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Abstract 44 
 45 

Physiological responses to threat stimuli involve neural synchronized oscillations in 46 

cerebral networks with distinct organization properties. Community architecture within 47 

these networks and its dynamic adaptation could play a critical role in achieving 48 

optimal physiological responses.  49 

Here we applied dynamic network analyses to address the early phases of threat 50 

processing at the millisecond level, describing multi-frequency (theta and alpha) 51 

integration and basic reorganization properties (flexibility and clustering) that drive 52 

physiological responses. We quantified cortical and subcortical network interactions 53 

and captured illustrative reconfigurations using community allegiance as essential 54 

fingerprints of large-scale adaptation. 55 

A theta band driven community reorganization of key anatomical regions forming the 56 

threat network (TN) along with transitions of nodes from the dorsal attention (DAN) 57 

and salience (SN) circuits predict the optimal physiological response to threat. We 58 

show that increase flexibility of the community network architecture drives the 59 

physiological responses during instructed threat processing. Nodal switches 60 

modulate the directionality of information flows in the involved circuits.  61 

These results provide a captivating perspective of flexible network responses to 62 

threat and shed new light on basic physiological principles relevant for the 63 

development of stress- and threat-related mental disorders.   64 
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Human responses to threat and stress necessitate highly adaptive but orchestrated 65 

responses in the involved brain circuits. Brain oscillations, which play a key role in the 66 

coordination of large-scale brain networks, drive physiological responses to threat, 67 

and their phase switches determine excitability states of the involved cerebral nodes 68 
1. Rapid, temporary shifts of excitability upon stressors involve orchestrated 69 

interactions between core components of the threat circuitry, namely the dorsomedial 70 

prefrontal cortex (dmPFC), hippocampus and amygdala. These regions could 71 

influence primarily adaptive characteristic responses of brain circuits to threat, 72 

facilitating coping behavior 2. Addressing oscillatory activity in brain networks could 73 

delineate real-time processing and unmask involved network nodes illustratively 74 

describing the in-phase synchrony of brain oscillations, their states and relation to 75 

excitability regulation 3.  76 

The core network regions coordinating threat-processing influence the activity in the 77 

interconnected areas. Furthermore, the limbic regions of this threat circuit form part of 78 

networks mediating the detection and integration of behaviorally relevant stimuli, for 79 

instance the salience network (SN) 4. Since the involved networks are highly variable 80 

and exhibit spontaneous but also task related dynamics 5. Identification of the 81 

network properties related to threat processing and the specific interrelation among 82 

involved brain regions at different networks are of essential importance for 83 

understanding mental health related to physiological threat processing, while 84 

abnormalities in network associations could be directly and causally linked to mental 85 

disorders.  86 

Our conceptual framework is motivated by recent theoretical advances in network 87 

science 6. These approaches can characterize complex systems as brain responses 88 

by delineating components and mapping interactions between interconnected 89 

regions 7. Addressing the dynamic modification of the networks at different scales 90 

allows us to deduce how information is processed between the nodes in the network. 91 

Resting state fMRI has been repeatedly used to characterize network dynamics 92 

during threat processing 8. However, fMRI has, low temporal resolution in seconds, 93 

while brain oscillations occur in the millisecond range. Moreover, distinct processes 94 

possess a frequency specificity of their evoked responses that cannot be captured by 95 

fMRI. Therefore, Electroencephalography (EEG) is ideal to address oscillatory activity 96 

at the optimal temporal scale and could help us in the link with modern network 97 
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science brain responses9,10.  98 

Previous evidence suggests that in rodents, oscillations at the theta range (4–8 Hz) 99 

support amygdala-prefrontal coordination and contribute to physiological threat 100 

processing11,12. In non-human primates, the emergence of theta oscillations supports 101 

the synchronization of amygdala-to-prefrontal circuits, that serves as a mechanism 102 

for long-range communication and directional information transfer between 103 

subcortical and cortical structures during threat processing 13. In humans, recent 104 

studies have shown prominent theta power increases in relation to threat processing 105 

at the prefrontal, frontal and midline channels, whereas alpha activity decrease was 106 

observed at the parietal and occipital channels 14,15. 107 

To address the network dynamics behind threat induced brain responses, we looked 108 

for the community network characteristics that are described as properties of 109 

functionally specialized sub-networks. The latter are defined as groups of highly inter-110 

connected nodes which have very few connections to nodes in different groups 16,17. 111 

To capture the dynamic network information processing and behavior in these 112 

community networks, we combine several advanced computational algorithms. 113 

These include measures of clustering behavior, that capture the capacity to form 114 

triangular interconnected communities and flexibility measurements that mirror the 115 

extent to which these regions change their community allegiance over time.  These 116 

measure can effectively tract network reorganization and efficiently quantify the ability 117 

to reconfigure to different task demands 18.  118 

In the current study, we use an instructed threat paradigm in which the conditioned 119 

stimulus (CS+) is paired with an aversive unconditioned stimulus (US) to examine 120 

neural processing during threat 19,20. Recent studies indicate that physiological 121 

responses to threat processing are depicted as increased cortical excitability at time 122 

intervals around 1000 milliseconds after the stimuli presentation. For this study, we 123 

selected two time points for the application of Transcranial magnetic stimulation 124 

(TMS) pulses: one before initiation of threat processing and one at a physiologically 125 

relevant time-window. In order to look at the causal network dynamics over a short 126 

temporal scale, we take advantage of the EEG ideal temporal resolution and use a 127 

non-linear state space modelling approach, which uses dual extended Kalman 128 

filtering (DEKF), in a method known as temporal partial directed coherence (TPDC) 129 
21,22.  130 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652834doi: bioRxiv preprint 

https://doi.org/10.1101/652834
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Network flexibility during threat 
 

 
5 

 

We hypothesized that looking into simultaneous EEG-TMS data, while modulating 131 

threat processing through dmPFC stimulation at distinct time intervals, we could 132 

uncover local and global network changes at specific neuronal circuits, namely the 133 

DAN, SN and FN. Characterization of network reorganization at specific oscillations 134 

should also unveil drastic community changes, redefining information flows between 135 

nodes. In this line, we evaluate whether network re-configuration is depicted as a 136 

change in the region's assignment to a specific community, or whether network 137 

community structure directs the directionality of information flows in the involved 138 

circuits. 139 

 140 

Materials and Methods 141 

Subjects 142 

45 healthy subjects (22 female, mean age 28 5.48 years) were included in our 143 

study. The study protocol was approved by local ethics committee (Medical faculty, 144 

Johannes Gutenberg University of Mainz) and informed written consent was taken 145 

from all participants before the beginning of experiment. All the participants had two 146 

visits to the lab, in which during the first visit MRI data was acquired. During the 147 

second visit, an instructed threat paradigm (in experiment 1) or an instructed threat 148 

paradigm with TMS (experiment 2) was performed. 149 

 150 

MRI data acquisition 151 

Images were acquired using a 3 Tesla MRI scanner (Magnetom Tim Trio, Siemens 152 

Healthcare, Erlangen, Germany) equipped with 32-channel head coil at the 153 

Neuroimaging Center (NIC) Mainz, Germany. A Magnetization-prepared rapid 154 

gradient-echo (MP-RAGE) sequence (Repetition Time [TR] = 1900ms; Echo Time 155 

[TE] = 2.54ms; Inversion Time [IT] = 900; Pixel Bandwidth = 180; Acquisition Matrix = 156 

