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Abstract 

Human emotions are complex and constructed of multiple facets of separable components. 

Amongst many models of emotions, circumplex model of emotion is one of a major theory. The 

use of the circumplex model allows us to model variable aspects of emotion; however, such 

momentary expression of one’s internal mental state still lacks to consider another, the third 

dimension of time. Here, we provide an exploratory attempt to build a three-axial model of 

human emotion to model one of our complicated sense of anticipatory excitement, “Waku-Waku 

(in Japanese)”, when people are predictively coding upcoming emotional events. 

Electroencephalography (EEG) was recorded from 28 young adult participants while they 

mentalized upcoming emotional pictures. Three auditory tones were used as indicative cues, 

predicting the likelihood of valence of upcoming picture, either positive, negative, or unknown. 

While seeing an image, participants judged its emotional valence during the task, and 

subsequently rated their subjective experiences on valence, arousal, and expectation immediately 

after the experiment. The collected EEG data were then analyzed to determine contributory 

neural signature for each of three axes. As was expected, a three axial model revealed 

considerable contribution of the third dimension over the classical two-dimension model. 

Distinctive contributing EEG components for each axis have been determined. The resultant 

model is provided as a novel model of ‘brain-emotion-interface’. Limitations and applicability of 

this method are discussed. 
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1. Introduction 

Human emotions are complex and constructed of multiple facets of separable components. 

Amongst many models of emotion, two-dimensional circumplex model comprised of valence 

axis and arousal axis originally proposed by Russell [1] is commonly acquired and examined as a 

ubiquitous model across diversities of cultures [2,3]. Other theories such as discrete categorical 

theory exist [4,5]; however, the majority of models agreeably assumes that our emotion is to be 

explained on a momentarily affective state. Recent development of studies of emotion proposes 

an updated model of emotion. Some studies conceptualizes our emotion as ‘affective working 

memory system’ as a form of dynamic and active interactions between cognition and affect [6,7]. 

An alternative notion is also proposed, emotion occurs as a result of internal inference of 

predictive coding [8,9]. As such, our affective awareness may be an interactive state between 

cognitive and emotional functions but not composed of a simple unitary function [see 10 for 

review]. These recent evidences suggest the importance for a novel or more complex model of 

emotion to better account and decode our seemingly complex subjective experiences. 

Particularly, the classical two-dimensional model lacks a notion of temporal dimension. Recent 

trends in neurosciences or psychological sciences proposes our brain as a predictive machine [8] 

supported by Bayesian theories on human brain [11,12], indicating that an emotional status 

might be explained with a sequence of momentarily affective states to predict upcoming states 

under uncertainty. For an instance, one may feel being excited emotionally while speculating on 

what to experience in the future cognitively, such as eating a delicious food in a few hours. 

Assuming the predicting nature of our brain, it is plausible that our emotional experiences may 

be explained by adding another or several dimension(s) to the classical circumplex model. Here, 

based on dimensional theory of emotion, we propose the addition of another dimension 

associated with predictory mechanisms to quantify our mental experiences. 
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1.1 “Kansei”–a multiplex state of mood 

Our motivation for this study came from the idea to quantify such complex state of mental 

representations. In Asian language(s), for example, ‘Kansei (in Japanese a direct translation 

would be ‘sensitivity’ or ‘sensibility’)’ is a widely accepted term that reflects ones feeling 

exogenously triggered by something and that often accompanied by mental images of a target 

[13]. Kansei expressions often reflect a mixture of affective and cognitive states. For an instance, 

being “Waku-Waku”, is one of onomatopoeias state that is typically defined as an emotional state 

in which one is being excited emotionally while anticipating upcoming pleasant event(s) in the 

future cognitively. Closest synonyms for “Waku-Waku” in English may be ‘anticipatory 

excitement’ or ‘a sense of exhilaration’. As our eventual goal is to quantify such a putatively 

complex state, it was hypothesized the addition of an extra dimension of time might well explain 

the state of “Waku-Waku”. Therefore, we have hypothesized that a state of Kansei could be 

modelled with a combination of multi-dimensional axes that incorporates both affective and 

cognitive dimensions, including prediction. To note, in a broad sense, have Kansei not only a 

meaning for ones’ state but also reflects ones trait or preferences based on ones experiences; 

however, we focus on the former, state of one’s affect and cognition in this article. The other 

aspect of trait shall be treated elsewhere.  

Here, we first aimed to build a psychological model for a Kansei, “Waku-Waku”. On a 

basis of a conventional two-dimensional model of affect [1], we hypothesized a three-

dimensional model that was composed of ‘valence’ and ‘arousal’ axes as well as the third 

dimension of time, ‘expectation’. As the third axis, it was defined that ‘expectation’ is a simple 

cognitive aspect of anticipation of upcoming pleasant event, and differentiated against the 
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“Waku-Waku” as a kind of onomatopoeia expression commonly used in Japanese culture as an 

emotional state particularly expecting pleasant events or episodes.  

