in a limited range of phenotyping activities and as such, these
123	individuals were excluded from final analyses. Nine had ASD (5/7 children, 1/5 adolescents,
124	3/22 adults; Fig.1b); 31 were core family, and four were married-in.

	Participants with ASD		Partici	Participants without ASD		
Protocol Item	Child or Adolescent ≥4.5-17yr	Adult ≥18yr	Child <13yr	Adolescen ≥13–17yr		
ADI-R + ADOS-G or DSM-IV interview + ADOS-G	+	±	-	-	-	
Detailed developmental, medical, psychiatric and behavioural history	+	+	+	+	+	
Family History Interview	-	+	-	-	±	

			Tracing Au	tism Traits	7
Standardised testing of cognition and executive function ^a	±	+	+	+	±
Questionnaires of adaptive behaviour ^b	+	+	+	+	±
Broader Autism Phenotype Interview, the Faux Pas Task, Cartoon Task and Pragmatic Rating Scale	-	±	-	+	+
Physical Examination	+	+	+	+	+
High resolution molecular karyotype, Fragile X testing, metabolic investigations	+	-	-	-	-

ASD Autism Spectrum Disorder, ADI-R Autism Diagnostic Interview-Revised, ADOS-G Autism Diagnostic Observation Schedule-Generic, DSM-IV Diagnostic and Statistical Manual of Mental Disorders (4th edition). + all individuals completed this assessment; - no individuals completed this assessment; \pm only some individuals completed this assessment

^aWechsler Abbreviated Scale of Intelligence and subtests of the Delis-Kaplan Executive Function System ^bThe Adaptive Behavioural Assessment System (2nd edition) and The Behavioural Rating Inventory of Executive Function

125 Table 1. Protocol for diagnosing ASD and phenotyping the BAP in large multiplex families

126

127 Protocol for Phenotyping the BAP in Large Multiplex Families

128 We employed a mixed methods approach to rigorously assess the BAP, including an evaluation

129 of general intellect, executive functions, adaptive behaviour, social cognition and language

130 pragmatics (Table 1). A purpose developed semi-structured interview, the Broader Autism

131 Phenotype Interview (BAPI), was also administered by three clinicians with expertise in

132 neurobehavioural disorders (NJB, SJW, IES) to all individuals \geq 13 years, to determine the

133 presence, nature and extent of BAP features. Questions focused on the participant's life story,

134 personal qualities, relationships, social functioning, and developmental, medical, psychiatric and

- 135 vocational history. During the interview we included one or two "intentional errors" to elicit
- 136 pragmatic elements of the BAP, such as terse speech⁹.

Tracing Autism Traits 8

137	Full scale (FSIQ), verbal (VIQ) and performance (PIQ) intelligence quotients were
138	derived with the four subtest Weschler Abbreviated Scale of Intelligence ²⁷ (WASI; $M=100$,
139	SD=15). Executive functions were measured with seven subtests of the Delis-Kaplan Executive
140	Function System ²⁸ (D-KEFS; <i>M</i> =10, <i>SD</i> =3). The second edition of the Adaptive Behavioural
141	Assessment System ²⁹ (ABAS-II) and the Behavioural Rating Inventory of Executive Function ³⁰
142	(BRIEF) were used to assess adaptive functioning (Table 1).
143	Social discourse was assessed using an adapted Faux Pas Task ^{31,32} (FPT). The task
144	included four faux pas stories and four control stories ³³ (maximum score=40, M=37, SD=4). In
145	addition, the Goldman-Eisler Cartoon task ³⁴ was used to explore previous observations of overly
146	detailed speech and longer pauses between words in the BAP ⁹ . This task measures discourse
147	production by eliciting a description of an eight frame captionless cartoon, "The Cowboy Story",
148	over three successive trials ³⁵ . Control individuals show increased verbal fluency with successive
149	trials compared with decreased fluency in individuals with communication deficits ³⁴ . Following
150	all assessments, the Pragmatic Rating Scale (PRS) was independently completed by the three
151	interviewers and consensus ratings reached. A score \geq 4 defined pragmatic impairment ¹⁰ . After
152	independent review of all qualitative and quantitative data by NJB, SJW, and IES the presence of
153	the BAP was determined by consensus.
154	Small Families

We recruited an independent sample of 45 individuals from 20 small families with at least one member diagnosed with ASD, via advertisements and from the Barwon Autism Database. All participants provided written informed consent, as described above. Inclusion criteria were: (i) no diagnosis of ASD (based on DSM-IV or DSM-V criteria), (ii) ≥1 family member with ASD (based on DSM-IV or DSM-V criteria), and (iii) >12 years of age. Individuals were classified as

Tracing Autism Traits 9

160	having the BAP if they met ≥ 2 criteria for a BAP diagnosis on the Broader Autism Phenotype
161	Rating Scale ² (BAPRS). Individuals were classified as unaffected if they did not meet criteria for
162	any BAP traits or a diagnosis of ASD. This identified 30 individuals with the BAP (4
163	adolescents, 26 adults) in the 20 families, ranging in age from 14-71 years, and 11 unaffected
164	adult family members ranging in age from 18-53 years. Four adult individuals showed only one
165	BAP trait on the BAPRS and thus, were excluded from analyses based on the above criteria.
166	In 27 individuals, average total scores were available for the Broader Autism Phenotype
167	Questionnaire (BAPQ), and in 31 individuals, FSIQ, Verbal Comprehension (VCI) and
168	Perceptual Reasoning (PRI) indices had been derived with the WASI-II ³⁶ (M=100, SD=15). As
169	shown in Table 2, all individuals were within the normal range based on FSIQ, with no
170	significant differences between unaffected and BAP individuals for age or intellect (all p <.250).
171	Consistent with expectations, there was a trend for higher scores on the BAPQ in the BAP group,
172	with a medium effect size (<i>t</i> (24.56)=-1.96, <i>p</i> =.062, <i>d</i> =0,70).

