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Abstract

Over the past decade there have been impressive advances in determining the 3D
structures of protein complexes. However, there are still many complexes with unknown
structures, even when the structures of the individual proteins are known. The advent
of protein sequence information provides an opportunity to leverage evolutionary
information to enhance the accuracy of protein-protein interface prediction. To this end,
several statistical and machine learning methods have been proposed. In particular,
direct coupling analysis has recently emerged as a promising approach for identification
of protein contact maps from sequential information. However, the ability of these
methods to detect protein-protein inter-residue contacts remains relatively
limited.

In this work, we propose a method to integrate sequential and co-evolution
information with structural and functional information to increase the performance of
protein-protein interface prediction. Further, we present a post-processing clustering
method that improves the average relative F1 score by 70 % and 24 % and the precision
by 80 % and 36 % in comparison with two state-of-the-art methods PSICOV and
GREMLIN.

Introduction

Proteins interact with one another as part of their function [15]. While computational
and experimental approaches for identifying the 3D structures of protein complexes has
advanced significantly, there are still many complexes with unknown structures, even
when the structures of the individual proteins are known. Over the past few years, there
has been a growing interest in methods that apply evolutionary information extracted
form protein sequence changes to protein structural and functional problems such as
protein folding and protein-protein interactions.

Existing work: Interface prediction methods can be broadly divided into
template-based (structure) predictors, sequence-based methods, and hybrid methods.
When structural information is available, it can be used to improve the protein-protein
binding prediction. For example 3D-based predictors rely on the assumption that the
binding interface has distinct structural properties compared to the rest of the protein
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[1, 28, 27, 33]. These models use the 3D structure of two proteins to find an optimum
docking model. The main disadvantage of these methods is that they require a high
degree of similarity between template structures and the target complex. Also, these
models are designed based on a specific knowledge of the physical system, which is
error-prone and does not generalize well.

The second category are sequence-based predictors. These predictors utilize machine
learning and probabilistic models such as Bayesian methods, Hidden Markov Models
(HMMs), and conditional Random Fields [23, 19, 2, 6], trained on features extracted
from the proteins’ sequences to predict the binding sites. For example, sequential
features such as hydrophobicity, which plays an important role in stabilizing
protein-protein interactions, and amino acid propensity, are typically utilized to infer
binding site properties. These features reduce the search space to specific regions in the
protein and limit the putative binding sites to a smaller set of feasible residues that
have interface properties. While protein interfaces are usually associated with these
properties, they are not universally applicable to all complexes and associations may
vary based on interacting protein families.

The third category of methods combine the previous two approaches in predicting
the binding residues [9, 28, 24]. Although these methods have a higher performance rate
in cross-validation studies, their performance decreased significantly when applied to
new independent protein families, presumably due to high number of parameters and
over-fitting.

In [5], Esmaielbeiki and others provide a comprehensive benchmark, comparing more
than 70 protein interface prediction methods across multiple datasets. The conclusion of
this extensive study is that the aforementioned structural features are necessary but not
sufficient in determining protein-protein interactions. These features are too general and
in order to have a robust and generalizable model, the characteristics of the partnering
proteins should be taken into consideration for predicting the binding interface. Studies
show that the most informative structural and sequential features for protein interfaces
are the solvent accessible surface area (SASA), secondary structure, the geometric shape
of the protein surface, hydrophobicity, conservation, amino acid propensity and the
crystallographic B-factor [7, 5]. Other features have also been considered but
improvement in performance is negligible.