 

1.2 Brain-computer interface 

Recent developments allow us to build an interface to monitor our brain status real-time and 

represent its status on a screen or a device. Today, the demand for techniques such as 

neurofeedback or brain-computer-interface (BCI) is increasing for use in clinical settings or even 

for industrial set-ups [14-16]. Applications of neurofeedback techniques are developing, some 

apply to visualize ones brain activities by using functional MRI for training and therapeutic 

purposes [17,18]. BCI with EEGs has been also widely employed method to detect a locus of 

ones attention with P300 component [15,16] or as a mean to assess conscious level with α-waves 

[19-21], and so forth. These classical models typically acquire data from one or a few electrode 

channel(s) and focus only a certain frequency range. With improved computational resources, 

BCIs focusing on limb movement acquire an independent component (or common spatial 

pattern) recorded from the whole scalp electrodes, rather than data from solely on one channel 

[22-24]. One can easily expect a further complex BCI could be achieved, such as building a 

neurofeedback system incorporating multiple neural indices such as the multi-dimensional model 

proposed here.  

 

1.3 Brain-emotion interface 

In this study, we first modelled “Waku-Waku” with three dimensions: namely valence, 

arousal and expectation; provided the psychological model for ”Waku-Waku” as an intermixed 

state of higher order affective and cognitive functions [25]. As it turned out, our 3-D model 
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adequately showed a good fit. Given the model, secondly, we derived electrophysiological 

markers using electroencephalogram (EEG) reflecting each axis, namely ‘valence’ and ‘arousal’ 

evoked by seeing images and ‘expectation’ for upcoming images. At last, based on the outcomes 

as mentioned above, we propose a linear equation model of “brain-emotion-interface (BEI)” that 

may be able to quantify “Waku-Waku” by incorporating the three-dimensional psychological 

model with corresponding neural markers for each of the three axes in real-time. Below, we 

show the resultant psychological model, EEG markers for each axis, and propose a prototype 3-

D model for the quantification of “Waku-Waku”. Potential applications of the BEI in clinical or 

industrial settings as a tool of Kansei-engineering as well as limitations in this study are 

discussed. 

 

2. Methods 

As the first step, we focused on building a psychological model for the “Waku-Waku”. We 

performed a picture rating experiment in which participants were asked to imagine what kind of 

novel picture would be displayed depending on a received valence-predicting cue. Immediately 

after the main task, participants completed subjective rating task to rate each condition just to 

confirm pictures used in this study did not differ from conventional scores. Details of the 

experiment and analyses are as it follows.  

Given the hypothesis, an original experimental plan was to elucidate brain functions with 

functional MRI (fMRI) as well as EEG, thereby capturing multi-modal scopes of Kansei. The 

same participants visited the lab three times, twice for fMRI sessions and once for an EEG 

session. The part of fMRI outcome has been reported elsewhere [see 26]. The same task was 

repeated three times, once with an EEG recording and twice with fMRI recordings. We report 
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fMRI session below because it was necessary to include the subjective ratings data obtained from 

all three visits of 28 participants to derive a satisfactory linear model. 

 

2.1 Participants  

Thirty-six healthy young adults (19 females) aged between 19–27 years old were recruited 

locally. Due to technical errors or early termination of all three visits to the lab resulted in 

rejection of some participants. As a result, data from 28 participants (16 females; age mean ± SD: 

22.17	± 1.79) are reported in this report. All reported no history of neurological or psychological 

disorders. All participants had normal hearing abilities with either normal or corrected-to-be 

normal vision. All participants gave their informed consent approved by a local research ethical 

committee located at the Hiroshima University. 

 

2.2 Behavioral procedures  

Participants performed a picture rating task in which they were requested to mentalize upcoming 

novel picture appearing on a computer monitor in accord with an auditory cue that preceded the 

picture onset (see Figure 1). There were 3 cuing conditions, 1) a high-tone predicting a positive 

picture (‘Predictive Pleasant’), 2) a low-tone predicting a negative picture (‘Predictable 

Unpleasant’), and 3) an intermediate tone that indicated a probability of seeing a pleasant and 

unpleasant picture was 50% (‘Unpredictable’). An auditory tone was played for 250msec, 

followed by a blank delay period for 3,750 msec. The conditional assignments for the high and 

low tones were counterbalanced across participants. While arousal of the pictures varied picture 

by picture (see Supplementary Figure 1 and Appendix for detailed ratings of valence and 

arousal), those auditory cue were unrelated to the arousal of upcoming image. To note, we 
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categorized each picture for the purpose of counterbalancing picture sets across different 

sessions; we referred to subjective ratings of valence and arousal reported in the original article  

[IAPS ; 27]. Participants also rated based on their subjective feelings after the experiment (see 

below for details). 