320, 320; Flip Angle = 9°; voxel size = 0.8125, 0.8125 mm; Slice Thickness = 0.8 157 

mm) was used. 158 

 159 

Experiment 1 (instructed threat task) 160 

First, subjects (N=19, 11 female, mean age 27.4 4.32 years) were asked to sit in a 161 

chair and painful electric stimuli were applied to the dorsal part of left hand using a 162 

surface electrode connected to a DS7A electrical stimulator (Digitimer). Individual 163 

±

±
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pain ratings on a scale from 0 (no pain) to 10 (intense pain) were acquired. An 164 

intensity representing a pain level of 7 was used during the experiments. The 165 

instructed threat task was developed using the Cogent toolbox 166 

(http://www.vislab.ucl.ac.uk/cogent_2000.php) in Matlab 2006B (MathWorks). The 167 

task consisted of presenting two visual stimuli: circle and square (Fig 1 A); and a 168 

fixation cross during the inter-trial interval (ITI) (Fig 1 B). Participants were instructed 169 

that the circle stimulus (CS+) is associated with the electric shock (UCS) with a 170 

probability of 33% randomized between (1- 5 seconds) at the time the stimulus is 171 

presented on screen; while stimulus square (CS-) is not associated with any threat. 172 

Stimuli were presented pseudo-randomly on screen for 5 sec and the ITI was jittered 173 

between 4 and 6 sec. The paradigm consisted of 60 stimuli (36 CS+, 24 CS-). High-174 

density EEG was recorded from 256 channels throughout the experiment (Net 175 

Station 5.0, EGI, USA). Electrode impedances were kept under 50 KΩ during the 176 

whole experiment. A sampling frequency of 250 Hz was used. This study was divided 177 

into 3 sessions, where each session lasted for around 5 minutes and 3 min breaks 178 

were provided in between sessions. After each session the level of experienced 179 

threat was rated in a scale from 1 to 10 by each participant with a questionnaire. 180 

 181 

Experiment 2 (instructed threat task with concomitant dmPFC-TMS) 182 

To evaluate the involvement of the dmPFC in threat processing and network 183 

dynamics, a second experiment (Experiment 2) was conducted in another cohort of 184 

healthy subjects (N=26, 11 female, mean age 28.6 6.64 years) that includes the 185 

instructed threat task as in experiment 1 together with application of single TMS 186 

pulses over the right dmPFC, after 1 sec from stimulus onset. The MNI (Montreal 187 

Neurological Institute) coordinate for the dmPFC ([10 12 58]) was obtained from a 188 

previous fMRI study (1). Individual coordinates were determined using the 189 

corresponding MRI in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Location of TMS 190 

pulses delivery, coil position and orientation were controlled throughout the 191 

experiment using a neuronavigation system (Localite TMS navigator, Germany). At 192 

the stimulation site the TMS coil was placed tangentially to the scalp surface and 193 

oriented in a medial to lateral position at a 45° angle away from the midline with the 194 

handle pointing backwards. TMS pulses were applied in biphasic pulse configuration 195 

using a figure-8 coil connected to Magstim Rapid2 (Magstim, UK). The intensity of 196 

±
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TMS pulses was set to 110% RMT (resting motor threshold). RMT was calculated as 197 

the minimum stimulus intensity required eliciting motor evoked potentials of amplitude 198 

50  in 5 out of 10 consecutive trials at rest 23. The paradigm consisted of 90 199 

stimuli (54 CS+, 36 CS-). The condition specific (CS-: no threat, CS+: threat) trials 200 

were considered and the trials in which shock was applied were removed from the 201 

analyses. We repeated the experiment 2 but applying TMS at 80ms as a control 202 

experiment for TMS modulation on the network dynamics (Fig 1 B). Subjective threat 203 

ratings were also acquired in experiment 2. 204 

 205 

EEG data preprocessing 206 

EEG data preprocessing and part of the spatial filter analyses were analyzed using 207 

MATLAB2015a and the fieldtrip toolbox 24. The data used in the initial preprocessing 208 

steps were blind to researcher. Initially, EEG data was re-referenced to the common 209 

grand average reference of all EEG channels and epoched from –2.0 to 4.0 s (0 - 210 

being the visual stimuli). These epoch trials were used for the purpose of filtering 211 

only, for all subsequent analyses the time interval for the epochs was –0.25 to 1.5 s. 212 

The preprocessing pipeline was adapted from the Fieldtrip toolbox explained detail in 213 
19. For experiment 1, the EEG data was directly subjected to independent component 214 

analyses (FastICA) to remove the components representing the muscle artifacts, eye 215 

blinks, eye movements and line noise. For experiment 2, TMS-EEG data, a period of 216 

–5 to 20 ms relative to the TMS pulse was first cut out and excluded to remove the 217 

ringing artifact. The pre-ringing and post-ringing epochs were subject to independent 218 

component analysis (FastICA) to remove the components representing the 219 

exponential decay artifact, residual muscle artifacts, eye blinks, eye movements, line 220 

noise and other muscle artifacts unrelated to TMS. On average for the experiment 1, 221 

30 of 256 components (30 ± 4.6, mean ± SD) were rejected, 10-11 were related to 222 

the eye artifacts (11 ± 2.68), 5-6 related to line noise (5 ± 2.34) and 12-13 were 223 

related to muscle artifacts (12 ± 1.24). For the experiment 2, 36 of 256 components 224 

(36 ± 2.3, mean ± SD) were rejected, 2-3 were related to the exponential decay (2 ± 225 

0.74), 4-5 related to line noise (4 ± 1.98), 13-14 were related to muscle artifacts (13 ± 226 

1.16) and 13-14 were related to the eye artifacts (13 ± 1.04). The residual muscle 227 

artifacts were visually inspected, removed and interpolated with the cubic 228 

interpolation method. A fourth-order Butterworth low-pass filter with a cut-off 229 

Vμ
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frequency of 200 Hz was applied to avoid aliasing, which was followed by a band 230 

pass filtered between 3 and 45 Hz.  231 

 232 

Heart rate estimation 233 

The heart rate estimation was extracted from the EEG signals using the extended 234 

version of the independent component analysis (ICA) algorithm, based on information 235 

maximization 14 as previously reported 9. In the EEG signals, volume conduction is 236 

thought to be linear and instantaneous, and it is expected that the sources of cardiac 237 

signals are not generally time locked to the sources of EEG activity, reflecting the 238 

activity of cortical neurons 25. The lCA can accurately identify the time courses of 239 

activation and scalp topographies of relatively large and temporally-independent 240 

sources from simulated scalp recordings, even in the presence of a large number of 241 

low-level and temporally-independent source activities 26. 242 

For heart rate detection analysis, the rows of the input matrix  are the EEG signals 243 

recorded at the 256 electrodes, the rows of the output data matrix  are time 244 

courses of activation of the lCA components, and the columns of the inverse matrix, 245 

, give the projection strengths of the respective components onto the scalp 246 

sensors.  247 

In general, and unlike PCA, the component time courses of activation will be non-248 

orthogonal. Corrected EEG signals can then be derived as , where  is 249 

the matrix of activation waveforms, , with rows representing sources of cardiac 250 

artifacts which are then extracted for further estimations from each participant. In total 251 

for experiment 1 we concatenated the 36 CS+ trials to take a total of 180 seconds 252 

and 24 CS- trials to take 120 seconds. For experiment 2 we concatenated the 54 253 

