
TITLE 1 

Tolerance of nonsynonymous variation is closely correlated between human and mouse orthologues 2 

  3 

AUTHORS 4 

George Powell*#1,2, Michelle Simon*2, Sara Pulit1, Ann-Marie Mallon2, Cecilia M. Lindgren1,3,4 5 

*Denotes equal contribution. 6 

 #Denotes corresponding author  7 

  8 

AFFILIATIONS 9 

1. Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of 10 

Oxford. 11 

2. MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire, UK, OX11 0RD 12 

3. Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK 13 

4. Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, 14 

MA, USA. 15 

 16 

ABSTRACT 17 

  18 

Genic constraint describes how tolerant a gene is of nonsynonymous variation before it is removed 19 

from the population by negative selection. Here, we provide the first estimates of intraspecific 20 

constraint for mouse genes genome-wide, and show constraint is positively correlated between human 21 

and mouse orthologues (r = 0.806). We assess the relationships between mouse gene constraint and 22 

knockout phenotypes, showing gene constraint is positively associated with pleiotropy (ie an 23 

increased number of phenotype associations (R2 = 0.65)), in addition to an enrichment in lethal, 24 

developmental, and craniofacial knockout phenotypes amongst the most constrained genes.  Finally, 25 

we show mouse constraint can be used to predict human genes associated with Mendelian disease, 26 

and is positively correlated with an increase in the number of known pathogenic variants in the human 27 
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orthologue (R2 = 0.23). Our metrics of mouse and human constraint are available to inform future 28 

research using mouse models.  29 

 30 

 31 

INTRODUCTION 32 

  33 

Pinpointing the genes, genetic variants, and biological pathways that underpin human disease remains 34 

a foremost focus of biomedical research today. Genome-sequencing has characterised human 35 

variation across global populations, and highlighted differences between genes with regard to the 36 

relative number of nonsynonymous variants they carry (Petrovski et al 2013; Lek et al 2016). This 37 

information has been used to estimate genic constraint, a description of how tolerant a protein-coding 38 

gene is to nonsynonymous variation before it is removed from the population by negative selection 39 

(Bartha et al 2018). Genes are more constrained if a) nonsynonymous variants have a high probability 40 

of affecting gene function, and b) there is strong purifying selection against the affect. Constrained 41 

genes are therefore characterised by a relative depletion of nonsynonymous variation. Multiple 42 

methods have been developed to quantify genic constraint in human populations (reviewed by Bartha 43 

et al 2018). The principle of each method is to quantify the difference between the relative number of 44 

nonsynonymous variants observed in each gene and either the genome-wide average (Petrovski et al 45 

2013; Rackham et al 2015), or the expected number assuming neutral selection (Samocha et al 2014; 46 

Bartha et al 2015; Lek et al 2016; Fadista et al 2017; Cassa et al 2017). Constrained genes fall into a 47 

few known categories: some are essential for viability and development, while others associate with 48 

disease (Bartha et al 2018). Quantifying gene constraint can therefore help with the interpretation of 49 

personal genomes, including the identification of pathogenic variants. 50 

  51 

Notably, genic constraint has not been estimated for mouse, which is the most widely utilised 52 

mammalian model organism for biomedical research (Rosenthal and Brown 2007; Justice and Dhillon 53 

2016; Yue et al 2014), and as a result, the relationships in intraspecific constraint between human and 54 
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mouse orthologues remains poorly understood. Quantifying differences in constraint between human 55 

and mouse orthologues could inform future clinical research using mouse models. This could be 56 

particularly pertinent for mouse humanization using CRISPR/Cas9 (Li et al 2014), and the clinical 57 

development of new drugs (Minikel et al 2019). Furthermore, quantifying mouse gene constraint 58 

would improve our understanding of the relationships between gene constraint and gene function in-59 

vivo. The International Mouse Phenotyping Consortium (IMPC) is characterising mammalian gene 60 

function by systematically knocking out mouse genes and using a standardised pipeline to measure 61 

the resulting phenotypes across a spectrum of disease domains (Dickinson et al 2016; Smith and 62 

Epigg 2012; Karp et al 2015). This provides a unique resource to assess the global relationships 63 

between intraspecific gene constraint and gene function. 64 

  65 

This study is the first to quantify intraspecific mouse gene constraint genome-wide and compare 66 

constraint between human and mouse orthologues, characterising genes that are most and least 67 

constrained in both species. We investigate the relationships between mouse gene constraint, mouse 68 

knockout phenotype, and human disease association of the human orthologue. 69 

  70 

  71 

RESULTS 72 

  73 

Identifying constrained genes in mice 74 

  75 

Gene constraint is determined by a relative depletion of intraspecific nonsynonymous variation, and 76 

the power to detect constraint is therefore dependent on the number of variant sites within the 77 

population sample (Bartha et al 2018; Samocha et al 2014). We quantified constraint for mouse genes 78 

using whole genome sequences from the 36 laboratory mouse strains made publicly available by the 79 