 

 

Figure 1. Experimental schematics of the task (left panel) and sample IAPS pictures selected in this study (right 
panel). Participants heard one of three conditioned auditory tones, each of which predicted upcoming picture to be a 
positive (‘Predicatable pleasant’), negative (‘Predictable Unpleasant’), or either of those at 50% probability 
(‘Unpredictable’). Pitch of tones indicated which condition that trial will be. A high tone, an intermediate tone, or a 
low tone corresponded with positive, unpredictable or negative conditions (conditional assignment for the high and 
low tones were counterbalanced across participants). After a 4,000 msec inter-stimulus-interval (ISI), a picture was 
displayed for 4,000 msec followed by a valence rating task after an image offset. During the ISI, participants were 
requested to imagine what type/kind of picture might be displayed. At the rating period, participants were required 
to rate emotional valence of perceived picture at a 4 Likert scale, ranged the most negative, more-or-less negative, 
more-or-less positive, to the most positive. The right panel shows sample pictures displayed in this study, mapped 
onto valence and arousal two axial model. 
 

During the 4,000ms blank period, participants were requested to imagine what kind of 

image would be displayed. After the delay, an emotional-triggering picture was displayed at the 

center of the screen for 4,000ms (for the details of the selected pictures, see Stimuli section 

below). Followed by the picture display, a red fixation cross appeared at the center of the screen 

for 1,000ms. During this response period, participants were requested to rate their subjective 

feeling of valence, how they are moved by seeing that picture (on a 4 Likert-scale: ‘strongly 

pleasant’, ‘pleasant’, ‘unpleasant’ and ‘strongly unpleasant’) by pressing a corresponding button 
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with a thumb, index finger, middle finger, or a ring finger on a keyboard (for EEG) or a response 

button (in fMRI). Prior to the main task, participants underwent a brief practice session for all 

three condition with a picture set independent to the main task.  

 

2.3 Stimuli  

As a predictory cue, one of three different auditory tones (500, 1,000, or 1,500Hz) were played 

for 200 msec via a headphone worn comfortably. Either 500 Hz (a low tone) or 1,500 Hz (a high 

tone) predicted either pleasant or unpleasant, and 1,000 Hz (an intermediate tone) was used as an 

unpredictable cue. The assignment of high and low tones was counterbalanced across 

participants.  

As novel images, pictures were carefully selected from 1182 the International Affective 

Picture System [IAPS ; 27] with the following criteria. Pictures that might cause an excessive 

negative affect, such as corpses or a like, or that may interfere against our local ethics were 

discarded. In addition, pictures consisting of multiple objects where people may not necessarily 

focus on one aspect of that picture, pictures with intermediate valence that may not evoke 

adequate intensity of valence either positive or negative (such as a plain scenery or object; with 

valence ratings between 4–6, see Supplementary Figure 1), pictures containing texts or symbols 

or items that may have cultural discrepancies (i.e., guns) were disregarded for our picture sets. 

The resulting 320 picture were divided into 2 sets (for two-times of the test for MRI sessions and 

the other for an EEG session) randomly by controlling for average ratings (as reported in the 

IAPS dataset) of valence and arousal. Each set of 160 pictures were counterbalanced across 

participants. Of 160 pictures, a half of them were pleasant and the other half was unpleasant. 

Each picture appeared at least once for a predictory cue (predicting pleasant or unpleasant), and a 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2019. ; https://doi.org/10.1101/659979doi: bioRxiv preprint 

https://doi.org/10.1101/659979


3-D MODEL OF ANTICIPATION OF EXCITEMENT   10 

half of the 80 pictures each (pleasant and unpleasant) were used twice as a condition of 

unpredictory cue (‘intermediate tone’). Of selected pictures, spatial frequency and brightness 

were also controlled for the picture sets so that brightness and spatial frequency (high or low split 

at 140 Hz) of visual features were not significantly different among different sets. In addition, 

based on contents of each picture have been visually determined (human, animal, scenery, and 

others), and the categorical information was also equally distributed into each set. See 

Supplementary Figure 1 for the details of valence and arousal ratings used in this study. All 

IAPS pictures were novel to the participants.  

A Dell 24-inch LCD monitor was used to display pictures at a 1920 x 1080 pixels 

resolution. A chin-rest placed 56cm away from the monitor was used to stabilize monitor to the 

eyes distance across participants. Participants were asked to rest their chin during the task. The 

size of pictures varied, some were oriented in landscape and others were portrait; however, the 

original pictures were displayed to fit to the monitor. All auditory and visual stimuli were 

delivered by the Presentation software version 17.2 (NeuroBehavioral Systems, San Francisco, 

USA).  

As noted above, there were fMRI and EEG sessions. All behavioral tasks remained the 

same, except that the number of trials differed for the fMRI sessions; a total of 120 trials for an 

fMRI session, instead of 240 for EEG, were performed. On each visit, different sets of pictures 

were used to maintain the novelty of pictures. For a case of EEG session, there were 80 trials for 

each cuing condition and a total of 240 trials for an experiment. Regardless of cuing type, 

participants judged 120 pleasant and 120 unpleasant pictures.  