Protein Complexes and Co-Evolution: Protein complexes can be divided into
two categories: Obligatory and Transient. All homodimer and some heterodimer
complexes are examples of Obligatory complexes. Transient protein complexes form and
break down transiently in vivo. An interaction between an enzyme and an inhibitor is
an example of a Transient complex. In protein-protein interaction context the term
“hotspot” refers to a residue that makes a major contribution to the binding free energy
[36]. Hotspot residues help in stabilizing the protein during conformational changes
[16, 32]. Protein interfaces usually appear as 3-dimensional patch of nearby residues
with every patch containing a hotspot residue. The hotspot residues are typically highly
conserved and the neighboring residues usually co-evolve with the residues of the
interacting protein partner. It is generally believed that when two proteins interact,
some of their amino acids tend to co-evolve, especially in Obligatory complexes since the
rate of mutation in obligatory complexes is higher than Transient complexes [16, 21].
Since sequence information is much more readily available than structural information,
many methods attempt to estimate the interactions between proteins using multiple
sequence alignment (MSA). Existing approaches use various methods of statistical
analysis to detect signals among co-evolving residues. These methods utilize Mutual
Information, phylogenetics, undirected graphical models, deep learning, and more
[10, 13, 4, 26, 26]. The idea of identifying co-evolving residues from MSAs has attracted
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special attention in recent years. Some of these methods include
pseudo-likelihood-based (Markov Random Field) methods such as GREMLIN,
EV-Complex, CCMPred, plmDCA or Gaussian Graphical Model (GGM) methods such
as PSICOV, mfDCA [4, 29, 12, 22, 13]. These methods are designed for identifying
protein contact maps (folding structure).

Graphical Models: In recent years, multiple groups have investigated the
integration of prior knowledge into both pseudo-likelihood and GGM methods for
protein contact prediction, either through using machine learning approaches such as
deep learning and random forest or as a penalized optimization indirectly. For example,
PconsC combines PSICOV and plmDCA into a random forest as well as a 5-layer neural
network in the latest release[30]. Meta-Psicov utilizes two stages of the neural network
to improve upon PSICOV. In the first stage, PSICOV, mfDCA, and CCMPred are
combined and utilized to predict contact sites. Later, in the second stage, the
predictions are refined based on other features such as amino acid propensity, hydrogen
bonds, and secondary structure [14]. CoinDCA [20] incorporates prior knowledge
indirectly as a separate step into the graphical model. This model is based on PSICOV
and incorporates a group-lasso penalty in the optimization function. It additionally
utilizes supervised priors from protein propensity, sequence profile, mutual information,
and other features to improve the predictions.

Recently, some groups have explored deep learning methods for predicting proteins’
structure and interface. RaptorX has been one of the state-of-the-art methods for
predicting protein contacts [34]. It combines threading and machine learning to improve
the alignment quality. Later, the same group applied convolutional neural network
along with CCMPred, which resulted in improved model performance [34].

All these methods depend heavily on the quality of the MSA. Note that if a protein
is highly conserved across multiple families, there is no signal for co-evolution. As a
result all of these methods have MSA and phylogenetics dependency biases among
different species. Moreover, indirect couplings that is typically captured as covariation,
may mislead the prediction. Su lkowska et al [31] showed that not all the covariations
that can be measured by the MSA correspond to co-evolution, which is one of the
contributing factors behind the high false positive rates of these methods. Consequently,
careful integration of a prior interaction map, learned from other non-MSA based
method or clustering of top co-evolving residues can significantly improve the
performance of such models.

This Contribution: In this work, we introduce a meta-method based on undirected
graphical model to improve protein contact prediction. Our focus is to directly integrate
prior information into graphical models to predict the binding site between two
interacting proteins. Figure 1 depicts the workflow of our proposed method. Our
method directly integrates the structural information of the two interacting proteins
along with docking pattern as prior knowledge into the prediction task. More
specifically, the additional structural information is formulated as a penalty that is
passed into a Gaussian Graphical Model (GGM). Further, we introduce a post
processing step that takes the top co-evolving pairs of residues between the two proteins
and constructs interface patches. While the idea of augmenting learning algorithms with
auxiliary information and additional features to learn protein contacts has existed
before, the integration of auxiliary information is typically indirect to the DCA
models [35, 14, 20]. In our approach, we integrate additional sources of information,
which are generalizable to all other protein families, and prior knowledge directly during
the learning stage and not as a separate post processing stage. This integration can be
expanded to include different sources as well.
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Figure 1. Integration of structural information into co-evolution based graphical models
and patch building to filter false positive pairs among top co-evolving residues.