CS+ trials to take 270 seconds and 36 CS- trials to take 180 seconds.  254 

 255 

Reliability check of the EEG signals using inter-trial phase coherence (ITPC) 256 

analyses 257 

Single trial data were first decomposed into their time-frequency representation by 258 

using the multitaper method 27. In this method the spectrum is estimated by 259 

multiplying the data with  different windows (i.e. tapers). In this study,  260 

orthogonal tapers were used with good leakage and spectral properties, the discrete 261 

prolate spheroidal sequences (DPSS) are applied 28. ITPC were computed using the 262 

y

yXv =

1−X

( ) vXy ′=′ −1
v′

v

K 7=K
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Fieldtrip toolbox24. ITPC reflects the consistency of the phase values across trials, at 263 

different frequencies, and at single electrodes. The electrodes were grouped in line 264 

with the five lobes to have a global robust measure over a certain lobe instead of 265 

selecting certain electrodes. The ITPC was estimated in two frequency bands 266 

separately namely theta (4-7 Hz) and alpha (8-13 Hz). This measure is stimulus-267 

locked and independent of amplitude changes. A value of 0 represents absence of 268 

synchronization and a value of 1 indicates perfect synchronization. The baseline 269 

activity was taken as a reference, and was calculated as the average at each 270 

frequency band and across conditions, from –250 to 0 ms before visual stimuli. The 271 

change with respect to the baseline interval at 6 windows of 250 ms each after the 272 

visual stimulus was then extrapolated up to 1500 ms. Finally, the ITPC difference 273 

between the CS+ and CS- was estimated. The significance levels of the ITPC are 274 

assessed using surrogate data by randomly shuffling 1000 times the single-trial 275 

spectral estimates from different latency windows during the baseline period.  276 

 277 

Reconstruction of brain activity 278 

The forward problem is the computation of the scalp potentials for a set of neural 279 

current sources. An established procedure was used by estimating the lead-field 280 

matrix with specified models for the brain; a volume conduction model with a finite-281 

element method (FEM) is used 29. For the forward modelling the surfaces of the 282 

compartments like the skin, skull, csf, gray, and white matter extracted from the 283 

individual T1 MRI, and individual electrode locations were used. The forward 284 

modeling and the source analysis were done in FieldTrip 24. The lead-field matrix 285 

(LFM) contains information about the geometry and conductivity of the model. The 286 

complete description of the solution for the forward problem has been described 287 

previously 30. A full description of the beamformer linear constrained minimum 288 

variance spatial filter is given elsewhere 31. The output of the beamformer at a voxel 289 

in the brain can be defined as a weighted sum of the output of all EEG channels. The 290 

weights determine the spatial filtering characteristics of the beamformer and are 291 

selected to increase the sensitivity to signals from a voxel and reduce the 292 

contributions of signals from (noise) sources at different locations. The frequency 293 

components and their linear interaction are represented as a cross-spectral density 294 

(CSD) matrix. In order to visualize power at a given frequency range, a linear 295 
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transformation was used based on a constrained optimization problem, which acts as 296 

a spatial filter 32. The spatial filter assigned a specific value of power to each voxel. 297 

For a given source the beamformer weights for a location of interest are determined 298 

by the data covariance matrix and the LFM. A voxel size of 5 mm was used in this 299 

study, resulting in 6676 voxels covering the entire brain. The created source model 300 

was then interpolated on the brain regions defined according to the Automatic 301 

Anatomic Labeling Atlas (AAL) 90 cortical regions of interest (ROIs) defined in the 302 

MNI space 33. For each frequency band (theta and alpha) the activated voxels were 303 

selected by a within-subject surrogate analysis to define the significance level, which 304 

was then used to identify voxels in the regions as activated voxels. Once the brain 305 

region voxels were identified, their activity was extracted from the source space. In a 306 

further analysis, all the original source signals for each AAL region with several 307 

activated voxels were combined by estimating the second order spectra and 308 

employing a weighting scheme depending on the analyzed frequency range to form a 309 

pooled source signal estimate for each region as previously described separately for 310 

both stimulus (Cs+, CS-) 34. Finally, the time series difference between the two 311 

conditions (CS+, CS-) was obtained for all the following analyses. 312 

 313 

Evaluating dynamic re-organization of the brain networks  314 

Based on the reconstructed brain activity, individual weighted connectivity matrices 315 

were obtained for theta and alpha power separately, and for the same 90 regions of 316 

interest defined in the AAL atlas. The links or entries in the connectivity matrix 317 

represent the theta or alpha power that is in each ROI to all other ROIs . The 318 

weighted connectivity matrices were then characterized using various network 319 

measures (see below) as implemented in the brain connectivity toolbox 35,36 and the 320 

dynamics graph metrics toolbox 37.  321 

The communities were identified using the Louvain modularity algorithm 38 in each 322 

individual subject connectivity matrix. To test the robustness of the detected 323 

community association at the baseline interval (-250 to 0 ms), we performed 5000 324 

iterations with the Louvain algorithm where the assignment of each region to a 325 

particular community was based on the maximum number of times/iteration a region 326 

was assigned to a community 39. During this process γ, which is the resolution 327 

parameter, was varied from (1 to 2.5) in steps of 0.05 to identify a stable γ value to 328 

j( ) i( )
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use in the further time intervals. This procedure was repeated for all the other 329 

following intervals from (0 ms to 1500 ms) each within a 250 ms window after the 330 

visual stimulus (T1 to T6), with a stable (γ =1.65) to detect the different communities.  331 

 332 

Measures of community efficiency  333 

We assessed three network measures for each formed community: flexibility, 334 

clustering coefficient and local efficiency. These measures characterize the efficiency 335 

of information transfer at different levels (global and local). To measure changes in 336 

the composition of communities 36, the flexibility of a node is defined to be the 337 

number of times that a node changed community assignment throughout the entire 338 

session, normalized by the total number of changes that were possible (i.e., by the 339 

number of consecutive pairs of layers in the multilayer framework). We then defined 340 

the flexibility of the entire community as the mean flexibility over the nodes in that 341 

particular community. The clustering coefficient (C) is a parameter of local 342 

organization 40 reflecting the number of connections between directly neighboring 343 

nodes (the topological motif of a triangle), with sparsely interconnected regions 344 

showing lower values. The efficiency of a network primarily reflects how information 345 

is exchanged between the regions. Local efficiency 41 quantifies a network’s 346 

resistance to failure on a small scale and is defined as the inverse of the length of the 347 

shortest path in the node. For the three network parameters, twenty density intervals 348 

(range 0.1–0.6) were calculated, over which we estimated the mean and standard 349 

deviation. The range was chosen in such a way that the network was fully connected 350 

at the minimum value and fully disconnected at the maximum value 42. 351 

 352 

Investigating causal relationships between network nodes  353 

The effective connectivity analysis was performed on all the nodes separately, for 354 

each of the three new communities and each frequency separately. Using time-355 

frequency causality, is possible not only to focus on a particular frequency, but also to 356 

analyze the dynamics of the causality at that frequency. The time-frequency causality 357 

estimation using the TPDC is based on dual extended Kalman filtering (DEKF) 43, 358 

and allows time-dependent auto regressive (AR) coefficients to be estimated. One 359 