 

2.4 Subjective rating procedures  
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At the completion of the task, participants reported their subjective feelings by rating on a 0–100 

visual analog scale for all conditions. For each condition (such as a condition in which a low-

tone was played as predicting a pleasant picture), participants rated the degree of anticipated 

excitement (in Japanese, “Waku-Waku”), as well as ‘valence’ (unpleasant to pleasant), ‘arousal’ 

(low to high arousal), and ‘expectation’ (low to high expectation). As described above, each 

participant rated a total of three times for each visit of experiment (once for EEG, twice for fMRI 

experiments), and the all rating results have been accrued for the analysis. To note, building a 

model with 28 participants’ data only from one EEG experiment did not reach significance. We 

decided to include the entire three sessions’ data so as to assure all three axes achieved 

significance level.  

 

2.5 Statistical procedures  

A mixed linear model was computed based on these subjective ratings to model the anticipation 

of excitement, using SPSS version 22. The anticipation of excitement (“Waku-Waku”) was a 

dependent variable, and emotional ‘valence’, ‘arousal’, and ‘expectation’ were included in the 

model as independent variables. Assignment of counterbalanced tones, used picture sets, as well 

as examined domain of measures (MRI or EEG) were included as covariates of no interest.  

As described above, inclusion of at least valence and arousal of the original circumplex 

model was expected to be fundamental to the model, likelihood ratio test (χ2 statistic) was 

evaluated on each axis. The all independent variables (axes) met the significant level (p < .05) 

reported formula in section 3.1. As it turned out, the arousal axis did not meet the criteria when 

including only one of three sessions. 
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2.6 EEG procedures  
2.6.1 Recording procedures  

During the above-mentioned task, participants’ EEGs have been recorded with 64ch BioSemi 

Active Two system at a sample rate of 2,000 Hz. In addition to the default 64 channels placed 

according to the International 10-20 system montage, a vertical and a horizontal 

electrooculograms were collected as in convention (approximately 3–4cm below and above the 

center of left eyeball for vertical, and approximately 1 cm horizontally to the side of external 

canthi on each eye). Online reference channel was placed on a tip of nose. 

 

2.6.2 Analytical Procedures  

Recorded EEG data were analyzed offline with EEGLAB toolbox [28] running on the Matlab 

2015a (Mathworks, Inc), and it was partly combined with custom-made functions. Continuous 

data were first removed its DC offset, low-pass filtered with two-way least-squares FIR filter at 

40 Hz, resampled to 512Hz, epoched from 500 msec before cue onset to 8,200 msec after the cue 

onset (4,200 msec after image onset). The epoched data were then average re-referenced, and 

each channel was normalized to the baseline period (the 500 msec before the cue-onset). Any 

trials with excessive artefacts on channels were rejected by the automatic artefact rejection 

model implemented in the EEGLAB with thresholds with more than 100µV, probability over 5 

standard deviations. Each iteration of the artefact detection was performed with a maximally 5% 

of total trials to be rejected per iteration. In addition to the basic artifact rejections, we corrected 

artefacts derived from eye movements using conventional recursive least squares regression 

(CRLS) implemented in the EEGLAB [29] by referring to the vertical and horizontal EOG 

reference channels with 3rd order adaptive filter with a forgetting factor (lambda, ‘λ’) of .9999 

and .01 sigma (‘σ’). The resulting corrected data received the first run of independent component 
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decomposition (also known as, ‘ICA’) and followed by another run of automatic artefact 

rejection now on the independent components (ICs) to remove artifactual components with the 

same criteria used for the channel-based rejection as mentioned above. After the IC-based 

rejections, the second and the last IC decomposition was performed once, resulting in 64 

putatively clean ICs per participant. Finally, dipole analysis was performed for each IC assuming 

one dipole in the brain.  

 

2.6.3 Rejection criteria  

Any ICs with residual variances more than 50% (equivalent to proportion of outliers at p < .005, 

one-tail; z-score > 2.58), estimated dipole positions outside of the brain, or any ICs with an 

inverse weight only on one of EEG channel (IC inverse weight with a channel with more than 5 

standard deviation among the rest of channels) were rejected. This process retained an average of 

33.89 ICs (ranged between 26–43 ICs) per participant. A total of 949 ICs was then proceeded for 

subsequent analyses.  

 

2.6.4 Clustering independent components  

In order to quantitatively determine a number of IC clusters to be extracted, we employed a 

gaussian mixture model (GMM) to cluster ICs based on their scalp topography, and we iterated 

GMM across a range of potential number of clusters (1 up to 60), and the number of clusters to 

extract was determined by Bayesian Information Criteria (BIC) due to its consistency over 

Akaike Information Criteria [30,31]. Because of the nature of independent component analysis, 

polarity of IC scalp map is arbitrary. Therefore, polarity of all retained IC was aligned by 

inverting polarity of each IC weights where necessary such that all components correlate 
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positively to each other prior to the computation of the gaussian mixture models. All the aligned 

data were then Z-score normalized across channels per IC prior to GMM. 