Materials and Methods

We start by giving a general overview of our approach. Given two interacting proteins A
and B, let LA and LB denote the lengths of proteins. we first construct a separate MSA
for each protein using homologous sequences. We then concatenate the MSAs such that
every homologue sequence of protein A from species s1 is matched with its
corresponding homologue sequence in protein B in the the same species. A filtering
process is applied to remove the “duplicate” sequences that are 90% or more identical to
other sequences in the MSA. Additionally, columns in the MSA that have more than
75% gaps are removed. This filtering process greatly enhances the co-evolution signal in
the MSA. Let nM denote the number of sequences in the MSA after filtering. The
concatenated MSA is then represented as a binary matrix XAB , where every position
(amino acid) in the MSA is mapped into a binary vector of size 21 (20 amino acids and
one gap), resulting in a matrix with nM rows and (21× (LA + LB) columns. The goal
of the GGM is to estimate the covariance matrix Σ and further calculate the precision
matrix Θ = (Σ)−1, using which the interactions between the two proteins are inferred.
Every element of the matrix Σ gives the covariance of amino acid type a at position i
with amino acid type b at position j. Therefore, If the (i, j)th element of Θ is zero, then
positions i and j are conditionally independent, given the other positions of the MSA.
Equation 1 gives the objective function of the GGM where S = COV (XAB), Θ, and Λ
are the empirical covariance, precision matrix, and the penalty matrices respectively.
The matrix Λ controls the sparsity of the precision matrix. High values of Λ shrink the
corresponding value of the precision matrix to be 0.

max
Θ

log(detΘ)− tr(SΘ)− Λ||Θ||1 (1)

In our method, the matrix Λ is constructed based on the structural features of the
two contacting proteins using several sources of information that are combined together
by a weighted ensemble average. One of the advantages of constructing a matrix Λ in
this fashion is that multiple sources of information can be combined and integrated into
the optimization. In this work, we use two sources of information. Other sources can be
added in the same fashion.
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Integrating geometry-based information

Since much of the interaction between pairs of proteins is determined by geometric
complementarity of their surfaces, we incorporated geometry based scores into the
penalty matrix. We utilized the ClusPro docking algorithm [18] to calculate geometric
complementarity models of the two proteins. The ClusPro algorithm performs the
following steps:

1. Fast Fourier Transform (FFT) based search [17]. One protein is placed on a fixed
grid and the other on a movable grid, and the search is conducted based on
geometric and energetic constraints.

2. Clustering the resulting conformations based on Interface RMSD (IRMSD).

3. Filtering and refinement to remove steric clashes.

The algorithm returns the top-k complexes, where k is a user-specified value and is
set to 10 by default. We initially used k values ranging from 50 to 150. The top
candidate complexes were used to perform a voting count for every potentially
interacting pairs of residues between the two proteins. The vote increases by one every
time a pair of residues i ∈ [1, LA] and j ∈ [1, LB ] are within a threshold distance d Å
from each other in a candidate complex as predicted by ClusPro. We experimented with
different values of d from 8 to 12Å. Since docking is an approximation, we settled for the
cutoff of 12Å to get a larger pool of candidates for binding. The information obtained
from this matrix is too sparse. However, it can roughly identify the neighborhood of
binding sites. We utilized a smoothing techniques based on a Gaussian convolution filter
with a kernel of size 3 to diffuse the information to neighboring residues. The smooth
matrix is then turned into a probability M1 ∈ RLA×LB by normalizing the values.

Propensity Scores

To construct a contact propensity map, we utilized a subset of the data for training
(total of 58 pairs of interacting proteins [12]) and measured the frequency of contact
between amino acid types. Contacting amino acids were defined as residue pairs with
distance < 12Å, which is an upper bound for the default contact distance. We
normalized the frequencies into a probability matrix in a similar fashion:
M2 ∈ RLA×LB . This matrix encodes the contact propensities between residues in our
training set of proteins. The rationale behind this is that not all amino acids have an
equal probability of interacting with other amino acids, and hence a propensity map
provides prior information on potential of residues to interact. Figure 2 shows a
heatmap of the propensity score.