Mouse Genomes Project (MGP) (Keane et al 2011). The number of variant sites between the MGP 80 

strains is sufficient to calculate constraint, and is comparable to the number of variant sites in human 81 
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population samples (supplementary table 2). This is due to the phylogenetic distance between strains 82 

and the inbreeding of lineages which increases the probability of allele fixation by genetic drift 83 

(Adams et al 2015; Willoughby et al 2015). 84 

  85 

We quantified constraint for 18,711 mouse genes as a functional Z-score (funZ). The premise of the 86 

funZ method is to quantify gene constraint by standardising the difference between the observed 87 

number of nonsynonymous (defined here as functional) variants in a gene and the expected number, 88 

predicted using a model trained on the number of synonymous (presumed non-functional and 89 

selectively neutral) variants. Genes with a higher funZ have relatively fewer functional variants than 90 

expected and are considered more constrained (figure 1). The funZ method is adapted from the 91 

missense Z-score method proposed by Samocha et al (2014) to make it suitable for application to the 92 

MGP dataset. There are two main methodological differences between the functional Z-score and the 93 

missense Z-score. First, we expand the definition of functional variation to include nonsense in 94 

addition to missense single nucleotide variants (SNVs). Second, we consider all variants in the MGP 95 

dataset that occur homozygous in one or more of the 36 mouse strains. Methodological differences 96 

result in variation between constraint metrics (Bartha et al 2018). We therefore calculated funZ for 97 

17,367 human genes to standardise comparisons of constraint between human and mouse orthologues. 98 

We used the 1000 Genomes Project (1KGP) dataset (1000 Genomes Project Consortium 2015) as the 99 

source of variation to calculate human constraint to limit bias introduced by case control cohorts that 100 

are included in other publicly available datasets (Lek et al 2016). We consider all variants with a 101 

minor allele frequency (MAF) > 0.001 in the 1KGP dataset, thus increasing the probability that they 102 

occur homozygous within the population (Pemberton et al 2012; Allendorf 1986). FunZ is highly 103 

correlated with other metrics of human gene constraint (supplementary table 5). 104 

  105 

Correlation in constraint between human and mouse orthologues 106 

  107 
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Orthologues are defined as genes for which speciation has occurred since divergence from the most 108 

recent common ancestor (Herrero et al 2016). They are classified as one-to-one when only one copy 109 

of the gene is found in each species; one-to-many when one gene in one species is orthologous to 110 

multiple genes in another species (ie the gene has multiplied in one lineage but not the other); or 111 

many-to-many when multiple orthologues are found in both species. We calculated constraint for 112 

15,422 mouse, and 14,982 human orthologues defined by Ensembl (Zerbino et al 2018), using the 113 

MGP and 1KGP datasets respectively. Of these, 13,787 are defined as one-to-one orthologues, 902 114 

human and 1,302 mouse genes are defined as one-to-many orthologues, and 293 human and 333 115 

mouse genes are defined as many-to-many orthologues. 116 

  117 

There is a significant positive correlation in constraint between human and mouse orthologues, 118 

computed as a Pearson’s product-moment correlation coefficient between funZ (r(16268) = 0.806, 119 

p<2.2e-16) (figure 2). This correlation is not, however, consistent between orthologous groupings as 120 

one-to-one orthologues are more closely correlated (r(13785) = 0.827, p<2.2e-16) than one-to-many 121 

(r(1477) = 0.536, p = 8.01e-111) and many-to-many orthologues (r(1002) = 0.148,  p = 2.63e-06). We 122 

used Mann-Whitney U tests to assess differences in constraint between one-to-one, one-to-many, and 123 

many-to-many orthologues between human and mice. There is a significant difference in constraint 124 

between each group (p < 0.0001), with many-to-many orthologues the least constrained and one-to-125 

one orthologues the most constrained (figure 3). This is consistent with previous work highlighting 126 

more constrained genes are less likely to have paralogues (Bartha et al 2015; Georgi et al 2013) and 127 

be copy number variable (Rudefer et al 2016).  128 

 129 

We assessed the relationship between intraspecific constraint (measured as funZ) and interspecific 130 

conservation (measured as the percentage of amino-acid sequence that matches between orthologous 131 

genes) by computing the Spearman’s Rank correlation. There is a significant positive correlation 132 

between mouse constraint and human-mouse conservation (n=16,270, rs=0.566, p<2.2e-16), and 133 

between human constraint and human-mouse conservation (n=16,270, rs=0.497, p<2.2e-16) 134 
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(supplementary figure 2). This highlights that constrained genes are more likely to be conserved over 135 

evolutionary time (Bartha et al 2018).  136 

  137 

Gene constraint and knockout phenotype 138 

  139 

We characterised the relationships between gene constraint and gene function by considering Mouse 140 