We iteratively clustered the 949 ICs with their inverse weights of the 64 channels by a 

gaussian mixture model that maximizes likelihood using the iterative expectation-maximization 

(EM) algorithm with the following rules. Covariance type was restricted to be diagonal; shared 

covariance was allowed, and with an addition of regularization value of 0.05. A maximum 

number of allowed EM iterations within each fit was set to be 1,000. We repeated the procedures 

for 1–60 clusters (we did not perform more than 60 as the decision could have been drawn 

straightforwardly from this number). The best GMM was determined by their BIC values. 

Finally, centroids of inverse weights for each cluster were computed, each IC was classified 

based on the selected model for subsequent statistical analyses.  

 

2.6.5 Spectrogram computation  

The pre-processed data was re-epoched from –500 to 4,200 msec around the image-onset for 

valence (seeing positive v.s. negative pictures) and arousal (seeing high v.s. low arousal pictures) 

and baseline was corrected between –500 and 0 msec. Likewise, data was re-epoched from –500 

to 4,200 msec around the cue-onset for expectation (expecting positive picture v.s. unpredictable) 

and baseline was corrected between –500 and 0 msec. To note, both epoched data shared the 

same ICs as this epoch separation was done after the final ICA.  

For all retained ICs, spectrogram was computed between 0–4,000 msec from the onset of 

image for ‘valence’ and ‘arousal’, and 0–4,000 msec after the onset of cue for ‘expectation’. The 

resulting spectral power were then averaged for each frequency range of θ (4–8 Hz), α (8–12 

Hz), and β (12–20 Hz). We then examined whether a spectral power of each IC can dissociate 
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each type of valence, arousal, and expectation processes. Because spectral powers for each IC 

did not normally distributed for the most cases, Wilcoxon signed-rank test was applied and its 

alpha-level was corrected by false discovery rate (FDR) method, controlling for multiple 

comparisons across frequencies.  

 

3. Results 
3.1 Psychological model of “Waku-Waku”  

See Figure 2 for a summary of subjective ratings for each cuing condition (‘expecting pleasant’, 

‘unpredicting’, and ‘expecting unpleasant’). Based on these rating, a mixed linear model was 

tested with valence and arousal only and the 3-axis model including expectation. With the 2-axial 

model, “Waku-Waku (‘W’)” was modelled as follows (adjusted R2 = .90): 

W	 = 	 .67 ∗ Valence	 +	 .34 ∗ Arousal (1) 

The linear model for the 3-axial model was as follows (adjusted R2 = .93). 

W	 = 	 .38 ∗ Valence	 +	 .11 ∗ Arousal +	 .51 ∗ Expectation (2) 

As was expected, the 3-dimensional model topped its fitting accuracy by 3 percent of variance. 

Notably, the added third axis of expectation was highly loaded. When including only one of 

experimental sessions, a coefficient for the arousal axis did not meet our criteria but the other 

two valence and expectation axes met (p < .05). For completeness, here are the fitted formula for 

each session: [MRI1: W = .53*V + .04*A + .45*E; MRI1: W = .30*V + .12*A + .52*E; EEG: W 

= .29*V + .16*A + .61*E], where W, V, A, and E correspond to Waku-Waku, valence, arousal, 

and expectation. AIC values for each session (MRI1, MRI2, and EEG) with the three axial model 

were: 670, 686, and 669. These AIC results validate comparability of the scores on all three 

sessions. 
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Figure 2. Grand-averaged subjective ratings of anticipation of excitement (“Waku-Waku” in Japanese), valence, 
arousal, and expectation on a 0–100 scale for each cued condition: namely, predictive pleasant (‘Pleasant’), 
unpredictive of either pleasant or unpleasant (‘Unpredictable’), and predictive unpleasant (‘Unpleasant’). These 
grand-averages were comprised of all three sessions per participants. Error bars represent 1 SD. As was expected, 
the anticipation of excitement was the highest for the predictively pleasant condition, followed by unpredictable 
condition and predictive unpleasant conditions. Ratings for valence was more or less similar to the anticipation but 
not necessarily the same. Arousal was rated equally across conditions. Expectation (see the main text for definitional 
differences between Waku-Waku and expectation) was similar to that of anticipation of excitement. A mixture 
model was performed on these subjective rating scores to model the anticipation of excitement. The resulting 
formula is reported in the main text. 
 