Prior Information as a Penalty Matrix

The geometric and propensity contact maps were combined into a single penalty matrix
as a weighted average M = w1M

1 + w2M
2w1 + w2. Here 0 ≤ wi ≤ 1 denote the

relative weights of the corresponding contact maps M i, i = 1, 2. The weights reflect the
significance of each contact map and are set as the accuracy of the contact map in
predicting correct binding interfaces between protein complexes in the training set. The
information in the probability model M is imposed as an L1 penalty in estimating the
precision matrix Θ in a way that pairs with a high probability of contacting are
penalized less. Note that even though we only used two sources of information in this
work, the penalty matrix can readily be extended using more sources of information.
This is the subject of current and future work. This information complements the

5/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2019. ; https://doi.org/10.1101/656074doi: bioRxiv preprint 

https://doi.org/10.1101/656074
http://creativecommons.org/licenses/by/4.0/


Figure 2. The amino acid contact frequency measured from all the training data. As
can be seen the propensity of amino acids pairs can vary based on the type of amino
acids. This data is converted into probability of interaction based on amino acid type.
Two amino acids are in contact if the distance between their C-α < 12Å.

information contained in the co-evolution data from the MSA, particularly for those
residues with low co-evolution scores. Converting the probability matrix M into a
correct form of penalty for estimating a sparse covariance matrix is a challenging task
and has a high impact on the performance of the model and the connectivity of the
underlying graph. To find the optimal value of the tuning parameter, we first
determined an upper bound for Λ, denoted by λmax, defined as the minimum value for
which the precision matrix is 0. This was carried out by inspecting the soft-threshold
function in the coordinate descent algorithm [8] that is used for fitting the optimization
problem 1. Setting λmax = max(abs(S)), where S is the empirical covariance matrix,
will achieve this task, resulting in a completely sparse fit. We showed this previously
[11]. Once the upper bound is determined, the Λ matrix is constructed as follows:

• Λj,i = Λi,j = λmax, where i, j belong to only one protein

• Λj,i = Λi,j = λmin + C × λmin(1− Mi,j−min(M)
max(M)−min(M) ), where, i and j belong to

protein A and B, respectively or vice versa.

The value of λmin is set to the threshold of convergence in the GLASSO, which is set to
0.0001. C is a positive integer, which was calculated using the training set and is set to
30. The elements of M are designed to force the values close to 0 if the probability of
interaction between corresponding residues is high. For pairs of residues with low prior
probability of interaction, the value is held near C × λmin. For all values of
intra-protein residues, the corresponding values in M are set to λmax.

The matrix Λ is passed along with S to PSICOV. PSICOV, like other direct
coupling methods, normalizes the precision matrix Θ by taking the norm 2 and applying
an Average Product Correction (APC) [3] to remove phylogenetic biases. It then fits a
logistic curve and ranks the top pairs. A caveat of setting the penalty for intra-residue
pairs to λmax is that the co-evolution score of corresponding residues within the single
proteins is not taken into account, which in turn may impact the overall value of the
normalized co-evolution during the calculation of APC. To address this issue, we took a
“Meta” approach and ran PSICOV (and GREMLIN) without the penalty first, and
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filtered out the intra-protein pairs. We refer to these combined methods as S-PSICOV
and S-GREMLIN respectively. This is similar to the approach taken in
Meta-PSICOV [14], where combining the result of multiple methods (PSICOV,
plmDCA, and GREMLIN) improves the performance of proteins folding.

Post Processing by Patch Building and Filtering

As discussed in the Introduction, building interface patches of residues around
co-evolving residues that are predicted to be at the interface should help in improving
model performance and reducing false positive rate. In this section, we describe our
proposed patch-building and filtering process that accurately identifies clusters of
interacting pairs. As will be shown later, this method has a significant impact on
decreasing the false positive rate (see Results).

Let Γ be the list of top L co-evolving pairs of residues and let Pi denote a patch of
neighboring residues of the i-th residue in the protein (A or B) determined from the
structure of the protein (e.g a PDB file). Each residue in Pi has a distance of less than
4Å from i and has an absolute SASA that is greater than 1 Å.