Phenotype ontology (MP) annotations from gene knockouts conducted by the IMPC (release 9.1). We 141 

grouped 5,486 gene knockouts studied by the IMPC by their top-level MP terms. Each gene was 142 

included a maximum of once for each top-level term grouping, and top-level terms with less than 50 143 

associated genes were removed from the analysis. IMPC knockouts are subject to a standardised 144 

phenotyping pipeline; however, there is some variation in which phenotyping tests are performed due 145 

to differences in knockout lethality and funding limitations. We therefore compared funZ between all 146 

knockouts annotated with a top-level MP (i.e. knockouts that passed a significance threshold of 147 

0.0001 in one of the associated phenotyping tests), with all knockouts that do not have the top-level 148 

MP annotation but were subject to one or more of the associated phenotyping tests. We used Mann-149 

Whitney U tests with a Bonferroni correction for multiple testing to assess differences between the 150 

groups (figure 4, supplementary table 6). Eleven of the 21 top-level MP terms comprised genes that 151 

were significantly (p < 0.05) more constrained than genes that were tested for but did not have the 152 

top-level MP annotation, with the greatest difference for mortality/aging, craniofacial, and 153 

growth/size/body category phenotypes (figure 4, supplementary table 6). It is of note that the subset of 154 

1,339 knockouts with no IMPC MP annotations are significantly less constrained than the average for 155 

all knockouts (p = 2.4e-16).   156 

  157 

Genes can affect multiple, often seemingly unrelated, phenotypes, and this phenomenon is known as 158 

pleiotropy. We hypothesised that the more phenotypes a gene affects (the more pleiotropic a gene is), 159 

the more likely it is to be under selective constraint. To test this hypothesis, we assessed the 160 

relationship between gene constraint and the proportion of MP ontology annotations associated with 161 
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the IMPC knockout for 5,486 genes. The proportion of MP ontology annotations associated with each 162 

knockout was calculated by dividing the total MP terms associated with each knockout by the 163 

potential number of MP terms (determined by the phenotyping tests that were performed). We binned 164 

knockouts by funZ from 1 to 100 with the least constrained genes in the 1st bin and the most 165 

constrained genes in the 100th bin. We performed simple linear regression to predict the median 166 

proportion of MP terms per mouse knockout as a function of funZ percentile bin (figure 5). A 167 

significant regression equation was found (F(1, 98) = 140.5, p=1.2e-20) with an R2 of 0.59. The 168 

predicted proportion of MP terms is equal to 1.4e-02 + 2.3e-04 for each percentile increase in funZ. 169 

To assess whether this relationship is consistent for distantly related phenotypes we also performed 170 

simple linear regression to predict the median proportion of top-level MP terms per mouse knockout 171 

as a function of funZ percentile bin (figure 5). The MP ontology is a directed acyclic graph, and it is 172 

possible for one MP term to have multiple top-level terms (Eppig et al 2015). We therefore ensured 173 

only one top-level term was counted per MP term. A significant regression equation was found (F(1, 174 

98) = 178.4, p=8.6e-24) with an R2 of 0.65. The predicted number of top-level MP terms is equal to 175 

6.4e-02 + 9.4e-04 for each percentile increase in funZ. Our results highlight genic constraint is 176 

positively correlated with an increase in knockout phenotypes, indicating constrained genes are more 177 

likely to be pleiotropic. 178 

  179 

Human disease association 180 

  181 

Human gene constraint is positively correlated with disease association (Bartha et al 2018). We 182 

considered two hypotheses for assessing the relationships between mouse gene constraint and disease 183 

association of the human orthologue: 1) mouse gene constraint can be used to predict human 184 

orthologues associated with Mendelian disease; 2) mouse gene constraint is positively correlated with 185 

an increase in known pathogenic variants in the human orthologue. 186 

  187 
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We considered five lists of human genes associated with Mendelian disease to assess whether mouse 188 

gene constraint can be used to predict association to Mendelian disease of the human orthologue. The 189 

gene lists were curated by Petrovski et al (2013) using keyword searches in the Online Mendelian 190 

Inheritance in Man (OMIM) database, and have been used to assess the predictive performance of 191 

other constraint metrics including the RVIS (Petrovski et al 2013) and missense Z-score (Samocha et 192 

al 2014). Keyword searches included “haploinsufficiency”, “dominant-negative”, “de novo”, and 193 

“recessive”, in addition to a list of all OMIM disease genes. We used logistic regression to assess the 194 

difference in funZ between mouse one-to-one orthologues of human genes with no OMIM disease 195 

gene association (n=9,906), and each of the OMIM gene lists, and assessed predictive power as ROC 196 

(table 1). We benchmarked the predictive power of mouse funZ against funZ for the human gene, 197 