EKF estimates the states and feeds this information to the other; the second EKF 360 

estimates the model parameters and shares this information with the first. By using 361 
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two Kalman filters working in parallel with one another, we can estimate both states 362 

and model parameters of the system at each time instant. After estimating the time-363 

dependent multivariate (MVAR) coefficients, the next step is to use those coefficients 364 

for the calculation of causality between the time series. By calculating the time-365 

dependent MVAR coefficients at each time point, we can also calculate partial 366 

directed coherence (PDC) at each time point. The frequency bands taken into 367 

account were the theta and alpha. After estimating the TPDC values the significance 368 

level was calculated from the applied data using a bootstrapping method 44. In short, 369 

we divide the original time series into smaller non-overlapping windows and randomly 370 

shuffle the order of these windows to create a new time series. The MVAR model is 371 

fitted to the shuffled time series and TPDC is estimated. The bootstrapping is 372 

performed 1000 times and the average TPDC value is taken as the significance 373 

threshold for all our connections. This process is performed separately for each 374 

participant. The resulting value is the significance threshold value for all our 375 

connections. This process is performed separately for each subject. In this study the 376 

open source Matlab package autoregressive fit (ARFIT)45 was used for estimating the 377 

autoregressive coefficients from the spatially filtered source signals of the identified 378 

nodes in the three new communities. We applied time reversal technique TRT 46 as a 379 

second significance test on the connections already identified by TPDC using a data-380 

driven bootstrapping surrogate significance test. We have previously applied this type 381 

of non-linear time-frequency causality both in EEG 22,31 and functional modality 382 

datasets 21. 383 

 384 

Statistical analyses  385 

We checked the normality of the data using the Shapiro-Wilk test and the sphericity 386 

was checked with Mauchly’s sphericity test. The behavioral (threat) ratings and the 387 

heart rate values were tested for significance (p < 0.01) between the two stimuli CS+ 388 

and CS- using paired T-test. The three network measures for each of the three 389 

networks and two experiments were tested for significance separately using a two-390 

way factorial ANOVA, within subject factor (n=2; conditions, time). The TPDC values 391 

between the regional source signals were tested for significance using a paired T-392 

test. The significant differences were tested for each frequency, each community and 393 
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from each two following time windows separately (for ex: baseline Vs T1; T1 Vs T2; 394 

T2 Vs T3; T3 Vs T4; T4 Vs T5; T5 Vs T6).  395 

The Pearson correlation coefficient was estimated between the behavioral ratings 396 

(difference between CS+ and CS-) and the heart rate (difference between CS+ and 397 

CS-). Finally the network parameters and the effective connectivity values from all the 398 

time windows (T1-T6) were correlated separately with the behavioral ratings and the 399 

heart rate. The Bonferroni correction was performed for all the post-hoc tests and 400 

was considered significant at p < 0.05.  401 

 402 

Results 403 

We began by asking whether regions of the brain change their community attribution 404 

at theta and alpha frequency bands derived from high-density EEG during threat 405 

processing. We then examined three parameters of network organization (flexibility, 406 

clustering and local efficiency). We finally studied whether dynamic network 407 

characteristics using effective connectivity measures can be reliably traced during 408 

threat processing in healthy subjects, and searched for associations between 409 

network dynamics, behavioral and electrophysiological responses during threat 410 

processing.  411 

 412 

Behavioral quantification of threat states and heart rate analyses. The 413 

behavioral ratings of threat were higher in the threat (CS+) condition when compared 414 

to the no-threat (CS-) condition (p < 0.001; Fig. 2A). The estimated heart rate 415 

showed clear increases for the CS+ compared to the CS- (p < 0.001; Fig. 2B). 416 

Primary behavioral effects from experiment 1 (no TMS) were replicated in experiment 417 

2 (TMS) for both increased ratings to CS+ (p < 0.001; Fig. 2A) and heart rates (p < 418 

0.001; Fig. 2B).  419 

The correlation analyses between heart rate and threat ratings showed significant 420 

associations in both experiment 1 (r = 0.56; p = 0.002) and experiment 2 (r = 0.49; p 421 

= 0.005).  422 

 423 

Threat processing related inter-trial phase coherence changes. The frontal theta 424 

showed a significant inter-trial phase coherence (ITPC) increase in between the 425 

baseline (-250-0 ms) and the four subsequent time windows from (0 to 1000 ms) 426 
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(experiment 1 p < 0.001; experiment 2 p < 0.001; Fig. 3). The occipital alpha showed 427 

decreased ITPC between the two conditions (CS+ and CS-) but the difference was 428 

only significant between the baseline (–250-0 ms) and the subsequent  three time 429 

windows from (0-750 ms) in both experiment 1 (p < 0.001) and experiment 2 (p < 430 

0.001). The ITPC in the theta frequency showed an inverted U-shape like temporal 431 

pattern, increase in the first two windows (0-250 and 250-500 ms) and then reduced 432 

in the two subsequent time windows (500-750 and 750-1000 ms) in both 433 

experiments. The increase in ITPC of the frontal lobe showed the robust nature of the 434 

oscillatory response of each trial for the threat processing stimuli. The occipital alpha 435 

showed the opposite behavior, a decrease in the first two windows (0-250 and 250-436 

500 ms) after the visual stimuli followed by an increase in the time windows 500-750 437 

and 750-1000 ms also in both experiments. The decrease of ITPC in the occipital 438 

lobe showed the specificity of attention for threatful stimuli. 439 

 440 

TMS induced inter-trial phase coherence changes. In experiment 2 the ITPC at 441 

the theta band was perturbed by the TMS in the dmPFC at 1000 ms and induced a 442 

significant increase (p < 0.01) in the frontal theta but did not affect the occipital alpha 443 

(Fig. 3). We were able to modulate the ITPC using TMS at the dMPFC in the frontal 444 

lobe during the time interval of threat processing. The control experiment of TMS at 445 

80 ms did not induce any significant change in the frontal lobe indicating choosing 446 

the correct temporal window for perturbation is vital. 447 

 448 

Network communities of the source signals. The community detection analyses at 449 

both the theta and the alpha bands identified nine modules during the baseline 450 

interval (-250 to 0 ms; Fig. 4). The configuration of the communities was anatomically 451 

differentiated, namely community 1 comprised frontal regions; community 2 included 452 

basal ganglia; community 3 and community 7 encompassed fronto-parietal regions. 453 

Community 4 and community 5 included parietal and occipital regions respectively; 454 

whereas all the temporal regions were incorporated in community 6. Community 8 455 

included sensorimotor regions and community 9 comprised hippocampus and 456 

amygdala. When testing the robustness of the community association, this was 457 

stable over the 5000 iterations, i.e., the regions were assigned to the exact same 458 

community in		80 ± 6% of the iterations. 459 
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After the visual stimuli in the experiment time windows 0 to 1500 ms all the nodes 460 

from the community 4 did not change the nodal alliance (Supplementary Table 1). 461 

However, in all the other communities either all the nodes as in community 5 or only 462 

some nodes altered their alliance to the known communities. The three well-known 463 

communities were the dorsal attention (DAN), salience (SN) and threat (TN) 464 

networks. The nodes that altered the community are marked in three different colors 465 

namely red for DAN, blue for SN and green for FN representing each of these three 466 

networks (Supplementary Table 1).  467 

 468 

 469 

Temporal changes in network organization within communities. In the theta band 470 

from the three formed networks, the dorsal attention network (Fig. 5A) showed 471 

significantly increased flexibility in the experiment 1, factor condition (F1,18 = 22.67, p 472 

< 0.001) and factor time (F6,108 = 12.24, p < 0.001); and in experiment 2, factor 473 

condition (F1,25 = 20.45, p < 0.001 ) and time (F6,150 = 14.87, p < 0.001). The post-hoc 474 

analyses showed significantly higher flexibility for windows from (0 to 1500 ms) in 475 

comparison to the baseline window (-250-0 ms) (p < 0.001 for all windows; Fig. 5B). 476 