These patches are constructed for each residue in each protein independently. To
each residue pair e = (i, j) in the list G, we assign two patches, one from protein A,
denoted by Pe = Pi, and from protein B, denoted by P ′e = Pj . Next we construct a
symmetric matrix MΓ of size L× L as follows:

MΓ(e, r) =
length(Pe∩Pr)×length(P ′

e∩P
′
r)

length(Pe∪Pr)+length(P ′
e∪P ′

r) , where e and r are residues pairs that appear

in the list Γ. The elements of the matrix MΓ are a modification of the Jaccard distance
and are designed to measure the similarity between two patch-pairs (Pe, P

′
e) and

(Pr, P
′
r). Note that the value MΓ(e, r) is non-zero if and only if there is an overlap

between the two patches of residues e and r in protein A and also between the two
patches of residues e and r in protein B.

The rational for this design is to distinguish between local clusters of interface pairs
that have a relatively high co-evolution score and appear as neighboring patches of
residues, and pairs of residues that are isolated nodes and have a high co-evolution score
for other reasons such as MSA or phylogenetic biases. It is important to note that the
binding site usually appears as a clusters of residues not as a single residue [? ]. Once
MΓ is constructed, we remove the columns (rows) of MΓ that consist of entirely 0s to
filter top co-evolving pairs that have no intersection with the rest of pairs in Γ. This
process will eliminate most of the false positive pairs from the final interface list, albeit
a small fraction of true positive may also be filtered out.

Figure 3 shows the patch-building result (without removing any columns). MΓ is
represented as an adjacency matrix by replacing the non-zero elements with 1 and
visualizing the resulting graph. Each pair is represented by a node in the graph. If the
distance between two residues in a node is less than 12 Å, it is colored in green and
otherwise in purple. This graph shows that not all co-evolving residues correspond to
physically interacting residues.

Results

Simulated Data

To test the general validity of our approach, we simulated a controlled dataset of MSAs
with various degrees of co-evolution as follows: A first order HMM was used to generate
an in silico MSA. To set the background probabilities, we used the PAM and
BLOSUM62 substitution matrices and estimated the distribution of amino acids in all
the PDB structures. Using this procedure, we built an MSA of size 1000× 200. Next,
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Figure 3. The patch matrix MΓ is converted into an adjacency matrix for the top
co-evolving pairs. The neighboring patches for 1RM6 complex between two chains B-C
are shown. Green pairs correspond to actual interface residues (distance less than 12Å)
and purple pairs are non-interface residues.

six pairs of columns in the MSA were selected to model co-evolution. The strength of
the co-evolution was tuned using three parameters as follows:

• Co-evolution parameter α: A score between 0 and 1, controlling the transition
probability of a 212 states HMM, with 0 corresponding to no co-evolution and 1
corresponding to maximum co-evolution.

• Conservation parameter: The rate of amino acid change from one type to another.
0 means that we expect to see no conservation, and 1 represents that co-evolution
occurs between 2 amino acid types.

• Bias control: We have a fair bias which represents an original PAM matrix.

The six co-evolving pairs of columns were tuned using these parameters to generate
multiple MSAs of various co-evolution strength going from low signal data (α = 0.05)
up to a relatively strong signal data (α = 0.95). We then converted the MSA into a
binary matrix as explained before. In our simulations, we used the maximum value of
the covariance to set the max λ value. We then constructed a penalty matrix by setting
the value of non-interacting pairs to λmax while the rest of the columns received a value
between 0.0001λmax to 0.5λmax. The empirical covariance and the penalty matrix were
then used to fit a GGM model. In our implementation, we utilized the GLASSO
method implemented in

Real Data

We trained and tested our method on benchmark datasets that were provided in the
EV-Complex and GREMLIN [12, 26]. Each of the MSAs constructed for the datasets
has at least one pair of proteins whose individual and complex protein structures are
known, hence providing a ideal benchmark for our method. In each MSA, the first
sequence was form E. coli and hence we used the E.coli complex as our input to the
interface detection algorithm.
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Model Assessment

Protein-Protein interface prediction is an example of highly imbalanced problems, where
the ratio of the positive class to the negative class is extremely small. Therefore, as in
other approaches, we measured the precision ( TP

TP+FP ) and F1 = 2×TP
2×TP+FP+FN scores

for all the models across different settings. Two ranking lengths for the assessing of
top-ranked pairs were considered as follows:

• Top-8: This represents the total number of residues between two proteins in a
complex that have a distance of less than 8Å from each other.