RVIS, missense Z-score, and pLI (table 1). Genes in each of the OMIM lists are significantly more 198 

constrained (measured as funZ, RVIS, missense Z-score and pLI) than genes with no OMIM disease 199 

gene association (table 1). Mouse orthologues of genes in each of the OMIM lists have a significantly 200 

higher funZ (are more constrained) than mouse orthologues of human genes with no OMIM disease 201 

gene association (figure 6, table 1). Mouse funZ has a similar predictive power to human funZ (table 202 

1), with the difference in constraint most pronounced for the “haploinsufficiency” and the “de novo” 203 

gene lists (figure 6). 204 

  205 

We assessed the relationship between mouse gene constraint and the number of known pathogenic 206 

variants in the human orthologue by considering 52,174 pathogenic variants from the ClinVar 207 

database (Landrum et al 2018). Human-mouse orthologues were binned from 1 to 100 based on their 208 

funZ percentile, with the least constrained genes in the 1st bin and the most constrained genes in the 209 

100th bin. To account for differences in gene length, we averaged pathogenic variants in each gene per 210 

kb. We fit a simple linear regression to predict the mean number of pathogenic variants per kb as a 211 

function of funZ percentile bin for 15,680 mouse and 15,562 human orthologues (figure 7). A 212 

significant regression equation was found for mouse funZ (F(1, 98) = 28.64, p=5.7e-07) with an R2 of 213 

0.226. The predicted number of pathogenic variants per kb = to 0.99 + 0.01 for each percentile 214 
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increase in funZ in the mouse orthologue. This suggests gene constraint can be in part explained by 215 

variants in more constrained genes having an increased likelihood of being pathogenic. 216 

 217 

  218 

  219 

DISCUSSION 220 

  221 

We quantified mouse gene constraint genome-wide, and compared intraspecific constraint between 222 

human and mouse orthologues. Our research has three main findings: First, genic constraint is 223 

positively correlated between human and mouse orthologues.  This correlation is not, however, 224 

consistent between orthology types. We show that constraint is more closely correlated between one-225 

to-one orthologues than one-to-many and many-to-many orthologues. This is consistent with previous 226 

work highlighting more constrained genes are less likely to have paralogues (Bartha et al 2015; 227 

Georgi et al 2013) and be copy number variable (Rudefer et al 2016). Second, mouse gene constraint 228 

is positively correlated with an increased number of knockout phenotype annotations, suggesting 229 

genes that are pleiotropic (ie influence multiple phenotypes and pathways) are more likely to be under 230 

selective constraint. We furthermore highlight an enrichment of constrained genes in mice that are 231 

associated with lethality, developmental and craniofacial knockout phenotypes. Third, mouse 232 

constraint can be used to predict human genes associated with Mendelian disease, and is positively 233 

correlated with an increase in the number of known pathogenic variants in the human orthologue. This 234 

is best explained by the correlation in constraint between mouse and human orthologues, as human 235 

gene constraint has been previously shown to correlate with disease association and pathogenic 236 

variant enrichment (Bartha et al 2018). 237 

  238 

Estimates of gene constraints are dependent on methodological assumptions and the source of genetic 239 

variation on which they are based (Bartha et al 2018).  To calculate constraint for mouse genes we 240 

used sequence variation from 36 mouse strains that have been inbred to achieve homology of genetic 241 
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backgrounds (Adams et al 2015). In diploid organisms, selection strength, and therefore constraint, is 242 

influenced by penetrance and zygosity (Fuller et al 2018). For example, variants may be under 243 

stronger negative selection in homozygous individuals than heterozygous if there is lower penetrance 244 

associated with heterozygosity.  Inbreeding increases homozygosity and the probability that 245 

deleterious recessive alleles will be removed from the population by negative selection (Willoughby 246 

et al 2015). Our estimate of mouse gene constraint is therefore biased towards identifying genes that 247 

are intolerant of homozygous variation. To account for this in our estimate of human gene constraint 248 

we only considered variants with an MAF > 0.001, thus increasing the probability that they occur 249 

homozygous within the population (Pemberton et al 2012; Allendorf 1986). 250 

  251 

We observed a greater correlation in intraspecific constraint between human and mouse orthologues 252 

compared with the correlation between intraspecific constraint and interspecific conservation. This 253 

has two potential explanations: First, selection pressure and therefore constraint can change over 254 

evolutionary time, and this may have led to deviation in the amino-acid sequences of orthologous 255 

genes since the lineages diverged. Second, there is regional variability in constraint within genes due 256 

to differences in the functional importance of loci (Havrilla et al 2018). This could result in within-257 

gene deviation in the amino acid sequence at loci that are of less functional importance. 258 

  259 

In conclusion, the positive correlation in constraint between human and mouse orthologues indicates a 260 

positive correlation in functional importance between orthologous genes. The strength of this 261 

correlation supports the use of mouse as a model for understanding the mechanistic basis of gene 262 

function and human monogenic disease. 263 

  264 

  265 

METHODS 266 

  267 

Defining genes, quality variants, and coding consequences 268 
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  269 