In experiment 2, the window 1000-1250 ms showed a decrease in flexibility with 477 

respect to the window 750-1000 ms (p < 0.001). In the alpha frequency band the 478 

regions of the DAN showed no flexibility changes with respect to the baseline (-250-0 479 

ms) in both experiments. A flexibility increase in the window 1000-1250 ms in 480 

comparison to 750-1000 ms window was observed (p < 0.001) in experiment 2.  481 

The clustering coefficient (Fig. 5C) also showed significant increases in the theta 482 

frequency band in experiment 1, factor condition (F1,18 = 38.74, p < 0.001) and time 483 

(F6,108 = 19.57, p < 0.001) and experiment 2, factor condition (F1,25 = 34.21, p < 0.001) 484 

and time (F(6,150) = 17.24, p < 0.001). The post-hoc analyses revealed no significant 485 

differences between baseline (-250-0 ms) and all the experiment windows from 0 to 486 

1500 ms (p > 0.05 for all time intervals). The alpha band showed no time changes 487 

with respect to the window -250-0 ms in both experiments. An increase of clustering 488 

coefficient was detected for the window 1000-1250 ms in comparison to 750-1000 489 

ms, p = 0.006) in experiment 2.  490 

The network local efficiency (Fig 5D), was increased in the theta band in experiment 491 

1, factor condition (F1,18 = 42.28, p < 0.001) and time (F6,108 = 23.27, p < 0.001) and 492 
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experiment 2, factor condition (F1,25 = 39.65, p < 0.001) and time (F6,150 = 19.38, p < 493 

0.001), from -250-0 ms to the 0-1500 ms windows. Only in the experiment 2 (TMS) a 494 

significant decrease was observed for the 750-1000 ms)window in comparison to 495 

1000-1250 ms (p < 0.001). In the alpha band the experiment windows (0 to 1500 ms) 496 

did not differ from baseline window (–250-0 ms) in both experiments, only an 497 

increase for the interval (1000-1250 ms) from (750-1000 ms) was significantly 498 

different (p < 0.05) in both experiments.  499 

 500 

The regions forming the salience network (Fig 6A) showed significant flexibility 501 

increases (Fig 6B) in the theta band for the experiment 1, factor condition (F1,18 = 502 

12.67, p = 0.002) and time (F6,108 = 4.24, p = 0.001) and in experiment 2, factor 503 

condition (F1,25 = 9.24, p = 0.006) and time (F6,150 = 5.87, p < 0.001). The post-hoc 504 

analyses revealed significant differences between (-250-0 ms) and the windows (0 to 505 

1500 ms) (p < 0.001 for all time intervals) in both experiments. In experiment 2 the 506 

interval 1000-1250 ms showed a significant flexibility increase (p < 0.001) with 507 

respect to the previous interval 750-1000 ms. In the alpha band a decrease in 508 

flexibility was observed in the experiment 1, factor condition (F1,18 = 8.48, p = 0.01) 509 

and time (F6,108 = 3.68, p = 0.009) and in experiment 2, factor condition (F1,25 = 5.45, 510 

p = 0.03) and time (F6,150 = 2.86, p = 0.01). An increase of flexibility was also 511 

observed for the interval 1000-1250 ms in comparison to 750-1000 ms, which was 512 

only significant in experiment 2 (p < 0.001). 513 

The clustering coefficient (Fig 6C) of the theta band also showed significant 514 

increases in the experiment 1, factor condition (F1,18 = 10.54, p = 0.005) and time 515 

(F6,108 = 3.64, p = 0.008) and experiment 2, factor condition (F1,25 = 8.46, p = 0.009) 516 

and time (F6,150 = 3.72, p = 0.008). The post-hoc analyses showed clustering 517 

increases at all the time intervals from 0 to 1500 ms with respect to the –250-0 ms (p 518 

< 0.01 - for all time intervals). In experiment 2 the window 1000-1250 ms showed a 519 

significant increase (p < 0.001) in the flexibility with respect to 750-1000 ms. In the 520 

alpha band no significant changes in respect to baseline –250-0 ms were detected in 521 

experiment 1 or experiment 2. The increase in clustering coefficient for the interval 522 

1000-1250 ms from 750-1000 ms was significant (p < 0.001) only for the experiment 523 

2.  524 
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The local efficiency (Fig 6D), reflecting network resistance to failure, was increased 525 

in the theta band of experiment 1, factor condition (F1,18 = 11.25, p = 0.003) and time 526 

(F6,108 = 4.78, p < 0.001) and experiment 2, factor condition (F1,25 = 11.45, p = 0.002) 527 

and time (F6,150 = 5.46, p < 0.001). Post-hoc analyses revealed differences at all time-528 

windows from 0 to 1500 ms with respect to the –250-0 ms window (p < 0.01 for all 529 

time intervals). However, significant local efficiency increases were detected for the 530 

interval 750-1000 ms in respect to 1000-1250 ms (p < 0.01) only in the experiment 2 531 

(TMS). The alpha band showed significantly decreased local efficiency in the 532 

experiment 1, factor condition (F1,18 = 9.24, p = 0.007) and time (F6,108 = 2.78, p = 533 

0.01) and experiment 2, factor condition (F1,25 = 9.22, p = 0.006) and time (F6,150 = 534 

3.18, p = 0.008). The post-hoc analyses showed significant increases in the windows 535 

from 0 to 1500 ms in comparison to –250-0 ms (p < 0.01 for all windows). 536 

The regions of threat network (Fig 7A and B), showed significant changes only in the 537 

theta band and no significant changes was observed in the alpha band from (-250-0 538 

ms) to the following time windows (0 to 1500 ms). This network showed significantly 539 

increased flexibility in the theta frequency of experiment 1, factor condition (F1,18 = 540 

15.42, p = 0.001) and time (F6,108 = 7.65, p < 0.001) and experiment 2, the factor 541 

condition (F1,25 = 15.53, p < 0.001) and time (F6,150 = 8.96, p < 0.001). Post-hoc 542 

analyses revealed higher flexibility in windows (0 to 1500 ms) compared to (-250-0 543 

ms) (p < 0.001 for all windows in both experiments). In experiment 2 the (1000-1250 544 

ms) showed a significant flexibility increases with respect to (750-1000 ms) (p < 545 

0.001).  546 

The clustering coefficient (Fig 7C) also showed a significant theta band increases in 547 

the experiment 1, factor condition (F1,18 = 16.21, p < 0.001) and time (F6,108 = 9.47, p 548 

< 0.001) and experiment 2, factor condition (F1,25 = 17.24, p < 0.001) and time (F6,150 549 

= 7.67, p < 0.001). Post-hoc analyses comparing the (-250-0 ms) and the experiment 550 

windows (0 to 1500 ms) showed significant increase (p < 0.001 for all time intervals). 551 

In experiment 2 the interval (1000-1250 ms) showed a significant increase (p < 552 

0.001) in clustering coefficient with respect to (750-1000 ms). 553 

The local efficiency (Fig 7D) of the theta band was increased in experiment 1, factor 554 

condition (F1,18 = 12.31, p = 0.001) and time (F6,108 = 9.46, p < 0.001) and experiment 555 