• Top-12: This represents the total number of residues between two proteins in a
complex that have a distance of less than 12Å from each other.

We also considered 8 and 12Å as two different interaction cutoffs. In order to evaluate
the impact of structural prior on DCA models, measuring the relative metric with
respect to existing methods is recommended where the relative F1 and precision scores
are:

• F1′−F1
F1 ,

• precision′−precision
precision .

Positive and negative values of the relative scores correspond to gain or loss of
improvement of the new model as compared with the base model. We benchmarked five
different models to assess contribution of the penalty matrix and patch-building on
model performance. The first two are Meta-methods that incorporate structural-based
prior penalty with PSICOV and GREMLIN which are denoted as S-PSICOV and
S-GREMLIN. The next two models incorporate the patch-building and filtering
process in addition to the structural information and are denoted by PatchS-PSICOV
and PatchS-GREMLIN. Finally, to investigate the impact of patch-building and
filtering independent of the structural prior, used the patch process subsequent to
GREMLIN without any structural information. This method is denoted by
Patch-GREMLIN. We did not include Patch-PSICOV in the result section since it is
known that the performance of DCA in Pseudo-likelihood is greater than the GGM [25]
(Our benchmark also confirmed this). The performance of the models were assessed on
19 complexes. We did not compared any deep learning models such as RaptorX as these
models use a training set that include several of the sequences in our training and test
sets. Large training sets of few thousand protein MSAs are required to train any deep
learning models, which make re-training and testing on benchmark data very difficult.
Therefore, one of the advantages of our method is that it does not rely on a large set of
training unlike deep learning approaches. Figure 4 shows the average relative F1 score
of all five proposed models with respect to PSICOV (black) and GREMLIN (gray). In
Figure 4 (A) and (B), the binding site cutoff is set to 8 and 12 Å and the length of top
co-evolving residues for measuring F1 score for each complex is based on the Top-8 and
the Top-12 respectively. As can be seen PatchS-PSICOV improved the F1 score relative
to PSICOV and GREMLIN by 70% and 24% respectively. Although the structure-based
prior models do not show much improvement by themselves, after the patch-building
and filtering the relative improvement increases significantly. All the patch-based
models results in improved relative F1 performance. This demonstrates the impact of
integrating structural prior along with patch-filtering (compared to Patch-GREMLIN,
which does not utilize structural information). This is because the prior information by
itself adds a lot of false positive and true positive pairs to the top co-evolving pairs but
when patch-building is applied, those pairs that are isolated (mostly false positive) will
be eliminated from final list. In a similar fashion, we measured the relative precision for
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Figure 4. Average relative F1 score of the new proposed models compared to PSICOV
and GREMLIN on the 19 protein complexes. The binding site threshold is set to 8Å (A)
and 12Å(B) respectively.
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Figure 5. Average relative precision score comparison of the new proposed models with
PSICOV and GREMLIN. In A and B the binding site threshold are set to 8Åand 12Å,
respectively among top Top-8 pairs.

all five new models with respect to both PSICOV and GREMLIN. Figure 5 shows the
average relative precision score. As in the F1 score, all patch-based models improve the
average relative precision. Supplementary Figure 2 compares the top 100 ranked pairs
against the actual distance in E.coli F1-ATP synthase inhibited by subunit Epsilon
complex (PDB 3OAA), chains G and H. As shown, there exist more residue pairs within
binding site distance in all the new proposed models relative to the base model. This is
an example of how structural information and patch refinement can impact the
performance of a model (contact distance is assumed 12 Å).