	Unaffected	BAP
Number of participants (female)	11 (6)	30 (19)
Mean age (range)	41.09 (18-53)	39.50 (14-53)
Mean BAPQ (SD)*	2.43 (0.38)	2.92 (0.92)
Mean FSIQ (SD)**	108 (14)	111 (13)
Mean VCI (SD)**	106 (18)	109 (15)
Mean PCI (SD)**	109 (7)	110 (15)

*data available for unaffected (*n*=9) and BAP (*n*=18); ** data available for unaffected (*n*=10) and BAP (*n*=21). BAPQ=Broader Autism Phenotype Questionnaire; FSIQ=Full Scale Intelligence Quotient; VCI=Verbal Comprehension Index; PRI=Perceptual Reasoning Index

173 **Table 2. Demographics of the small families sample**

Tracing Autism Traits 10

174 Procedure

We used an iterative process to characterise, refine and assess endophenotypes of the BAP in ourtwo separate samples, as summarised in Fig.2.

177 Step 1: Identification of Potential BAP Endophenotypes in Large Multiplex Families

178 Using a grounded theory approach, BAP traits were initially identified from a detailed literature 179 review targeting the theoretical domains described in the seminal work of Bolton (1994), on 180 which the conceptualisation of the BAP is largely based. The domains included speech, literacy, 181 pragmatics, relationships, and circumscribed interests, which were explored in-depth using our 182 BAP phenotyping protocol (described above) in members of unrelated large multiplex families primarily ascertained through the Collaborative Autism Study³³. This in-depth characterisation 183 184 was phenomenologically based³⁷, whereby the number of traits within each domain was fully 185 expanded through administration of the semi-structured interview (BAPI) with separate family 186 members until no further traits were identified (saturation) to capture the entire range of BAP 187 traits (Table 3).

188

(Figure 2)

Initial phenotyping produced an exhaustive list of 36 BAP traits. Ordinal ratings of these traits were then assigned to capture subtle variations in their presentation, with severity rated on a scale of 0=absent, 1=mild, 2=moderate, and 3=severe. The presence of traits through each individual's developmental history was also evaluated where available. Exploratory hierarchical cluster analysis was then performed to identify potential BAP endophenotypes. We used Ward's method with Euclidean squared distances based on z-scores to progressively group traits by minimising the variability within clusters and maximising the variance between clusters³⁸.

Tracing Autism Traits 11

196	Interpretation of cluster groupings was informed by the relative similarity and dissimilarity in the
197	linkage output combined with clinical judgement, leading to the initial identification of five
198	endophenotypes. Inspection of these endophenotypes revealed a consistent rating of 0 for two of
199	the 36 traits across all interviews, leading to their removal. One further trait reflecting
200	inflexibility to intentional errors was removed due to challenges reliably assessing it across
201	interviewers, resulting in a final set of 33 BAP traits (Table 3).

202 Step 2: Validation of BAP Endophenotypes in Small Families

203 In the small families sample, an independent expert in ASD assessment (CG) interviewed and 204 rated 45 participants on the 33 BAP traits based on all qualitative and quantitative data, with a 205 subset (9%) rated via consensus between CG, IES and SJW to ensure consistency in ratings 206 across both samples and to clarify borderline cases. As above, Ward's hierarchical cluster 207 analysis was used to examine natural trait groupings. This led to the identification of four 208 endophenotypes that showed a high degree of similarity to the initial five cluster solution. 209 To account for a variable number of traits in each cluster we computed proportional 210 scores, whereby scores on each trait (range 0-3) were summed and divided by the maximum total 211 score for that cluster, to produce four cluster scores for each individual. An ROC curve was 212 plotted for each cluster in the small families sample to identify optimum cut-off scores for 213 determining endophenotypic status using Youden's Index to allow mildly affected individuals to 214 be included^{39,40}. The highest score was used to represent the most prominent endophenotype for 215 each individual, calculated as the difference between the observed endophenotype (i.e., cluster) 216 score and the threshold score for the endophenotype (i.e., cut-off score).

217

218

BAP domains	Expanded traits
Communication	Reduced capacity for clear narrative
(speech and	Difficulty answering open ended questions
literacy)	Reduced quantity of verbal output
2 /	Speech has little variation in tone (i.e. monotonous)
	Unusual speech volume
	Precise articulation and language
	Use of an accent*
Social	An unusual or awkward greeting style
communication	A limited capacity to develop rapport with assessors
(pragmatics and	Unusual eye gaze
relationships)	Awkward social interactions
• /	Making inappropriate or awkward comments either on history or during
	assessments
	Tangential pragmatic style
	Terse pragmatic style
	Tendency to monologue rather than participate in reciprocal conversation
	Opinionated in conversation
	Overly technical language
	Little appreciation of humour (during the Cartoon task)
	Inflexible to intentional errors*
	Tendency to anger easily
	Narcissistic personality style
	Self perception incongruent with views of others
	Aloof personality style
	Difficult or limited interpersonal relationships
	Reduced affection
	Reduced emotional empathy
	Reduced cognitive empathy
	Excessive worry
Circumscribed	Preference for structure in activities of daily living
interests	Fastidious regarding personal appearance
	Fastidious cleaning
	Hobby or interest of unusual intensity, or restricted range of interests relative to
	peers
	Large collections or hoarding of items
	Focus on technicalities or minutiae
	Recurrent thoughts (distressing)*
	Recurrent thoughts (not distressing)
*BAD trait was	noved from the final list (see text for details).

219 Table 3. Identification of BAP traits through expansion of the BAP domains

220

Tracing Autism Traits 13

221 Step 3: Assessment of BAP Endophenotypes in Family A and B

222 A team member who had not been involved in the phenotyping of Family A and B (Step 223 1) performed the endophenotype analysis (KT). Proportional scores for the four endophenotypes 224 were calculated, and family members classified as having the endophenotype if their 225 proportional score was greater than or equal to the cut-off scores identified in the small families 226 analysis (step 2). As above, the highest score (observed endophenotype score – threshold 227 endophenotype score) for any endophenotype was used to represent an individual's most 228 prominent endophenotype. A discriminant function analysis was then used to determine the 229 sensitivity and specificity of the endophenotype approach to identifying the presence of the BAP 230 in these families. In addition, endophenotype results were correlated with measures of intellect, 231 executive, social and adaptive functions using conservative non-parametric Spearman's 232 correlations (r_s) .