We used two highly curated publicly available datasets as sources of genetic variation to calculate 270 

constraint for human and mouse genes: the Mouse Genomes Project dataset for mice (Keane et al 271 

2011), and the 1000 Genomes Project (Phase 3) dataset for humans (1000 Genomes Project 272 

Consortium 2015). We considered all protein-coding genes with a HUGO Gene Nomenclature 273 

Committee name, and defined the coding sequence for each gene by their Ensembl canonical 274 

transcript (release 94) (Zerbino et al 2018). We considered all single nucleotide variants (SNVs) with 275 

“PASS” filter status as described by the 1000 Genomes Project and Mouse Genomes Project (1000 276 

Genomes Project Consortium 2015; Keane et al 2011). Genes were filtered that do not have one or 277 

more SNV in their canonical transcript. Measurements of constraint are biased towards longer genes 278 

with more variants, and we therefore removed genes with a canonical transcript > 1.5 kb, or more than 279 

300 SNVs. This left 17,367 human and 18,710 mouse genes for analysis. Orthologous genes were 280 

defined by Ensembl (release 94) (Zerbino et al 2018). The final dataset consists of 14,982 human and 281 

15,422 mouse genes with one or more orthologue, including 13,787 one-to-one orthologues; 1,479 282 

one-to-many orthologues consisting of 902 unique human and 1302 unique mouse genes respectively; 283 

and 1,004 many-to-many orthologues consisting of 293 unique human and 333 unique mouse genes 284 

respectively. 285 

  286 

We classified SNVs as “functional” and “nonfunctional” based on their annotated consequences for 287 

the amino-acid sequence (supplementary table 1). Functional variants are assumed to change the 288 

amino-acid sequence, and non-functional variants are assumed to be silent. The coding consequences 289 

of SNVs in the 1000 Genomes Project and Mouse Genomes Project datasets were determined using 290 

the Ensembl Variant Effect Predictor (v94.5) (McLaren et al 2016).  One consequence was 291 

determined per SNV using the “--pick” argument which prioritises annotations by canonical transcript 292 

status. We defined missense and nonsense variants as functional, and synonymous variants as non-293 

functional. 294 

  295 
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Calculating sequence-specific probabilities of variation 296 

  297 

The probability of a DNA sequence incurring a substitution mutation is in part dependent on its local 298 

sequence context (Aggarwala and Voight 2016). Consistent with the missense Z-score method 299 

(Samocha et al 2014), we considered the trinucleotide context for calculating gene-specific 300 

probabilities of substitution (ie the probability of Y1 in the trinucleotide XY1Z mutating to Y2 in the 301 

trinucleotide XY2Z is dependent on X and Z). We estimated the 192 relative substitution rate 302 

probabilities of the middle base in each of the 64 potential trinucleotides for humans and mice by 303 

considering the intergenic SNVs in the 1000 Genomes Project and Mouse genomes Project datasets, 304 

and using human to chimpanzee (Pan troglodytes) and mouse (Mus musculus) to Mus Caroli 305 

alignments from Ensembl (release 94) to infer the mutational direction for each SNV (ie which of the 306 

reference and alternate bases is the “ancestral” and “mutant”). We inferred the ancestral and mutant 307 

bases for each SNV following two assumptions: a) the ancestral base is the reference base, or the 308 

alternate base if the alternate base is shared with the related species; b) the mutant base is the alternate 309 

base or the reference base if the alternate is shared with the related species. For each trinucleotide, we 310 

calculated the relative probabilities of substitution by dividing the observed number of intergenic 311 

trinucleotide changes by the number of the trinucleotide in the intergenic ancestral sequence. 312 

Trinucleotide mutation rate probabilities estimated for the human and mouse lineages are highly 313 

correlated (r(190)=0.995, p=2.0e-192)(supplementary figure 1). We used the trinucleotide mutation 314 

rate probability tables to estimate the probabilities of incurring synonymous and functional mutations 315 

for human and mouse genes by considering the coding consequences for each potential substitution in 316 

the canonical transcript, and totalling the trinucleotide specific probabilities of mutation. 317 