3.2 Spectral EEG markers  

As a result of the GMM tested for a number of clusters to be extracted based on the inverse 

weights of each IC, 15 clusters were selected based on their BIC values out of 1–60 clusters: 949 

IC maps were aggregated into 15 clusters (See Figure 3; Supplementary Figure 2 also depicts 

centroid coordinates of dipole location for each cluster).  
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Figure 3. Bayesian information criteria values of gaussian mixture model (GMM) for each number of cluster model 
(left panel) and 15 scalp topographies of independent component (IC) clusters determined by the GMM (right 
panel). The number of clusters to extract was determined by Bayesian information criteria (BIC). As it turned out, 
15 clusters (a red dot) were extracted from 28 participants with 64 ICs per participant. “N” corresponds to a number 
of ICs grouped in the cluster. For more details, see Supplementary Materials. Note, a cluster number is not important 
here. 
 

Spectral power has been examined for each IC cluster (see Figure 4 for a summary of 

significant and marginally significant ICs; Supplementary Table 1 contains the statistical results 

of all IC clusters for completeness). For valence, arousal, and expectation axes, 1, 7, and 1 IC 

clusters emerged as significant after FDR correction, respectively. Emotional valence was mainly 

represented by the θ band of IC cluster 6. Arousal instead was able to be quantified by many 

types of ICs, particularly on α band. Of those, the most reliable (shared by 100% of participants) 

and strong (having the highest Z-value) IC was α-band of IC cluster 5. As for expectation, θ-

band of IC cluster 10 emerged to be significant. 

Without the FDR correction, 4, 9 and 4 IC clusters were significant as shown in Figure 4. 

Some IC clusters were shared by all participants (100% of them) but some were not (i.e., cluster 

11 for valence with 79%). Across all comparisons, some IC maps emerged to be weakly 

significant (puncorrected < .05) on different axes, such as cluster 5 for arousal and expectation. No 

single IC cluster (and its same frequency range) survived the correction across all the three axes.  

0 20 40 60
# clusters

1.1

1.2

1.3

1.4

1.5

1.6
BI

C
#105GMM: diagonal Reg. = 0.05 15 Types on tSNE space

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

minimum BIC = 1.1476e+05

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2019. ; https://doi.org/10.1101/659979doi: bioRxiv preprint 

https://doi.org/10.1101/659979


3-D MODEL OF ANTICIPATION OF EXCITEMENT   18 

 

 

Figure 4. Scalp topographies of independent component clusters and frequency ranges found to be significant for a) 
valence axis (seeing positive picture v.s. seeing negative picture); b) and c) arousal axis (seeing high arousal picture 
v.s. seeing low arousal picture); and d) expectation (anticipating positive picture v.s. unpredictable, 50–50 chance to 
see positive picture). A number of participants who held an IC grouped into a cluster (‘Cls.’) and its percentage of 
participants relative to the sample size (n = 28) are listed as well as a total number of ICs clustered into each cluster. 
Color intensities of either red or blue indicates a strong weight on the region. For our purposes, their red/blue color 
representation (either positive or negative) is not relevant as our focus of analysis was solely on spectral power 
without consideration of direction of current. To supplement, the color spectrum of red to blue may be flipped, 
representing the same IC. **Statistically significant at p < .05 FDR corrected; *Statistically significant at p < .05 
uncorrected; n.s. not significant. 
 

3.3 3-D linear model of BEI    

a.

b.

c.

d.
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Given the three-dimensional psychological model (2) and corresponding neural correlates 

selected for each axis, we propose a conceptual BEI to estimate Waku-Waku (‘W’) below.  

W	 = 	 .38 ∗ EEG_Val	 + 	 .11 ∗ EEG_Aro +	 .51 ∗ EEG_Exp (3) 

, where EEG_Val, EEG_Aro, EEG_Exp correspond to standardized (0–100) spectral power of an 

IC for valence, arousal, and expectation axes, respectively. Given the statistical results, we 

selected for the most robust and significant component that survived our criteria. Because 

multiple components were found to be significant for arousal axis, we simply selected the most 

robust component that held the highest Z-score as well as having the highest proportion of 

participants who held the selected IC cluster (100%). The final selected formula for W is 

expressed as below: 

W	 = 	 .38 ∗ 𝐈𝐂𝟔(𝜽) +	 .11 ∗ 𝐈𝐂𝟓(𝜶) +	 .51 ∗ 𝐈𝐂𝟏𝟎(𝜽) (4) 

, where IC6, IC5, and IC10 correspond to IC cluster reported in the Figure 3, Figure 4 and 

Supplementary Table 1; θ and α in parentheses correspond to frequency range of interest for each 

IC. An example workflow using the formula (4) is depicted in Figure 5. 

 

Figure 5. A conceptual workflow of quantification of “Waku-Waku (‘Anticipatory Excitement (A.E.)’)”. Imported 
data would be first preprocessed for subsequent quantification for valence, arousal, and expectation axes. IC weights 
of interest (IC6, IC5, and IC10 as in Figures 3 and 4, respectively) would be extracted on sphered data, time-
frequency power were computed, spectral power would be computed across 4–20Hz and an average of spectral 
power for frequencies of interest (θ, α, and θ, respectively for valence, arousal, and expectation) would be obtained, 
and a standardized score (0–100) would be computed based on the prior on a basis of normal distribution model. 
The final step simply combines the coefficients for each axis (as in formula (4)) with those standardized EEG scores. 
The prior distribution for each neural marker can be constructed from a certain duration of data during a calibration 
stage prior to run this real-time workflow. The final values for valence (‘Val.’), arousal (‘Aro.’) and expectation 
(‘Exp.’) are replaced by those values obtained from EEG as in formula (4). 
 