233

Results

234 Hypothesis 1: Multiple individuals in large families demonstrate the BAP

Based on our rigorous protocol for phenotyping the BAP in large multiplex families, we
identified 32 members with the BAP across Family A and B. Of the 23 members in Family A
who did not have an ASD diagnosis, we detected the BAP in 17 (74%) individuals, with 6
individuals unaffected. In Family B, we detected 15 (63%) individuals with the BAP, with 9
individuals unaffected (Table 4).

Intellectual function was directly assessed in 54/63 (86%) individuals. Overall,
participants were of average or greater intelligence. Average FSIQ was observed in 32/54 (59%)
of individuals, while 20/54 (37%) demonstrated superior or very superior FSIQ (Table 4). We
performed group-level comparisons of cognitive, social and adaptive functions between family

Tracing Autism Traits 14

244	members with and without the BAP using non-parametric and parametric tests (Mann-Whitney
245	U and t-tests respectively), with the more conservative parametric tests reported here as there
246	were no differences between these approaches. On average, individuals with the BAP
247	demonstrated poorer pragmatic language, with significantly higher mean PRS scores ($M=8.75$,
248	SD=7.08) compared to unaffected individuals (M=2.00, SD=3.05), t(40.99)=-4.42, p<0.001. No
249	significant differences were observed for general intellect (FSIQ, VIQ, PIQ), the FPT, executive
250	(D-KEFS) or adaptive function measures (ABAS-II, BRIEF).

251 Hypothesis 2: Specific BAP endophenotypes exist across BAP domains

252 Based on our iterative characterisation process, four distinct endophenotypes of the BAP were 253 reliably identified. Based on the natural grouping of traits, these reflected 'socially unaware', 254 'pedantic', 'aloof', and 'obsessive' endophenotypes (Table 5). At the highest level of the 255 dendrogram of the 33 BAP traits there was a clear split, whereby traits of the socially unaware 256 and pedantic endophenotypes were more similar to each other and more dissimilar to the 257 combination of traits of the aloof and obsessive endophenotypes. There was a significant 258 difference between the mean proportional scores of the unaffected and BAP groups, with the 259 BAP group demonstrating significantly higher scores on all four endophenotypes (all p > 0.015). 260 Analysis of ROC curves indicated relatively good discrimination within the small 261 families for the socially unaware, aloof and obsessive endophenotypes (all AUC > 0.73, all 262 p < .025), and acceptable discrimination for the pedantic endophenotype (AUC=0.68, p = 0.077). 263 Although we note that Box's M was violated in the discriminant function analysis (likely due to 264 variation in the sample sizes), combined, the four endophenotypes captured 93% of cases 265 (Wilk's λ =0.47, χ^2 =27.83, p<.001). In particular, the endophenotypes showed high sensitivity

Tracing Autism Traits 15

- 266 for the BAP group (97%), characterised by higher proportional scores, and good specificity for
- the unaffected group (82%), with lower proportional scores (Table 5).

268

	Number of participants (female)	Mean age (range)	Cognitive data (<i>n</i>)	FSIQ Mean (SD)	VIQ Mean (SD)	PIQ Mean (SD)
Family A						
ASD	7 (1)	11.43 (4 – 34)	5	107 (16)	97 (15)	101 (30)
Unaffected	6 (5)	25.83 (2-50)	5	127 (17)	130 (17)	117 (15)
BAP	17 (8)	49.18 (13 – 79)	16 ^c	119 (13)	117 (13)	115 (12)
Total	30 (14)	35.7 (2 – 79)	26	118 (15)	116 (17)	113 (18)
Family B						
ASD	9 (3)	15.00 (8 – 20)	5	95 (20)	89 (28)	105 (16)
Unaffected	9 (7)	37.33 (10 – 73)	9	110 (14)	111 (14)	108 (11)
BAP	15 (10)	47.40 (15 - 73)	15	102 (17)	105 (18)	99 (17)
Total	33 (20)	35.06 (6 - 73)	29	103 (17)	104 (19)	102 (15)
Both families	63 (34)	35.37 (2 – 79)	55°	110 (18)	110 (19)	107 (17)

269 *Note.* Average FSIQ = 80-119; Superior FSIQ = ≥ 120

²⁷⁰ ^aOne individual only completed VIQ and select executive functioning subtests

271 Table 4. Intellectual functioning in Family A and B by diagnostic classification

272

273

274

275

Unaffected	$\mathbf{D} \wedge \mathbf{D} (n-20)$	Cut-off	
(<i>n</i> =11)	BAP (<i>n</i> =30)	score	BAP traits ¹
Socially unawa		ulation and	l reciprocity in conversation
0.69 (.06)	0.20 (0.18)**	>0.17	Reduced capacity for clear narrativeDifficulty answering open ended questionsMaking inappropriate or awkward comments either on
			history or during assessments
			Tangential pragmatic style
			• Tendency to monologue rather than participate in
			reciprocal conversation
			• Tendency to anger easily Reduced quantity of yorkal autput
	C 1 1 1		Reduced quantity of verbal output
	focused and techr		
0.04 (0.05)	0.11 (0.12)*	>0.14	• An unusual or awkward greeting style
			• Unusual eye gaze
			• Speech has little variation in tone (i.e. monotonous)
			Unusual speech volume
			Precise articulation and language Tame are articulated
			• Terse pragmatic style
			Overly technical languageNarcissistic personality style
			 Nationsistic personanty style Focus on technicalities or minutiae
			 Fastidious regarding personal appearance
			 Self perception incongruent with views of others
Aloof': Difficu	lties relating to of	har's amoti	ions and expressing own emotions
$\frac{1001 \cdot Difficul}{0.12 (0.07)}$	0.31 (0.16)***	>0.20	Aloof personality style
0.12 (0.07)	0.31 (0.10)	20.20	 Difficult or limited interpersonal relationships
			Reduced emotional empathy
			 A limited capacity to develop rapport with assessors
			Reduced affection
			Awkward social interactions
			Opinionated in conversation
			Reduced cognitive empathy
			• Little appreciation of humour (during the Cartoon task
Obsessive': Ro	aimonted approac	h to life an	d tendency to ruminate
	0.27 (0.18)***	>0.25	•
0.13 (0.10)	$0.27(0.18)^{111}$	~0.23	• Hobby or interest of unusual intensity, or restricted
			range of interests relative to peersLarge collections or hoarding of items
			 Earge collections of hoarding of items Fastidious cleaning
			 Preference for structure in activities of daily living
			Recurrent thoughts that are not distressing
			Excessive worry