Trinucleotide mutation rate tables and gene-specific probabilities of mutation for humans and mice 318 

are provided in the supplementary information. 319 

  320 

Calculating regional and intron mutation rates 321 

  322 
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Mutation rates vary throughout the genome (Hodgkinson and Eyre-Walker 2011). We therefore 323 

estimated the regional mutation rate for each gene by counting the number of SNVs within the genes 324 

start and end coordinates plus 1Mbp upstream and downstream, and dividing by the difference 325 

between the start and end coordinates plus 2,000,000. In addition, we estimated the intron mutation 326 

rate for each gene canonical transcript by dividing the number of intron SNVs (MAF > 0.001) with 327 

the sum of intron lengths. Regional mutation rates for human and mouse genes are provided in the 328 

supplementary information. 329 

  330 

Calculating gene constraint as the functional Z-score (funZ) 331 

  332 

We quantified constraint for mouse and human genes as a functional Z-score. FunZ is calculated in a 333 

two-stage process. First, we built a model to predict the number of SNVs in each gene assuming no 334 

selection pressure by regressing the number of common (MAF > 0.001) synonymous variants against 335 

the genes sequence-specific probability of synonymous mutation, regional mutation rate, and intron 336 

mutation rate. Model fit and covariate significance are provided in supplementary table 3. To compare 337 

the impact of MAF on the results, we calculated constraint for human genes across a range of MAF 338 

thresholds (MAF > 0.001, MAF > 0.0005, and MAF > 0.0001), and funZ is closely correlated 339 

between the results (supplementary figure 4). The Mouse Genomes Project dataset has a greater ratio 340 

of synonymous variants to functional variants compared to the 1000 Genomes Project Dataset. This 341 

can be explained by the increased probability of synonymous fixation by genetic drift during the 342 

selective breeding of inbred strains (Willoughby et al 2015). To account for this we divided the 343 

number of synonymous variants in each gene in the Mouse Genomes Project dataset by two before 344 

regression. Second, we use this model to predict the expected number of functional SNVs in each 345 

gene, given neutral selection, by substituting in the genes sequence-specific probability of functional 346 

mutation. We standardised the difference between the observed and expected number of common 347 

functional variants for each gene as a Z-score (funZ). Genes with a higher funZ have relatively fewer 348 

common functional variants than expected and are considered more constrained (figure 1). 349 
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  350 

Correlation between human and mouse orthologues, and with other measures of intraspecific 351 

constraint and interspecific conservation 352 

  353 

Human-mouse orthogues were defined by Ensembl (release 94) (Zerbino et al 2018), and correlation 354 

in constraint between orthologous genes was calculated as a Pearson’s product-moment correlation 355 

coefficient between funZ. We calculated the Spearman’s Rank correlation between human constraint 356 

measured as funZ, and previously published measures of intraspecific constraint (RVIS, missense Z-357 

score, and pLI) (supplementary table 5). We calculated the Spearman’s Rank correlation between 358 

human and mouse constraint measured as funZ, and interspecific conservation measured as the mean 359 

percentage of amino-acid sequence that matches between orthologues (Query % ID and Target % ID) 360 

(Zerbino et al 2018) (supplementary figure 2). 361 

  362 

Assessing mouse constraint and knockout phenotype 363 

  364 

We investigated the relationship between gene constraint measured as funZ and gene function by 365 

considering knockout phenotypes for 5,486 genes from the IMPC)(release 9.1. Knock-out phenotypes 366 

are quantified using a standardised pipeline and annotated in the MP(Smith and Epigg 2012). We 367 

grouped genes by associated top-level MP term. Each gene was included a maximum of once in each 368 

group. We discarded top-level MP terms with less than 50 associated knockouts. We also curated a 369 

list of genes that have been knocked out by the IMPC, but have no MP annotations. IMPC knockouts 370 

are subject to different phenotyping pipelines due to due to differences in lethality and ethical 371 

limitations. We therefore compared funZ between all knockouts annotated with a top-level MP (ie 372 

knockouts that passed a significance threshold of 0.0001 in one of the associated phenotyping tests), 373 

with all knockouts that do not have the top-level MP annotation but were subject to one or more of the 374 

associated phenotyping tests. We used Mann-Whitney U tests with a Bonferroni correction for 375 

multiple testing to assess differences between groups. 376 
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  377 

We investigated the relationship between gene constraint and the proportion of MP terms associated 378 

with the IMPC knockout, to serve as a proxy for the pleiotropic effect of a gene. The proportion of 379 

MP ontology annotations associated with each knockout was calculated by dividing the total MP 380 

terms associated with each knockout by the potential number of MP terms (determined by the 381 

phenotyping tests that were performed). We binned 5,486 IMPC knockouts by funZ from 1 to 100 382 

with the least constrained genes in the 1st bin and the most constrained genes in the 100th bin. We 383 

performed two simple linear regressions: 1) to predict the median proportion of unique MP terms per 384 

mouse knockout as a function of funZ percentile bin, and 2) to predict the median proportion of 385 

unique top-level MP terms per mouse knockout as a function of funZ percentile bin. The MP ontology 386 

is a directed acyclic graph, and it is possible for one MP term to have multiple top-level terms. We 387 

therefore ensured only one top-level MP term was counted per MP term. 388 

  389 

Assessing mouse constraint and human disease gene association 390 

  391 

We benchmarked the ability of human and mouse funZ to predict genes associated with Mendelian 392 

disease against the publicly available constraint metrics RVIS (Pertovski et al 2013), missense Z-393 

score (Samocha et al 2014), and pLI (Lek et al 2016). We considered five lists of human genes 394 

associated with human disease curated by Petrovski et al (2013) using keyword searches in the Online 395 