Table 1 shows the average F1 score for all proposed models as well as PSICOV and
GREMLIN. As can be seen, the average F1 score in Patch-GREMLIN outperforms all
other models under all three different settings. Similarly, table 2 represents the average
precision scores. The Patch-GREMLIN model outperforms all other models under two
different conditions. In both conditions there is significant improvement in average
precision score compared to other methods. Moreover, PatchS-PSICOV outperforms
PSICOV and GREMLIN models for binding site cutoff 12Å. We also evaluated the
performance of geometry-based model (the M1 matrix) calculated from ClusPro to
examine the influence of the docking on the performance of our models. As can be seen,
the performance of geometry-based model is relatively low on its own, but when this
information is integrated into the PSICOV followed by patch-building, the performance
improves significantly.
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Table 1. Average F1 score comparison between different models under different
conditions

Model\Condition
cutoff=8,
Top-8

cutoff=12,
Top-8

cutoff=12,
Top-12

GREMLIN 0.20 0.43 0.16
PSICOV 0.18 0.39 0.13

S-PSICOV 0.13 0.32 0.15
S-GREMLIN 0.10 0.27 0.13

PatchS-PSICOV 0.17 0.41 0.18
PatchS-GREMLIN 0.14 0.34 0.16
Patch-GREMLIN 0.24 0.48 0.20

Table 2. Average Precision score comparison between different models under different
conditions

Model\Condition cutoff=8, Top-8 cutoff=12, Top-12
GREMLIN 0.20 0.43
PSICOV 0.18 0.39

geometry-based model 0.17 0.31
S-PSICOV 0.13 0.32

S-GREMLIN 0.10 0.27
PatchS-PSICOV 0.19 0.45

PatchS-GREMLIN 0.15 0.36
Patch-GREMLIN 0.32 0.62

Discussion

Taken together, our results indicate that incorporating structural information can
improve the performance of DCA-based models for predicting binding site between two
interacting proteins. This is especially important in larger proteins where the search
space increases exponentially. The structural information used in our method is based
on an ensemble combination of protein docking and propensity, which are general
properties for all protein families and it can be expanded to incorporate more models.
The docking model is based on geometric complementarity of partner proteins and
energy function. The binding characteristics for each pair of residues obtained from
proteins structures is used as prior knowledge and incorporated into a co-evolution
GGM model as a penalized optimization. Further, our patch-based filtering approach
results in significant improvement of model performance and elimination of many false
positives. As a future work, we plan to utilize comprehensive algorithms to further probe
and interrogate the structure for additional information. For example by integration
more features such as secondary structure and rigidity analysis of the protein structures,
we expect to improve the overall performance of the model. Such improvements can also
be utilized in deep learning models to obtain a more precise models.
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29. S. Seemayer, M. Gruber, and J. Söding. Ccmpred—fast and precise prediction of
protein residue–residue contacts from correlated mutations. Bioinformatics,
30(21):3128–3130, 2014.

30. M. J. Skwark, A. Abdel-Rehim, and A. Elofsson. Pconsc: combination of direct
information methods and alignments improves contact prediction. Bioinformatics,
29(14):1815–1816, 2013.

31. J. I. Su lkowska, F. Morcos, M. Weigt, T. Hwa, and J. N. Onuchic.
Genomics-aided structure prediction. Proceedings of the National Academy of
Sciences, 109(26):10340–10345, 2012.

32. A. Vajdi and N. Haspel. Clustering protein conformations using a dynamic
programming based similarity measurement. pages 31–37. ISCA-BICOB, 2016.

33. A. Vajdi, N. Haspel, and H. Banaee. A new dp algorithm for comparing gene
expression data using geometric similarity. In 2015 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 1157–1161. IEEE,
2015.

34. S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu. Accurate de novo prediction of
protein contact map by ultra-deep learning model. PLoS computational biology,
13(1):e1005324, 2017.

35. J. Yu, M. Vavrusa, J. Andreani, J. Rey, P. Tufféry, and R. Guerois. Interevdock:
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