276 **Table 5. Four endophenotypes of the BAP in the small families sample**

Tracing Autism Traits 17

277 Hypothesis 3: BAP endophenotypes vary in large multiplex families

278 Applying the above endophenotype thresholds to the proportional scores of the 33 BAP traits for 279 members of Family A and B led to the identification of all individuals classified as having the 280 BAP. Two additional BAP cases were identified in Family B based on the presence of above 281 threshold endophenotype scores, indicating good utility of this approach (Fig.3). One individual 282 was excluded from this analysis due to incomplete data (III-7). Across both families, the aloof 283 endophenotype was most commonly observed (62%), followed by obsessive (60%), pedantic 284 (55%) and socially unaware (48%). Approximately one quarter of family members met criteria 285 for only one endophenotype, 15% met criteria for two, and the remainder met criteria for 3-4 286 (62%) (Fig.3). The dominant endophenotype across both families, as determined by the highest 287 score, was aloof (47%), followed by obsessive (26%), socially unaware (18%) and pedantic 288 (9%).

289 Family A appeared to have two endophenotype profiles, with one characterised by the 290 presence of a single endophenotype (35%) seen in individuals who were mostly married-in 291 (67%), contrasting with the second profile (41%) of all four endophenotypes, most evident in 292 core family members (72%) (Fig.4). Overall, the obsessive endophenotype occurred most 293 frequently (77%), followed equally by pedantic (65%) and aloof (65%), and then socially 294 unaware (53%). The co-occurrence of the obsessive and pedantic endophenotypes was relatively 295 common, seen in 29% of married-ins and core family members. Overall, there was a range of 296 dominant endophenotypes across individuals, with aloof the most frequent (35%) particularly in 297 core family members (83%).

Contrasting with Family A, Family B had more individuals (70%) with multiple
endophenotypes, in both married-in and core family members (Fig.4). All four endophenotypes

Tracing Autism Traits 18

300	were again most frequently obse	erved in core fam	ily members,	indicative	of a more seve	ere BAP
301	presentation. Unlike Family A, however, the aloof endophenotype occurred most frequently in					ently in
302	Family B (88%), followed by ol	bsessive (71%), p	edantic (65%), and socia	ally unaware (65%).
303	The aloof endophenotype was a	lso identified as o	dominant (599	%), evident	in 70% of cor	e family
304	members.					
305		(figu	re 3)			
306		(figu	re 4)			
307	Correlates of the BAP Endopher	notypes				
308	Across both families, no	sex or age differ	rences were ol	bserved for	any of the	
309	endophenotypes (all p <.200). O	endophenotypes (all p <.200). Overall, a more severe BAP presentation (indicated by a greater				
310	number of endophenotypes) was associated with reduced social adaptive functioning on both					n both
311	self-report and objective measures of social communication (Table 6). In particular, a more					
312	severe BAP presentation showed a strong correlation with more severe pragmatic language					
313	difficulties, with scores for each endophenotype also significantly correlated. A similar					
314	relationship was evident for the	ability to detect a	a faux pas in s	social disco	ourse and self-	reported
315	social functioning, particularly	for family membe	ers with the so	ocially una	ware endopher	otype
316	(Table 6).					
317						
318						
319						
			Er	ndophenoty	bes	
	Domain Task	Socially unaware	Pedantic	Aloof	Obsessive	Total number

0.83**

0.73**

0.76**

0.45**

0.86**

PRS

Social

Tracing Autism Traits 19

communication	FPT	-0.43**	-0.28	-0.24	-0.18	-0.40**
Intellect	FSIQ	-0.36*	-0.10	-0.31*	-0.02	-0.28
	VIQ	-0.29	-0.05	-0.31*	-0.03	-0.28
	PIQ	-0.36*	-0.13	-0.19	-0.02	-0.26
Executive	Trails (numbers) ^a	-0.32*	-0.20	-0.29	0.17	-0.19
functions	Trails (switch) ^a	-0.24	-0.23	-0.27	-0.22	-0.34*
	Design fluency (switch) ^a	-0.27	-0.25	-0.15	-0.09	-0.34*
	Design fluency (composite) ^a	-0.27	-0.25	-0.25	-0.03	-0.32*
	Tower task (achievement) ^a	-0.40**	-0.19	-0.27	-0.22	-0.26
	Sorting (confirmed)	-0.33*	-0.23	-0.32*	-0.22	-0.33*
	Sorting (free sort)	-0.31	-0.15	-0.24	-0.37*	-0.37*
Adaptive function	Social index (self-report)	-0.46*	-0.35	-0.19	-0.31	-0.43*

p*<.05; *p*<.01

^anonverbal executive function subtests; PRS= Pragmatic Rating Scale; FPT=Faux Pas Test; FSIQ=Full Scale Intelligence Quotient; VIQ = Verbal Intelligence Quotient; PIQ = Performance Intelligence Quotient

Table 6. Correlations between endophenotypes and quantitative measures in Family A andB

322 For the cognitive measures, a more severe BAP presentation was associated with reduced

323 executive functioning, particularly for nonverbal measures of cognitive flexibility (switching and

324 fluency; Table 6). A pattern of weaker correlations was also evident for specific endophenotypes,

including lower IQ in the socially unaware and aloof endophenotypes (Table 6).