Mendelian Inheritance in Man database. Keyword searches included “haploinsufficiency”, 396 

“dominant-negative”, “de novo”, and “recessive”, in addition to a list of all OMIM disease genes. We 397 

used univariate logistic regression models to assess the difference in constraint measured as funZ, 398 

RVIS, missense Z-score, pLI between genes with no OMIM disease gene association, and each of the 399 

OMIM gene lists, in addition to a multivariate model including each constraint metric as a covariate. 400 

We assessed predictive power of each model as the area under the curve of the Receiver Operating 401 

Characteristic (ROC). 402 
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Human pathogenic variants were obtained from ClinVar (Landrum et al 2018). The Ensembl 404 

canonical transcripts for SNVs labelled “pathogenic” or “likely pathogenic” were identified using the 405 

Ensembl Variant Effect Predictor (v94.5). This left 52,174 pathogenic variants for analysis in human 406 

genes with mouse orthologues for which funZ is calculated. Human-mouse orthologues were binned 407 

from 1 to 100 based on their funZ percentile, with the least constrained genes in the 1stt bin and the 408 

most constrained genes in the 100th bin. To account for differences in gene length, we averaged 409 

pathogenic variants in each gene per kb. We fit simple linear regression models to predict the mean 410 

number of pathogenic variants per kb as a function of funZ percentile bin for 15,680 mouse and 411 

15,562 human orthologues. 412 

  413 
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 568 

FIGURES 569 

 570 

 571 

Figure 1 – Scatter plots highlighting the relationship between the observed and expected common 572 

functional variant sites for mouse genes (n = 18,711) and human genes (n = 17,368). Variants are 573 

defined as “common” and “functional” if they have a MAF > 0.001, and are annotated as altering the 574 

amino-acid sequence of the protein. The expected number of functional variants is predicted with a 575 

model trained on the number of synonymous (presumed selectively neutral) variants. Constrained 576 

genes have proportionately fewer observed common functional variant sites than expected given no 577 

selection. The plots are annotated for the two percent most constrained and least constrained genes in 578 

red and blue respectively. 579 
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 581 

Figure 2 -- Constraint is correlated between human and mouse orthologues (r(16268) = 0.806, 582 

p<2.2e-16). Constraint was quantified for 15,422 mouse, and 14,982 human orthologues as funZ with 583 

a higher score indicating a greater degree of constraint. The most constrained orthologues in humans 584 

(n = 1,324) and mice (n = 1,321) were categorized as those that ranked among the top 10% for 585 

constraint in both species, and are annotated in red. The least constrained orthologues in humans (n = 586 

327) and mice (n = 363) were categorized as those that ranked among the bottom 10% for constraint 587 

in both species, and are annotated in blue. 588 
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 590 

Figure 3 -- Distributions of constraint by orthology types (one-to-one, one-to-many, and many-to-591 

many) for human and mouse orthologues. Constraint is quantified as funZ, with a higher score 592 

indicating a greater degree of constraint. Mann-Whitney U tests were used to assess differences 593 

between groups. There is a significant difference in constraint between each group (p < 0.0001), with 594 

many-to-many orthologues the least constrained and one-to-one orthologues the most constrained. 595 
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 597 

Figure 4 – Differences in constraint between mouse genes associated with 21 top-level phenotype 598 

terms from the Mammalian Phenotype (MP) Ontology, and for knockouts with no annotated MP 599 

terms from the International Mouse Phenotyping Consortium (IMPC). We assessed 5,486 knockouts 600 

conducted by the IMPC. Constraint was quantified for each knockout as the percentile rank of funZ, 601 

with a higher score indicating a greater degree of constraint. The difference in funZ from each MP 602 

grouping was standardised against the median funZ of knockouts that have had one or more MP 603 

associated phenotyping test in the IMPC pipeline but are not annotated with the MP, indicated by the 604 

red line. Mann-Whitney U tests were conducted with a Bonferroni correction for multiple testing to 605 

assess significance between groups (* signify significance thresholds of 0.05, 0.01, 0.001, and 606 