4. Discussion 
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We proposed a prototypical model of brain-emotion-interface (BEI) to quantify “Waku-Waku” 

towards upcoming visual images using EEG neural markers incorporating a three-dimensional 

psychological model.  

 

4.1 3-D Psychological model  

First, a psychological task to was given to participants to visually trigger one’s emotion and 

participants required to imagine upcoming stimuli. Participants reported their subjective feelings 

when they were anticipating one of three conditions (predicting pleasant, predicting unpleasant, 

and unpredictable) on 4 factors, “Waku-Waku”, valence, arousal, and expectation. As was 

expected, the 3-D psychological model of “Waku-Waku” with an inclusion of an axis of 

‘expectation’ achieved adequately fair fitting accuracy. As quantified by adjusted R2 values, fit of 

the 3-D model was better by 3 percent than the 2-D model. The improvement is trivial to our 

aim, but at least securing the modeling human emotion with multiple axis may be feasible.  

In addition, the 3-D model revealed a high loading on the third axis relative to the rest of 

two axes that classical 2-D circumplex model of emotion would propose [1]. This indicate that 

subjective feeling of interest, “Waku-Waku”, may highly involve the notion of anticipation rather 

than a momentary feeling of pleasantness or arousal. This result was considerably understandable 

because its definition of “Waku-Waku” is described as a state of one’s heart is moved due to 

being pleased and expecting something pleasant. Nevertheless, as was discussed earlier, Kansei, 

or our momentary mental state of emotion may be modelled by multifold of human affects and 

cognitions [7,8,25]. Obviously a psychological model shall not be restricted only by these 

proposed three axes (valence, arousal, and expectation). Particularly the concept of the third axis 

in our case was a concept of prediction, or time, domain; however, any other dimension 
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associated with human senses may be acquired. Nevertheless, our results propose modelling of 

our putatively complex nature of awareness may certainly benefit from multi-dimensional model. 

 

4.2 Corresponding electrophysiological markers for the three axes  

As to determine neural correlates of each axis of BEI, spectral powers of independent 

components of EEGs were analyzed. Valence and arousal axes were quantified from the duration 

in which participants visually seeing an emotionally triggering picture, and expectation axis was 

estimated from the delay period in which they were anticipating upcoming picture according to 

played auditory cue tied to valence types. In order to determine a neural marker for each axis, a 

conventional spectral power analysis was performed on independent components. As it turned 

out, we identified dissociable neural markers for each axis. Notably, there were no overlap across 

all three axes, while a few ICs were found to be weakly related across two of three axes. In the 

other words, there was no single frequency range (θ, α, or β) of a certain IC cluster being 

responsible for all three axes, confirming putative functional independence of these 

psychological axes.  

 

4.2.1 IC markers of valence.  For valence axis, comparing seeing pleasant and unpleasant 

pictures, θ-band of IC cluster 6 was robustly significant and the component was found in 93% of 

participants. In addition, three other ICs including IC cluster 11 with high weights on frontal 

channels remained significant at uncorrected-level. Previous neuroimaging research suggest a 

source in proximity to orbitofrontal areas may be responsible for emotional valence [32]. A 

similar EEG study [33] relating subjective feeling during resting, rather than during a task, 

assessed on another type of 3-D emotional space (valence, arousal, and dominance) solely 

focusing on β-band power of IC clusters found that IC clusters with sources localized in posterior 
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cingulate and right posterior temporal lobe were positively correlated with valence. In this study, 

an estimated dipole of the cluster 6 was centered around the mid- to posterior cingulate regions 

(see Supplementary Figure 2). While we found an IC with a dipole centered around the same 

region but a frequency differed from their study. The frequency difference is an interesting to 

find; however, our experimental paradigm certainly differs from Wyczesany & Ligeza (2014), 

and our finding may indicate relatively slow oscillation at θ-band induced by seeing a visual 

information may be associated with triggering remotely interconnected reward networks 

connected from the precuneus region such as midline orbitofrontal and anterior cingulate regions 

reported in fMRI studies [10]. 