326

Discussion

327 We studied the BAP to highlight the phenotypic variation within and between high-risk ASD

328 families, to improve identification of individuals crucial for accurate molecular genetic analysis.

329 We identified multiple individuals with the BAP in large multiplex families using rigorous

330 phenotyping and a new endophenotyping approach, which was validated in an independent

331 sample of small ASD families. The results of this work show that specific BAP endophenotypes

332 exist across the traditional BAP domains of social relationships, communication, and

Tracing Autism Traits 20

333	circumscribed interests and behaviour, providing a more nuanced way to detect subtle features of
334	the BAP. Moreover, these endophenotypes show different patterns of inheritance in two large
335	multiplex families, supporting their use to identify autism genes of dominant effect.
336	Despite major advances in ASD genetics, aetiology in the majority of cases remains
337	unknown. The research model employed here to phenotype rare large multiplex families reveals
338	a pattern consistent with autosomal dominant inheritance of ASD/BAP traits that would not have
339	been captured without such rigorous phenotyping. Fifteen individuals (23%) met criteria for
340	ASD and 33 (51%) the BAP, including some married-in individuals. Our promising
341	endophenotype analysis provides further insight into specific profiles of the BAP and its varied
342	presentation. Traditionally, ASD family studies include 2-3 affected individuals ^{41,42} . For
343	example, four candidate ASD genes were identified in seven ASD/BAP pedigrees with ≥ 3
344	affected individuals ⁴³ . Larger multiplex families remain scarce in the literature ^{20,44} . Here, we
345	identified more subtle indicators of carrier status in two large families, using a robust
346	endophenotyping method with good sensitivity and specificity to detect the BAP in two
347	independent samples.

348 Endophenotypes of the BAP

Over the last 20 years, the BAP has emerged as strongly associated with ASD. The BAP is considered a marker of carrier status of genes that may contribute to autism risk^{21,45}. Here we aimed to dissect the BAP into endophenotypes to understand the phenotypic variation within and between families. Importantly, each endophenotype cluster was characterised by a combination of communication, personality and behavioural indicators showing how specific traits across the traditional BAP domains may group together to form distinct endophenotypes or 'profiles'. As summarised in Table 7, these profiles capture identifiable 'personas' that have core

Tracing Autism Traits 21

356	characteristics with high face validity. These profiles also vary with functional correlates in
357	distinct ways, supporting their construct validity. For example, the aloof endophenotype was
358	characterised by a lack of innate social motivation or ability to meaningfully connect and
359	empathise with others, associated with decreased theory of mind, lower executive and
360	intellectual functioning. One individual dominant for the aloof endophenotype described social
361	interactions as "a means to an end". In contrast, the pedantic endophenotype was primarily
362	characterised by detail-oriented traits, showing no associations with intellectual, executive or
363	adaptive functions. Unsurprisingly, given the importance of social communication deficits in
364	ASD and the BAP, all endophenotypes were associated with poor social communication, with
365	the socially unaware endophenotype most broadly affected across social, intellectual, executive
366	and adaptive function domains (Table 7).

Endonhanatura	Core Characteristic	Associated Functional Domains			
Endophenotype		Social	Intellect	Executive	Adaptive
Socially unaware	Poor self-regulation and reciprocity in conversation	\checkmark	\checkmark	\checkmark	\checkmark
Pedantic	Self-focused and technical in interactions	\checkmark			
Aloof	Difficulties expressing and relating to other's emotions	\checkmark	\checkmark	\checkmark	
Obsessive	Regimented approach to life and tendency to ruminate	\checkmark		\checkmark	

367 **Table 7. Summary of the BAP endophenotypes and their functional correlates**

368

369	By clustering traits across traditional BAP domains, endophenotype profiles may
370	improve detection of the BAP and thus, advance gene discovery. Specifically, in contrast with a
371	traditional domain approach, where an individual may show mild BAP features across all
372	domains but fail to meet criteria, an endophenotype approach allows individuals with autism

Tracing Autism Traits 22

373 susceptibility genes to be captured by meeting threshold criteria for a specific profile.

374 Importantly, replication and validation of the proposed BAP endophenotypes is needed, using

375 targeted assessments to further validate and refine the traits characterising each endophenotype.

376 This, in turn, will provide the foundation for more efficient assessment protocols, and more

377 sophisticated and granular mapping of psychological and neural correlates where results have

been mixed to date⁴⁶.

379 Careful endophenotyping will enable genetic insights

Consistent with previous literature, phenotypic heterogeneity was evident in both families at the endophenotype level suggesting a single familial mutation may produce a phenotypic spectrum, with other genetic, epigenetic and environmental factors influencing expression. With the advancement of high-throughput next generation sequencing technologies, meticulous phenotypic characterisation of both affected and apparently unaffected individuals remains essential for accurate data interpretation. In other words, identification of subtle endophenotypes, such as the four identified here, are crucial for advancing gene discovery programs.

387 Although multiplex families with ASD are genetically homogeneous, our phenotyping 388 analysis suggests possible bi-lineal inheritance of the BAP in both families. Therefore, multiple 389 risk alleles may contribute to ASD/BAP in later generations, consistent with recent genetic and 390 phenotyping evidence^{47,48}. The importance of unique *de novo* genetic changes in both sporadic (or 'simplex'), ASD¹⁷, and small multiplex ASD families⁴⁴ has become increasingly apparent. 391 392 However, with at least seven individuals with ASD and many more with the BAP in our families, 393 there is less likelihood of *de novo* changes contributing to each phenotype. It is much more likely 394 that there is a single genetic variant of major phenotypic effect in each family, with the

Tracing Autism Traits 23

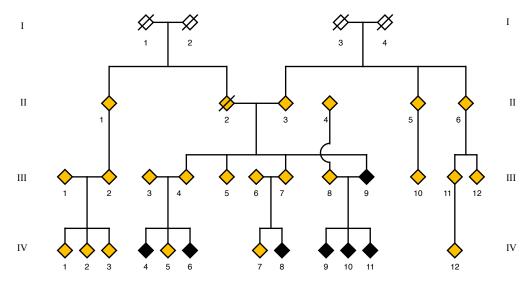
possibility that there are additional *de novo* genetic changes in some individuals that contributeto phenotypic severity.