2, the factor condition (F1,25 = 14.20, p < 0.001) and time (F6,150 = 9.35, p < 0.001), 556 

followed by post-hoc analyses revealed significant difference from the (-250-0 ms) to 557 
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the intervals (0 to 1500 ms) (p < 0.001 for all time intervals). However, only in 558 

experiment 2 (TMS) a significant increase was detected from (750-1000 ms) to 559 

(1000-1250 ms) (p < 0.001). In this community the alpha band did not exhibit any 560 

significant differences for both the experiments in none of the analyzed network 561 

measures. The network measures flexibility, clustering and local efficiency for the 562 

control experiment of single pulse TMS at 80 ms did not change the network 563 

connectivity dynamics for all the three communites as shown in Suppl. Fig.1 between 564 

the baseline (-250-0 ms) and the first time window (0-250 ms).  565 

 566 

Effective connectivity dynamics. The dynamical, effective connectivity (Fig 8-10) 567 

analyses were focused only on the difference between the two conditions (CS+ and 568 

CS-) and the three newly formed communities. In the baseline time window (-250-0 569 

ms) only information flows that survived surrogate and time reversal technique (p < 570 

0.001) are reported. In Fig 8 to 10 the information flow at baseline (-250-0 ms) for the 571 

three networks is shown: red lines for the theta band and blue lines for the alpha 572 

band. Significant changes in the directionality of information flow for experiment time 573 

windows in comparison to the baseline are shown in yellow; the thickness of the lines 574 

indicates the strength of the information flow. 575 

In the dorsal attention network (Fig 8), the information flow of the baseline window (-576 

250-0 ms) was similar in both experiments and both frequency bands (theta, alpha). 577 

In this window the information flow was bi-directional and largely restricted to intra-578 

hemispheric connections with only two inter-hemispheric connections. In the theta 579 

band the connections at (0-250 ms) (immediate after visual stimuli) changed from bi-580 

directional to uni-directional. The information flows in this band were restricted to 581 

intra-hemispheric connections from occipital to frontal regions in both experiments. At 582 

(1000-1250 ms) fewer connections showed changes but they had increased strength 583 

flow (thicker yellow lines in figure 8), specifically MOG (left) to SFGdor (left), IOG 584 

(left) to SFGdor (left), SOG (right) to ACG (right) and IOG (right) to ACG (right). For 585 

the alpha band, at (0-250 ms) uni-directional connections remain between IOG and 586 

SOG in both hemispheres, and PCG (left) to ANG (left). At the interval (1000-1250 587 

ms) three new connections had increased strength with respect to (750-1000 ms); 588 

SOG (left) to ACG (left), MOG (left) to SFGdor (left) and SOG (right) to ACG (right). 589 
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In the salience network (Fig 9), at baseline (-250-0 ms) of the theta band only bi-590 

directional connections were observed between the regions;  most were intra-591 

hemispheric except between left and right putamen, in both experiments. At (0-250 592 

ms) the information flow turned uni-directional and intra-hemispheric, with increased 593 

strength flow with respect to baseline (-250-0 ms). In the experiment 1 all remained 594 

connections at (1000-1250 ms) were restricted to the right-hemisphere and exhibited 595 

bi-directional information flow, except from the insula to amygdala. TMS modulation 596 

of the theta band was visible in the experiment 2 at (1000-1250 ms), where the 597 

existing connections turned uni-directional. Connections were from frontal cortex to 598 

the supplementary motor area (SMA) and sub-cortical regions (putamen and 599 

thalamus) and from insula to amygdala.  600 

In the alpha band, at baseline (-250-0 ms) the information flow of the salience 601 

network was similar to the theta band, except for an inter-hemispheric connection 602 

between the bilateral thalami. At (0-250 ms) the connection strength was higher in 603 

comparison to the baseline window (-250-0 ms) and only three additional bi-604 

directional connections remained, whereas four connections turned uni-directional. At 605 

(1000-1250 ms) connections remained in both hemispheres; all were intra-606 

hemispheric and bi-directional, except from thalamus to the SMA in case of the 607 

experiment 1. In experiment 2 remained connections turned uni-directional, these 608 

were from SFG to MFG, MFG to putamen and thalamus to SMA in both 609 

hemispheres.  610 

In the threat network (Fig 10) the theta frequency connectivity at baseline (-250-0 611 

ms) showed again only bi-directional connections between the regions; most of them 612 

were intra-hemispheric except between bilateral ORBmid and HIPP, in both 613 

experiments. At (0-250 ms) the information flow of most connections remained bi-614 

directional and intra-hemispheric, except between bilateral hippocampi, which turned 615 

uni-directional. The strength of the connections was significantly increased with 616 

respect to baseline window (-250-0 ms). At (1000-1250 ms), in the experiment 1 all 617 

connections remained bi-directional and were restricted to the right hemisphere. 618 

Theta band TMS modulation was visible in the experiment 2, where all the 619 

connections turned uni-directional. The connection strength was higher for the 620 

existing connections, except for ORBmid (right) to ORBsupmed (right), which was 621 

weaker at this time window.  622 
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 623 

Correlation between electrophysiological and behavioral indicators of threat 624 

processing. Only the significant correlations that survived Bonferroni correction and 625 

were attested in both experiments are reported. We found a significant correlation 626 

between the frontal theta ITPC positive slope (-250-0 to 250-500 ms) and the heart 627 

rate in both experiment 1 (r = 0.70; p = 0.014) and experiment 2 (r = 0.61; p = 0.012). 628 

A significant correlation was also found between the slope of the windows (-250-0 to 629 

0-250 ms) for the network flexibility parameter in the theta band of CS+ stimuli and 630 

heart rate in the salience and threat networks, in both experiment 1 (r = 0.68; p = 631 

0.003; r = 0.56; p = 0.005) and experiment 2 (r = 0.58; p = 0.005; r = 0.61; p = 0.004). 632 

The correlation between the effective connectivity from the time interval (0-250 ms) 633 

and the difference in threat ratings were only significant for the salience network; 634 

specifically for two connections: INS (left) to AMGY (left) (r = 0.40; p = 0.006) and TH 635 

(left) to SMA (left) (r = 0.37; p = 0.009). The results from correlation analyses 636 

between the theta band (0-250 ms) window effective connectivity and the heart rate 637 

are listed in Supplementary Table 2, for each community and for both experiments. 638 

Correlation results between the alpha band (0-250 ms) window effective connectivity 639 

and the heart rate are listed in Supplementary Table 3, for each community and for 640 

both experiments. The correlation results between the theta band (1000-1250 ms) 641 

window effective connectivity and the heart rate are listed in Supplementary Table 642 

4, separately for each community and experiments. 643 

 644 

Discussion 645 

Decades of research has attempted to decipher the neurobiological basis of threat 646 

processing. In the current study, we demonstrate that a quick shift of cognitive, 647 

associative learning and classical conditional mechanisms, mirrored by particular 648 

network crosstalk, is needed in order to shape our neurobiological response to 649 

aversive stimuli. Up until now, methodological difficulties in quantifying the neural 650 

elements of the processing network at high temporal resolution meant that it was not 651 

possible to arrive at a personalized non-invasive description of human behavior to 652 

threat. The exact characterization of these neurobiological processes is, however, 653 

essential for finding therapeutic strategies for affective or stress-related mental 654 

disorders. Here we provide compelling evidence of how brain networks respond to 655 
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threat. We see a unified account of theta band driven network re-organization with 656 

transitions of certain brain regions within the threat, attention and salience circuits 657 

that interact during instructed threat processing. We based the timing of the TMS 658 

pulses to dMPFC on the dynamics of theta driven alterations, which return to 659 

baseline at 1000ms, as shown by inter-trial coherence in the experiment without 660 