 

4.2.2 IC markers for arousal.  As for arousal axis, visually evoked neural activities by seeing a 

picture with high arousal against low arousal were compared. Amongst many, α-band of IC 

cluster 5 was selected as the best target while many other ICs (7 out of 15 clusters) emerged to be 

significant across all frequency ranges. It is notable that all of the 7 significant ICs were 

significant at the α-band. It has been widely known that alpha-band reflect our arousal [19-21], 

supporting our results. We were rather surprised by finding this many significant ICs for arousal, 

therefore we cannot be conclusive what sort of underlining neural mechanism are responsible for 

visually evoked arousal. This results rather supports previous notion of α-band reflects human 

arousal in general. While we could not find any distinctive neural marker. While we effortfully 

controlled visuophysical features among selected pictures, any aspects of physical properties, 

such as luminance or brightness of each picture might be related to some of components found to 

be significant here. Future studies could quantify detailed physical properties of visual stimuli, 

also using different picture package may be necessary. 
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4.2.3 IC markers for expectation.  As for expectation axis, comparisons of neural activities 

when expecting a pleasant picture against when valence of expecting picture was unknown, θ-

band of IC cluster 10 with its dipole centered around right angular gyrus (proximity to inferior 

parietal lobule and lateral occipital complex regions) was significant. This region is known to be 

responsible for visuospatial attention [34] or maintenance of visual information in memory [35].  

Again, it could have been possible that we might observe the same or similar neural 

marker for expectation as that for valence axis because they merely differed whether they were 

anticipating or actually seeing a picture. One may perceive this as a good evidence by 

dissociating the putatively dissociable axes; however, the similar approach of showing emotional 

pictures while brain functions are monitored in fMRI  [36], Bermpohl, et al (2006) reported 

lateral occipital regions are activated while seeing emotional pictures rather than expecting 

phase, while anterior and posterior cingulate region were responsible for expectation compared 

with neutral targets. One may argue that methodological differences between EEG and fMRI, as 

EEGs may be suitable for detecting electrical discharges while fMRI monitors cerebral blood 

flows. Another putative explanation may be that in our comparison, we did not have pictures 

with neutral valence. In our design, even at the unpredictable condition, anticipated imagery 

could have been either pleasant or unpleasant, or an intermixed state fluctuating between the two 

extremities, but not neutral image. Further detailed investigations would be necessary to discuss 

further about the overlap between the location of dipoles with BOLD responses obtained from 

fMRI studies.        

Nonetheless, a previous fMRI research support dissociable networks for emotional 

expectancy and emotion perception [36], in our case, corresponding to expectation and valence 
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axes, respectively. It is notable that the selected neural marker for the expectation axis was also 

dissociable against ones found to be significant for the valence axis, validating the inclusion of 

this third axis may benefit to quantify dissociable neural processes. It would be indeed 

reasonable to assume different neural mechanisms would underlie different cognitive or affective 

functions. Thus our experimental design at least captured dissociable functions while slightly 

different results were observed compared to previous studies using different techniques. 

 

5. Conclusion 

We proposed a prototype of BEI based on a multi-axis, 3-dimensional, model of emotion to 

quantify our anticipatory excitement using EEG. Fidelity of the BEI shall be examined in the 

future studies; however, provided a certain degree of accuracy backed by statistical results, our 

BEI may be able to quantify and applicable at least for young adult Japanese (or Asian) 

individuals. We found only one IC and its corresponding frequency band for valence and 

expectation axes; however, our result may not be conclusive due to putative cultural or age 

differences. In addition, as our BEI has been built only from an EEG data collected for visual 

stimuli, similar experiments need to be tested with stimuli on other modalities, such as audition 

and tactile.  

Moreover, we found the number of ICs shared by our participants were not perfect, 

especially selected IC clusters for valence and expectation axes were not shared by all 

participants. This suggests that currently proposed BEI model may not be necessarily applicable 

for all individuals, even within our collected samples. A close investigation and individual 

optimization for selecting IC and its frequency range may be necessary to achieve full 

compatibility of the BEI. In addition, we applied GMM method to determine a number of ICs to 
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be clustered together. While this method may be a quantitative mean to determine a number of 

clusters, this approach tends to fluctuate using slightly different parameters, such as 

regularization parameter, or changing a number of replications, etc. Therefore, one should be 

cautious when applying a result observed here. As the number of clusters differ, obviously there 

would be different statistical results may occur. Recent studies of neuroscience propose 

individually decoding and adjusting target neural activities overperform a group-level approach 

[37,38], especially when our focus of the use of this BEI is to accurately quantify anticipation of 

excitement for a certain person. As one could easily think that our personalities widely differ, our 

underlining neuroarchitectures also differ, it is plausible individual adaptation of a target 

frequency also needs to be optimized.  

Our observations in this article may be limited in various aspects; however, this should 

constitute a reasonable basis to quantify our sense of Kansei. There are wide varieties of BCIs 

exist in the field, our approach of considering multiple axis combined with EEG markers may 

become a new tool for a neural consultation. Such tool may be applicable not only for stable 

pictures (i.e., seeing an art, picture, advertisement posters, etc) but also be useful for various 

other situations, such as evaluating emotional responses for seeing a motion-pictures (movies, 

TV commercials). BEI may certainly require further evidences and theoretical supports; 

however, it may become a useful tool for Kansei engineering.  
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