397 Limitations

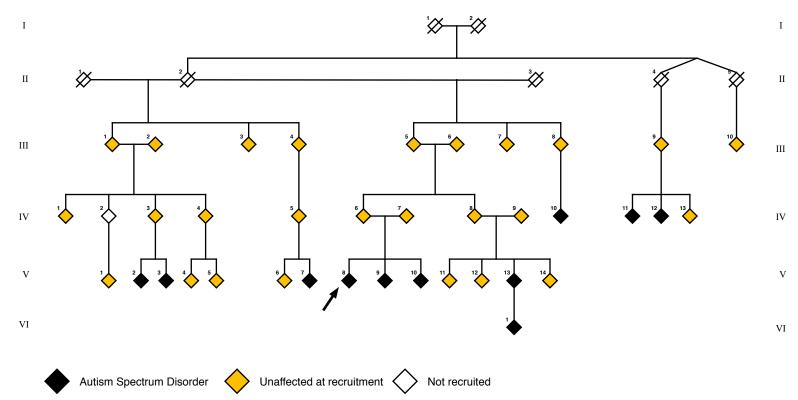
398 The intensive nature of the study meant that clinicians were not blinded to family relationships, 399 potentially leading to investigator bias. However, our diagnostic method of consensus between 400 experienced clinicians aligns with current best practice for ASD/BAP diagnosis and was 401 informed by quantitative and qualitative measures. We selected a relatively low threshold for 402 BAP classification, leading to the identification of many affected individuals. However, this 403 approach is justified in a family with a clear genetic liability for ASD and was validated by the 404 finding of consistent data-driven endophenotypes in the small families. Successful gene 405 identification in future work requires capture of all individuals who may carry the putative 406 variant, with the approach outlined here enabling more robust gene identification work.

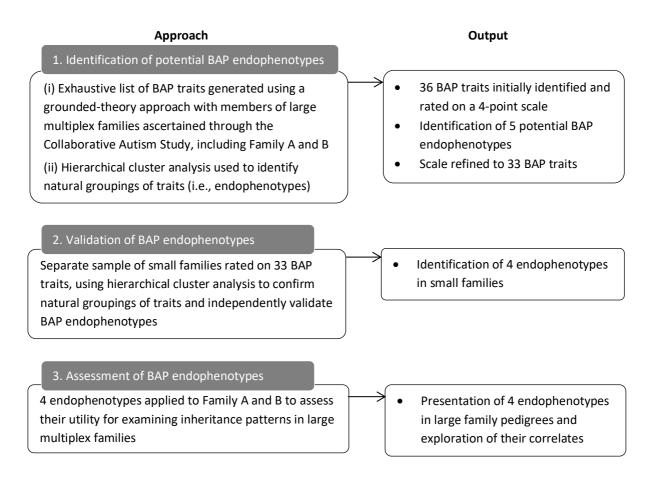
407

Conclusion

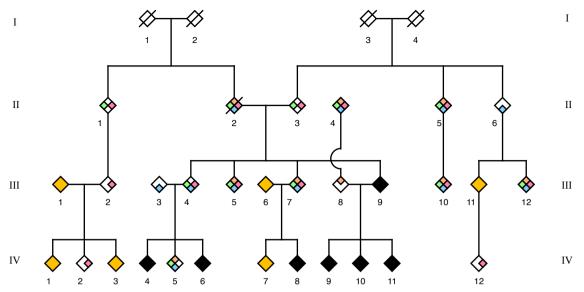

408 Despite significant advances in unravelling the heterogeneity of ASD, in most cases, the 409 underlying genetic aetiology remains unknown in part due to difficulties identifying 410 endophenotypes and potential carriers. We used a rigorous phenotyping approach to characterise 411 the BAP in two large multiplex families with dominant inheritance of ASD and the BAP. Further 412 phenotypic delineation identified four endophenotypes, showing differentiation of BAP features 413 beyond traditional domain approaches. This endophenotype approach advances our 414 understanding of the phenotypic spectrum to improve detection of the BAP in research and 415 clinical practice, facilitating gene discovery, neuroimaging investigations, and psychological 416 studies.