0.0001). 607 
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 609 

Figure 5 -- Mouse gene constraint is positively correlated with an increased number of knockout 610 

phenotypes. Mouse Phenotype Ontology (MP) terms associated with 5,486 mouse knockouts were 611 

obtained from the International Mouse Phenotyping Consortium. The MP term hit-rate for each 612 

knockout was calculated by adjusting the total MP terms associated with each knockout by the 613 

potential number of MP terms (determined by the phenotyping tests that were performed). Knockouts 614 

were binned from 1 to 100 based on their funZ percentile, with the least constrained genes in the 1st 615 

bin and the most constrained genes in the 100th bin. Regression lines are for (A) the median MP term 616 

hit-rate per knockout as a function of funZ percentile bin, and (B) the median top-level MP term hit-617 

rate per knockout as a function of funZ percentile bin. 618 

  619 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657981doi: bioRxiv preprint 

https://doi.org/10.1101/657981


 620 

Figure 6 – Distributions of constraint percentile for one-to-one mouse orthologues of human genes 621 

associated with Mendelian disease. Constraint was quantified for each gene as a percentile rank of 622 

funZ with a higher score indicating a greater degree of constraint. Mendelian disease gene lists were 623 

curated by Petrovski et al (2013) using key-word searches in the Online Mendelian Inheritance in 624 

Man (OMIM) database. Logistic regression models were used to assess the difference in constraint 625 

between each group and orthologues not included in any of the gene lists (non-OMIM). Mouse 626 

orthologues of human genes associated with Mendelian disease are significantly more constrained 627 

(p<0.0001) than mouse orthologues of human genes not include in any of the gene lists. 628 
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 630 

Figure 7 – Mouse constraint is correlated with the number of known pathogenic variants in their 631 

human orthologues. Pathogenic variants were obtained from the ClinVar database (n = 52,174). 632 

15,680 mouse and 15,562 human orthologues were binned from 1 to 100 based on their funZ 633 

percentile, with the least constrained genes in the 1st bin and the most constrained genes in the 100th 634 

bin. Regression lines are for A) the mean number of pathogenic variants per kb in the human 635 

orthologue as a function of mouse funZ percentile bin (p=5.7.e-07), and B) the mean number of 636 

pathogenic variants per kb as a function of human funZ percentile bin (p=9.1e-06). Standard error is 637 

highlighted in grey. The median number of pathogenic variants per kb for each percentile bin is given 638 

in red, and highlights an enrichment of known pathogenic variants in the two percentiles containing 639 

the most constrained genes in humans and mice. Gene constraint can be in part explained by variants 640 

in more constrained genes having an increased likelihood of being pathogenic. 641 
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  643 

TABLES 644 

 645 

Table 1 – Efficacy of funZ, RVIS, missense Z-score, and pLI in predicting gene lists from the Online 646 

Mendelian Inheritance in Man (OMIM) database. FunZ is calculated for the gene and the mouse 647 

orthologue. Keyword searches include “haploinsufficiency” (n=151), “dominant-negative” (n=317), 648 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657981doi: bioRxiv preprint 

https://doi.org/10.1101/657981


“de novo” (n=383), and “recessive” (n=687), in addition to a list of all OMIM disease genes 649 

(n=1,917). We used logistic regression to assess the difference in constraint between genes with no 650 

OMIM disease gene association (n=9,906), and each of the OMIM gene lists. 651 

OMIM search term (n) Missense Z-

score 

pLI RVIS Human 

funZ 

Mouse 

funZ 

“haploinsufficiency” 

(n=151), 

Estimate 

(Std 

error) 

3.40 (0.36) 2.35 

(0.22) 

-3.23 

(0.35) 

3.61 

(0.37) 

3.47 

(0.36) 

P 8.1e-21 1.5e-25 4.8e-20 1.5e-22 1.0e-21 

ROC 0.74 0.76 0.73 0.75 0.75 

“dominant-negative” 

(n=317) 

Estimate 

(Std 

error) 

1.73 (0.21) 1.01 

(0.13) 

-1.60 

(0.21) 

1.75 

(0.21) 

1.50 

(0.21) 

P 3.9e-16 8.9e-15 2.5e-14 9.8e-17 4.6e-13 

ROC 0.64 0.62 0.63 0.64 0.62 

“de novo” (n=383) Estimate 

(Std 

error) 

2.24 (0.20) 1.26 

(0.12) 

-1.55 

(0.19) 

2.10 

(0.20) 

2.23 

(0.20) 

P 2.0e-28 1.0e-25 3.4e-16 3.3e-26 9.4e-29 

ROC 0.67 0.65 0.62 0.66 0.67 
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“recessive” (n=687) Estimate 

(Std 

error) 

-0.37 (0.14) -0.39 

(0.10) 

-0.38 

(0.14) 

0.68 

(0.14) 

0.92 

(0.14) 

P 6.9e-03 1.1e-04 5.8e-03 7.1e-07 4.6e-11 

ROC 0.53 0.56 0.53 0.56 0.58 

all OMIM disease genes 

(n=1,917). 

Estimate 

(Std 

error) 

0.27 (0.09) 0.04 

(0.06) 

-0.68 

(0.09) 

0.87 

(0.09) 

0.96 

(0.09) 

P 1.3e-03 4.7e-01 5.4e-15 2.1e-23 1.2e-27 

ROC 0.52 0.51 0.56 0.57 0.58 
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