TMS. The flexibility of the community structures and the characteristic of forming 661 

local clusters are dynamic network properties that predetermine the physiological 662 

responses to threat. Moreover, we see a time dependent decrease of threat induced 663 

network behavior (increased flexibility and clustering in the threat network), that can 664 

be causally modulated by an applied transcranial magnetic stimulation pulse over 665 

dMPFC 1000 ms after CS+ presentation. A test pulse applied over dMPFC at a time 666 

period not relevant for threat processing interfered significantly with ongoing network 667 

behavior and community restructuring.  668 

Furthermore, the specific connection strengths between amygdala and insula or 669 

cortico-cortical identified prior to a subject’s involvement in threat processing 670 

predicted the threat response, as measured by heart rate increase or subjective 671 

threat rating. Similarly, the strength of these connections also predicted the dMPFC-672 

TMS dependent modulation of network behavior and threat processing.  673 

 674 

Community reorganization through connectivity dynamics is required for threat 675 

processing. Our results show that baseline activity (before CS+ presentation) has 676 

clear functional separation in several communities 47. However, during threat 677 

processing, the modular topology of these communities was modified, leading to the 678 

formation of three new known networks: DAN, SN and FN. These networks and their 679 

core components have been described as participating in threat and emotional 680 

processing 48. Restructuring of resting to specific task-related networks therefore 681 

appears to be a primordial mechanism that mediates between perception of relevant 682 

inputs and appropriate subsequent higher-order processing. Our results further 683 

highlight the presence of parallel processing during threat, where the involved 684 

networks (FN, DAN, SN) may distribute separate aspects of high-order cognitive 685 

workflow in order to cope with the situation. Of note, this may differ from the 686 

processing of classical Pavlovian threat conditioning paradigms, since in the 687 

designed paradigm the subjects are previously instructed about the contingency 688 
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between CS+ and US, so expect the threatening event 49. This necessitates 689 

recruitment of additional (attentional and control) resources parallel to those in 690 

needed during the conditioned threat responses. 691 

Despite our results showing that the interplay between synchrony of 692 

oscillations and network architecture is a key factor to mediate and sustain efficient 693 

information transfer for longer time periods, an open question remains regarding the 694 

state-dependent dynamics of the network, especially its dependency on stimulus 695 

relevance. Here, the network flexibility emerges as a state-dependent parameter of 696 

the threat processing, evidenced by its increase in the three networks. The network 697 

parameter flexibility has been already shown to increase during tasks necessitating 698 

cognitive flexibility 50, suggesting that dynamic reconfiguration of brain networks 699 

boosts efficient threat processing. 700 

 701 

Inter-trial coherence as a substrate of threat processing.  702 

We found an increase of the theta inter-trial phase coherence in the frontal lobe and 703 

a simultaneous decrease in the inter-trial phase coherence for the occipital alpha, 704 

relative to stimuli presentation. This suggests that threat processing is not a purely 705 

autonomous response to stimulus presentation, but rather that it facilitates 706 

interactions between regions 51 and for specific temporal conditioned stimuli 52. 707 

Previous studies on memory function have shown that there is a relationship between 708 

brain response to external stressors and the phase of the synchronized oscillations 3, 709 

which can be prolonged by exciting a small number of neurons 53 that participate in 710 

such oscillatory behavior. Low-frequency oscillations, such as theta (4–7 Hz) and 711 

alpha (8–12 Hz) can be recorded in different specific anatomical regions and 712 

especially facilitate communication between hippocampus 54, amygdala 55 and 713 

prefrontal cortex. The specificity of attention in instructed threat studies suggests that 714 

these oscillations provide a temporal window for inter-regional communication 56. 715 

Intra-regional functional communication has been found for interactions involving the 716 

fronto-occipital circuit during directed attention to visual stimuli 57,58. It has also 717 

previously been shown that frontal theta phase consistency reflects coordination of 718 

information transfer between distant brain areas 59,60. On the contrary, the decrease 719 

in the inter-trial phase for the alpha oscillations in the occipital lobe could be related 720 

to alterations due to pre-visual threat processing. Earlier studies 61,62 have shown 721 
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disruption in phase consistency over successive trials in the occipital lobe,  which 722 

suggest that the inter-trial coherence of these oscillations drives the physiological 723 

response during instructed threat processing. Our data support this hypothesis and 724 

localize it differentially in both the frontal and occipital lobes. Here we use the 725 

dynamics of theta driven alterations for the application of TMS pulses to dMPFC, and 726 

apply TMS at a time relevant for threat processing (1000 ms) and a time point before 727 

this (80 ms). Using this approach, we were able to achieve different effects at the 728 

network behavior level. Specifically, a TMS pulse before active processing leads to a 729 

community independent increase of network flexibility and clustering without a 730 

preservation of inter-network interactions. A TMS pulse applied during a time point 731 

physiologically relevant for processing mirrors the network response and 732 

intercommunity information transfer.  733 

 734 

 735 

Modulation of information flow directionality is required for threat processing 736 

and its corresponding behavioral correlates.  737 

The results presented here further demonstrate causal network dynamics within the 738 

reconfigured networks during threat processing and with TMS pulses. The temporal 739 

changes associated with threat processing are predominantly mediated uni-740 

directionally, as previously shown in low frequency oscillations of amygdala-741 

hippocampus connections 63. More specifically, the network dynamics in the DAN 742 

take a more parietal to frontal uni-directional route during threat processing, which is 743 

in line with previous reports using Pavlovian conditioning paradigms 64. In the 744 

salience network, the connections also show strong uni-directional connectivity to 745 

threat processing, while TMS facilitates information processing in the regions 746 

composing this network. Moreover, a heightened response of the threat network to 747 

expected threat stimuli has been recently shown using startle responses 65. 748 

Accordingly, we aimed to test the hypothesis that a targeted modulation of a region of 749 

the threat processing network through TMS pulses can induce similar large-scale 750 

network dynamics 66 modulating reorganization and information flow among distant 751 

regions 67. 752 

Behavioral responses have been shown to be good correlates of induced threat 753 

processing 49,68. Accordingly, significant increases for the CS+ condition in both 754 
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threat ratings and heart rate were observed in both of our experiments. Significantly, 755 

however, neither the behavioral ratings nor quantitative heart rate responses were 756 

modulated by TMS pulses. It has been previously shown that local perturbations 757 

should not change the behavioral responses 33,69. The behavioral indicators 758 

correlated with specific connections in the three newly formed communities which 759 

involved cortical and cortical-subcortical routes. We were also able to validate the 760 

correlations with two experiments for some of the connections, demonstrating that 761 

the changes in the analyzed network dynamics that we observed at the time of 762 

stimulation were purely induced by the TMS. 763 

 764 

 765 

Conclusions 766 

Our findings demonstrate that threat processing is related to changes in the brain’s 767 

modular architecture involving the dorsal attention, salience and threat networks. 768 

Changes in flexibility and local connectivity in these three networks is a prerequisite 769 

for threat processing and related to behavioral responses. The TMS modulated theta 770 

and alpha oscillations, changed the dynamics of network flexibility, and caused a 771 

decrease in the DAN and increase in the SN and FN. The observation of modulation 772 

at both local and global network levels for information directionality and network re-773 

organization to threat processing and TMS stimulation suggest that these dynamical 774 

phenomena serve as adaptive mechanisms for efficient threat processing.  775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 
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Figure Legends: 983 
 984 
Figure 1: 985 
 986 
Figure 1: The schematic figure for the instructed threat paradigm used in this study. 987 
A) Shows the symbols which were used, when the circle was presented, there was a 988 
30% probability of shock, whereas the square had no probability of shocks. B) Gives 989 
an example of the temporal scale of the stimuli presentation, each symbol was 990 
presented for 5 seconds, and after either 80 ms or 1 second a neuronavigated single 991 
pulse TMS was applied to the right dorsomedial prefrontal cortex (dmPFC). Followed 992 
by a fixation cross with an inter-stimulus interval of (5-10) seconds and continued 993 
with either CS+ or CS- stimuli in a random manner.  994 
 995 