417		References
418	1	Christensen, D. L. et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged
419		8 YearsAutism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012.
420		MMWR Surveill Summ 65, 1-23, doi:10.15585/mmwr.ss6503a1 (2016).
421	2	Bolton, P. et al. A case-control family history study of autism. J Child Psychol Psychiatry 35, 877-900
422		(1994).
423	3	Kanner, L. Autistic Disturbances of Affective Contact. Nervous Child 2, 34 (1943).
424	4	American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5 ed.).
425		(American Psychiatric Association, 2013).
426	5	Constantino, J. N. & Todd, R. D. Intergenerational transmission of subthreshold autistic traits in the
427		general population. <i>Biol Psychiatry</i> 57, 655-660, doi:10.1016/j.biopsych.2004.12.014 (2005).
428	6	Folstein, S. & Rutter, M. Genetic influences and infantile autism. Nature 265, 726-728 (1977).
429	7	Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25,
430		63-77 (1995).
431	8	Piven, J., Palmer, P., Jacobi, D., Childress, D. & Arndt, S. Broader autism phenotype: evidence from a family
432		history study of multiple-incidence autism families. Am J Psychiatry 154 , 185-190,
433		doi:10.1176/ajp.154.2.185 (1997).
434	9	Landa, R. et al. Social language use in parents of autistic individuals. Psychol Med 22, 245-254 (1992).
435	10	Piven, J. et al. Personality characteristics of the parents of autistic individuals. Psychol Med 24, 783-795
436		(1994).
437	11	Eyuboglu, M., Baykara, B. & Eyuboglu, D. Broad autism phenotype: theory of mind and empathy skills in
438		unaffected siblings of children with autism spectrum disorder. <i>Psychiatry and Clinical</i>
439	10	Psychopharmacology 28 , 36-42, doi:10.1080/24750573.2017.1379714 (2018).
440 441	12	Folstein, S. E. <i>et al.</i> Predictors of cognitive test patterns in autism families. <i>J Child Psychol Psychiatry</i> 40 ,
442	13	1117-1128 (1999). Hughes, C., Russell, J. & Robbins, T. W. Evidence for executive dysfunction in autism. <i>Neuropsychologia</i>
443	12	32 , 477-492 (1994).
444	14	Hughes, C., Plumet, M. H. & Leboyer, M. Towards a cognitive phenotype for autism: increased prevalence
445	14	of executive dysfunction and superior spatial span amongst siblings of children with autism. <i>J Child</i>
446		Psychol Psychiatry 40, 705-718 (1999).
447	15	Codina-Sola, M. <i>et al.</i> Integrated analysis of whole-exome sequencing and transcriptome profiling in
448		males with autism spectrum disorders. <i>Mol Autism</i> 6 , 21, doi:10.1186/s13229-015-0017-0 (2015).
449	16	Tammimies, K. <i>et al.</i> Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome
450		Sequencing in Children With Autism Spectrum Disorder. Jama 314 , 895-903,
451		doi:10.1001/jama.2015.10078 (2015).
452	17	O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo
453		mutations. <i>Nature</i> 485 , 246-250, doi:10.1038/nature10989 (2012).
454	18	Helbig, I., Scheffer, I. E., Mulley, J. C. & Berkovic, S. F. Navigating the channels and beyond: unravelling the
455		genetics of the epilepsies. The Lancet. Neurology 7, 231-245, doi:10.1016/S1474-4422(08)70039-5 (2008).
456	19	Bora, E., Aydin, A., Sarac, T., Kadak, M. T. & Kose, S. Heterogeneity of subclinical autistic traits among
457		parents of children with autism spectrum disorder: Identifying the broader autism phenotype with a data-
458		driven method. Autism Res 10, 321-326, doi:10.1002/aur.1661 (2017).
459	20	Woodbury-Smith, M. et al. Using extended pedigrees to identify novel autism spectrum disorder (ASD)
460		candidate genes. <i>Hum Genet</i> 134 , 191-201, doi:10.1007/s00439-014-1513-6 (2015).
461	21	Dawson, G. et al. Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives.
462		Dev Psychopathol 14 , 581-611 (2002).
463	22	Gould, T. D. & Gottesman, II. Psychiatric endophenotypes and the development of valid animal models.
464		Genes Brain Behav 5 , 113-119, doi:10.1111/j.1601-183X.2005.00186.x (2006).

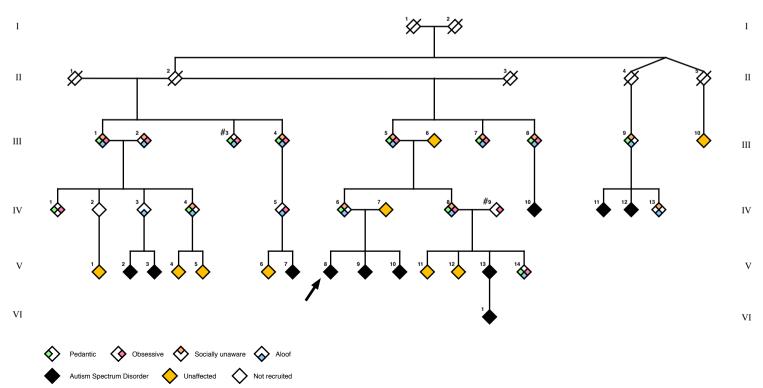

465	23	Icasiano, F., Hewson, P., Machet, P., Cooper, C. & Marshall, A. Childhood autism spectrum disorder in the
466		Barwon region: a community based study. <i>J Paediatr Child Health</i> 40 , 696-701, doi:10.1111/j.1440-
467		1754.2004.00513.x (2004).
468	24	Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and
469		communication deficits associated with the spectrum of autism. J Autism Dev Disord 30 , 205-223 (2000).
470	25	Lord, C. et al. Diagnosing autism: analyses of data from the Autism Diagnostic Interview. J Autism Dev
471		Disord 27 , 501-517 (1997).
472	26	American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition,
473		Text Revision (DSM-IV-TR). (American Psychiatric Association, 2000).
474	27	Wechsler, D. Wechsler Abbreviated Scale of Intelligence. (Harcourt Assessment Inc, 1999).
475	28	Delis, D. C., Kaplan, E. & Kramer, J. H. Delis-Kaplan Executive Function System (D-KEFS). (Pearson
476		Psychological Corporation, 2018).
477	29	Harrison, P. L. & Oakland, T. Adaptive Behavior Assessment System - Second Edition (ABAS-II) (2nd ed.).
478		(The Psychological Corporation, 2003).
479	30	Roth, R. M., Gioia, G. A., Guy, S. C., Kenworthy, L. & Isquith, P. K. Behavior Rating Inventory of Executive
480		Function: BRIEF. (Psychological Assessment Resources, 2000).
481	31	Stone, V. E., Baron-Cohen, S. & Knight, R. T. Frontal lobe contributions to theory of mind. Journal of
482		cognitive neuroscience 10 , 640-656 (1998).
483	32	Baron-Cohen, S., O'Riordan, M., Stone, V., Jones, R. & Plaisted, K. Recognition of faux pas by normally
484		developing children and children with Asperger syndrome or high-functioning autism. J Autism Dev Disord
485		29 , 407-418 (1999).
486	33	Brown, N. J. Family and community study of the genetics of Autism Spectrum Disorder PhD thesis,
487		University of Melbourne, (2014).
488	34	Goldman Eisler, F. Psycholinguistics: Experiments in Spontaneous Speech. (Academic Press Inc, 1968).
489	35	Joanette, Y. & Goulet, P. in <i>Discourse Ability and Brain Damage</i> (eds Y. Joanette & H. H. Brownell)
490		(Springer New York, 1990).
491	36	Wechsler, D. Wechsler Abbreviated Scale of Intelligence-II. (Harcourt Assessment Inc, 2011).
492	37	Smith, J. A. Reflecting on the development of interpretative phenomenological analysis and its
493		contribution to qualitative research in psychology. <i>Qualitative Research in Psychology</i> 1 , 39-54,
494		doi:10.1191/1478088704qp004oa (2004).
495	38	Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. <i>Journal of the American Statistical</i>
496 497	20	Association 58 , 236-244, doi:10.1080/01621459.1963.10500845 (1963).
497	39	Luo, J. & Xiong, C. Youden index and Associated Cut-points for Three Ordinal Diagnostic Groups. <i>Commun</i>
498	40	<i>Stat Simul Comput</i> 42 , 1213-1234, doi:10.1080/03610918.2012.661906 (2013).
499 500	40	Youden, W. J. Index for rating diagnostic tests. <i>Cancer</i> 3 , 32-35 (1950).
500 501	41	Duong, L. <i>et al.</i> Mutations in NRXN1 in a family multiply affected with brain disorders: NRXN1 mutations and brain disorders. <i>Am J Med Genet B Neuropsychiatr Genet</i> 159B , 354-358, doi:10.1002/ajmg.b.32036
502		
502	42	(2012). Shi, L. <i>et al.</i> Whole-genome sequencing in an autism multiplex family. <i>Mol Autism</i> 4 , 8, doi:10.1186/2040-
503	42	2392-4-8 (2013).
505	43	Chapman, N. H. <i>et al.</i> Whole exome sequencing in extended families with autism spectrum disorder
505	45	implicates four candidate genes. <i>Hum Genet</i> 134 , 1055-1068, doi:10.1007/s00439-015-1585-y (2015).
507	44	Salyakina, D. <i>et al.</i> Copy number variants in extended autism spectrum disorder families reveal candidates
508		potentially involved in autism risk. <i>PloS one</i> 6 , e26049, doi:10.1371/journal.pone.0026049 (2011).
509	45	Losh, M. <i>et al.</i> Neuropsychological profile of autism and the broad autism phenotype. <i>Arch Gen Psychiatry</i>
510	-15	66 , 518-526, doi:10.1001/archgenpsychiatry.2009.34 (2009).
511	46	Billeci, L. <i>et al.</i> The Broad Autism (Endo)Phenotype: Neurostructural and Neurofunctional Correlates in
512	-10	Parents of Individuals with Autism Spectrum Disorders. <i>Frontiers in Neuroscience</i> 10 ,
513		doi:10.3389/fnins.2016.00346 (2016).
514	47	Geschwind, D. H. & State, M. W. Gene hunting in autism spectrum disorder: on the path to precision
515		medicine. <i>The Lancet. Neurology</i> 14 , 1109-1120, doi:10.1016/S1474-4422(15)00044-7 (2015).
516	48	Leppa, V. M. <i>et al.</i> Rare Inherited and De Novo CNVs Reveal Complex Contributions to ASD Risk in
517		Multiplex Families. Am J Hum Genet 99, 540-554, doi:10.1016/j.ajhg.2016.06.036 (2016).

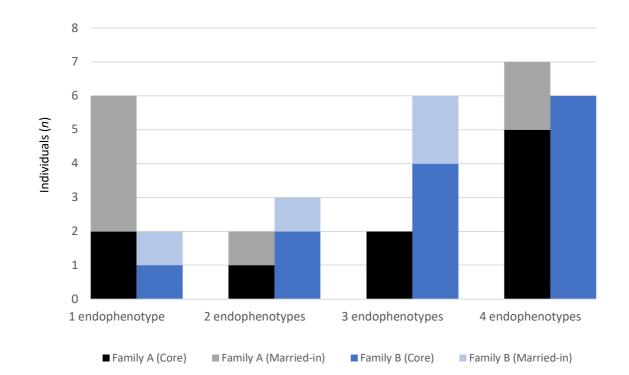

518	Competing Interests: The authors declare no conflicts of interest
519	Figure Legends
520	Figure 1. Scrambled pedigrees for Family A (panel A) and Family B (panel B) at recruitment.
521	Individuals with a diagnosis of ASD are marked in black, and individuals recruited from the
522	broader families are marked in yellow. White diamonds are individuals who were not recruited
523	but are represented here to preserve the pedigree lines.
524	
525	Figure 2. Iterative process used to identify and assess BAP endophenotypes.
526	
527	Figure 1. Scrambled pedigrees for Family A (panel A) and Family B (panel B) showing
528	phenotypes and endophenotypes. All individuals with ≥ 1 endophenotype had the BAP, with the
529	exception of two individuals from Family B (III-3 and IV-9) marked with an asterisk. These
530	individuals were clinically determined as unaffected (Family B III-3 and IV-9) but had above
531	threshold endophenotype scores based on ROC curves. Family members who were not
532	phenotyped are not shown to preserve the anonymity of these families.
533	
534	Figure 4. Number of BAP endophenotypes present in Family A and B. Individuals married-in to
535	Family A tend to have a single endophenotype, indicating a more mild BAP presentation, in
536	contrast with core family members who have multiple endophenotypes (obsessive most
537	frequent). In Family B, married-in and core family members tend to have more than one
538	endophenotype, with the aloof endophenotype most frequent.
539	

(a) Family A Pedigree



(b) Family B Pedigree





(a) Family A Pedigree

(b) Family B Pedigree