 996 
Figure 2: 997 
 998 
The behavioral stress ratings mean and standard deviation for both the experiments 999 
are shown in A) and the heart rate mean and standard deviation for both the 1000 
experiments are shown in B). The dark grey bar represents the CS+ stimuli and the 1001 
light grey bar represents the CS- stimuli. The dashed line indicates the significant 1002 
difference between the two stimuli. 1003 
 1004 
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 1005 
Figure 3:  1006 
 1007 
A) Shows the subdivision of the lobes for the estimation of the inter-trial phase 1008 
coherence. B) First row shows the frontal inter-trial phase coherence (ITPC) for both 1009 
the experiments and time windows, starting from the baseline (-250 to 0 ms) followed 1010 
by six time windows (T1-T6) each 250 ms, the second row shows the occipital ITPC. 1011 
The dashed black line indicates the significant differences and the red vertical line 1012 
indicates the window to which the comparison was done. The black boxes in B) 1013 
indicate the change in ITPC between the experiment 1 and experiment 2. The TMS 1014 
coil indicates the time of application of single pulse TMS. 1015 
 1016 
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 1017 
Figure 4:  1018 
 1019 
Shows the identified nine communities from (M1 to M9) at the baseline time window 1020 
(-250 to 0) ms. The community 1 comprise of mainly frontal regions. The community 1021 
2 includes basal ganglia; community 3 and community 7 encompassed fronto-parietal 1022 
regions. Community 4 and community 5 include parietal and occipital regions; 1023 
community 6 includes temporal regions. Community 9 comprised of hippocampus 1024 
and amygdala and community 8 included central regions.  1025 
 1026 
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 1027 
 1028 
Figure 5:  1029 
 1030 
In A) the representative figure with regions comprised in the newly formed dorsal 1031 
attention network (DAN), the corresponding list is given in Supplementary Table 1. 1032 
The network parameter flexibility is shown in B) starting from the baseline (-250 to 0) 1033 
ms window to all the following six time windows (T1-T6) for every 250 ms separately 1034 
bar plots with mean and standard deviation for theta and alpha frequency bands. C) 1035 
and D) show the values for the clustering coefficient and the local efficiency. The red 1036 
line indicates the significant differences between the time intervals all the intervals 1037 
were compared to the baseline. The interval (750-1000) ms were compared to the 1038 
(1000-1250) ms.  1039 
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 1040 
 1041 
Figure 6: 1042 
 1043 
In A) the representative figure with regions comprised in the newly formed Salience 1044 
network (SN), the corresponding list is given in Supplementary Table 1. The network 1045 
parameter flexibility is shown in B) starting from the baseline (-250 to 0) ms window 1046 
to all the following six time windows (T1-T6) for every 250 ms separately bar plots 1047 
with mean and standard deviation for theta and alpha frequency bands. C) and D) 1048 
show the values for the clustering coefficient and the local efficiency. The red line 1049 
indicates the significant differences between the time intervals all the intervals were 1050 
compared to the baseline. The interval (750-1000) ms were compared to the (1000-1051 
1250) ms.  1052 
 1053 
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 1054 
Figure 7: 1055 
 1056 
In A) the representative figure with regions comprised in the newly formed threat 1057 
network (TN), the corresponding list is given in Supplementary Table 1. The network 1058 
parameter flexibility is shown in B) starting from the baseline (-250 to 0) ms window 1059 
to all the following six time windows (T1-T6) for every 250 ms separately bar plots 1060 
with mean and standard deviation for theta and alpha frequency bands. C) and D) 1061 
show the values for the clustering coefficient and the local efficiency. The red line 1062 
indicates the significant differences between the time intervals all the intervals were 1063 
compared to the baseline. The interval (750-1000) ms were compared to the (1000-1064 
1250) ms.  1065 
 1066 
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 1067 
 1068 
Figure 8: 1069 
 1070 
The temporal partial directed coherence (TPDC) information flow between the 1071 
regions in the dorsal attention network (DAN) are shown in the template brain 1072 
showing the 9 communities in different colors and the 6676 voxels. The first two rows 1073 
for the theta and the last two rows for the alpha frequency band separately. The first 1074 
and third row represents the experiment 1 and the second and fourth row the 1075 
experiment 2. The red arrows indicate the information flow during the baseline 1076 
window (-250 to 0) ms and the yellow lines indicates the difference in the information 1077 
flow to the previous time window and the thickness of the lines indicates the strength 1078 
of the information flow when compared to the previous time window. L: Left; R: Right; 1079 
SFGdor: Superior frontal Gyrus, dorsolateral; ACG: Anterior Cingulate Gyrus; SOG: 1080 
Superior Occipital Gyrus; MOG: Middle Occipital Gyrus; IOG: Inferior Occipital Gyrus; 1081 
PCG: Posterior Cingulate Gyrus; ANG: Angular Gyrus;  1082 
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Figure 9: 1087 
 1088 
The temporal partial directed coherence (TPDC) information flow between the 1089 
regions in the salience network (SN) are shown in the template brain showing the 9 1090 
communities in different colors and the 6676 voxels. The first two rows for the theta 1091 
and the last two rows for the alpha frequency band separately. The first and third row 1092 
represents the experiment 1 and the second and fourth row the experiment 2. The 1093 
red arrows indicate the information flow during the baseline window (-250 to 0) ms 1094 
and the yellow lines indicates the difference in the information flow to the previous 1095 
time window and the thickness of the lines indicates the strength of the information 1096 
flow when compared to the previous time window. The red box indicates the 1097 
difference in information flow between experiment and experiment 2. L: Left; R: Right; 1098 
MFG: Middle Frontal Gyrus; SMA: Supplementary Motor Area; INS: Insula; AMYG: 1099 
Amygdala; SMG: Supramarginal Gyrus; PUT: Putamen; THA: Thalamus; SFGmed: 1100 
Superior Frontal Gyrus, Medial;  1101 
 1102 
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Figure 10: 1106 
 1107 
The temporal partial directed coherence (TPDC) information flow between the 1108 
regions in the threat network (TN) are shown in the template brain showing the 9 1109 
communities in different colors and the 6676 voxels. The first two rows for the theta 1110 
and the last two rows for the alpha frequency band separately. The first and third row 1111 
represents the experiment 1 and the second and fourth row the experiment 2. The 1112 
red arrows indicate the information flow during the baseline window (-250 to 0) ms 1113 
and the yellow lines indicates the difference in the information flow to the previous 1114 
time window and the thickness of the lines indicates the strength of the information 1115 
flow when compared to the previous time window. The red box indicates the 1116 
difference in information flow between experiment and experiment 2. L: Left; R: Right; 1117 
HIPP: Hippocampus; STG: Superior Temporal Gyrus; MTG: Middle Temporal Gyrus; 1118 
ORBsupmed: Superior Frontal Gyrus, medial orbital; ORBmid: Middle Frontal Gyrus, 1119 
orbital part;  1120 
 1121 
 1122 
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