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Abstract 

 

MHC-I molecules are expressed on the cell surface complexed with oligopeptides, most 

of which are generated from intracellular proteins by the ubiquitin-proteasome pathways 

and would be roughly proportional to the relative abundance of proteins and their rate of 

degradation. Thus MHC-I together with peptides function as immunological 

self-markers to exhibit the information about the repertoire of proteins expressed in a 

given cell to the immune system, and this process is called antigen (Ag) 

direct-presentation. Herein, we report a novel rule for the preference of peptides 

selected for the direct presentation; the N-terminally located antigenic peptides are more 

efficiently complexed with MHC-I than the C-terminally located peptides on the same 

protein. The superiority is largely dependent upon de novo proteins synthesis, 

degradation by proteasomes, and less dependent upon stabilities of proteins, indicating 

that this difference derived from rapidly degraded newly synthesized proteins such as 

defective ribosomal products (DRiPs). The effects of those N-terminal predominance 

was comparable with the enhanced MHC-I presentation by IFN-γ suggesting that they 

might play important roles in the adaptive immunity. 
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 Introduction 

 

MHC-I molecules are expressed on the cell surface complexed with antigenic 

peptide, typically 8-11 residues long, most of which were generated from cytosolic 

proteins by the ubiquitin-proteasome pathways (Cresswell et al., 2005; Groothuis and 

Neefjes, 2005; Loureiro and Ploegh 2006; Shastri et al., 2005; Trombetta and Mellman 

2005; Yewdell et al., 2003). The repertoire of antigenic peptide would be roughly 

proportional to the relative abundance of proteins and their rate of degradation. 

Antigenic peptides together with MHC-I function as immunological self-markers to 

exhibit the information about the repertoire of proteins expressed in a given cell to the 

immune system and this process is called antigen (Ag) direct-presentation (Janeway et 

al., 2001). Cancer or virally infected cells express disease-specific non-self proteins thus 

display non-self peptides upon MHC-I (Janeway et al., 2001). Cytotoxic T lymphocytes 

(CTL) can detect the non-self peptides with MHC-I and lyse target cells (Janeway et al., 

2001). 

There have been several numbers of databases for MHC-I-binding peptides (The 

Immune Epitope Database; hrrp://www.iedb.org/home_v3.php, etc.). Also, Ag-peptides 

are predictable for some MHC alleles, dependent upon the binding motif found in the 

given Ags for MHC-I (SYFPEITHI; 

http://www.syfpeithi.de/scripts/MHCServer.dll/home.htm, etc.). It is also likely that 

these peptides are generated by the cellular protein quality control systems. Misfolded 

proteins and non-functional polypeptides (Starck et al., 2016) are a possible source of 

Ag-peptides in addition to once correctly folded proteins. Accumulated evidence shows 

that considerable amounts of Ag-peptides are derived from polypeptides so-called 

defective ribosomal products (DRiPs); polypeptides arising from prematurely 

terminated proteins and misfolded proteins derived from unsuccessful translation 

(Anton and Yewdell, 2014; Apcher et al., 2011; Apcher et al., 2012; Apcher et al., 2013; 

David et al., 2012; Dolan et al., 2011; Eisenlohr et al., 2007; Khan et al., 2001; 

Princiotta et al., 2003; Qian, Princiottam, et al., 2006; Qian Reits et al., 2006; Reits et al., 

2000; Rock et al., 2014; Schlosser et al., 2007; Schubert et al., 2000; Starck and Shastri 
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2011; Voo et al., 2004; Yewdell et al., 2001; Yewdell and Nicchitta, 2006). Because of 

its fate of fast degradation, DRiPs enables the rapid presentation of Ags to CTL. Given 

the mechanisms of the cellular protein quality control system, the repertoire of peptides 

generated from these two sources, mature proteins and DRiPs, would not be the same, 

because DRiPs contain truncated and premature forms of proteins. The relative share of 

these two sources for Ag-peptide generation is not entirely determined (Bourdetsky et 

al., 2014; Rock et al., 2014; Wei et al., 2015). The prospective difference of repertoire of 

peptides among these sources prompted us to investigate the rule for the preference for 

Ag-peptides. We have devised methods to detect a quantitative correlation between the 

expression of pOV8 harboring proteins and the generation of a pOV8/MHC-I complex. 

We found a new rule for the preference of Ag-peptides; the N-terminally located 

Ag-peptide is more efficiently complexed with MHC-I than the C-terminally located 

peptide from the same Ag. The advance of the N-terminal predominance was 

considerably equivalent with the effect of IFN-γ upon MHC-I presentation suggesting 

that this rule might play important roles in the adaptive immunity. 
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Results 

 

The presentation efficiency of endogenous pOV8 is dependent upon its location on the 

protein. 

 We investigated the relationship between the expression of a given protein 

and the presentation of an antigenic peptide derived from the protein using a panel of 

chimeric fluorescence proteins (Fig. 1A, F, and G) with the pOV8 epitope (SIINFEKL).  

The pOV8 epitope was flanked by five flanking amino acids each in its N- and C- 

terminus (LEQLESIINFEKLTEWTS) (Qian et al., 2002). We examined the level of 

protein expression and the amount of peptide-MHC-I complex by flow cytometry with 

the 25-D1.16 monoclonal antibody, which recognizes pOV8 epitope complexed with the 

H-2kb allele of MHC class I (pOV8/Kb complex) (Porgador et al., 1997). In all 

chimeric fluorescence proteins except purified His-tagged proteins (Fig. 5) used in this 

study, the second amino acid was standardized by Val, so as to avoid the difference of 

stabilities for chimeric fluorescence proteins caused by the N-terminal rule (the second 

amino acid of His-tagged proteins were normalized as Ala by vector sequence). First, 

we characterized the amounts of the pOV8/Kb complex as the function of the 

expression level of chimeric fluorescent proteins using a dendritic cell (DC)-like cell 

line DC2.4, a thymoma cell line EL4, and a fibrosarcoma cell line MC57G. 25-D1.16 

staining was detected specifically in cells that transfected with chimeric fluorescent 

proteins with pOV8 but not in cells transfected with only fluorescent proteins (Fig. 1A, 

G). On the contrary, fluorescence was detected only in cells transfected with fluorescent 

proteins but not in cells transfected with OVA alone (Fig. 1F), indicating that this 

method completed our intention. From the overlapping fluorescence histograms for 

transfectants of the pair of constructs (color combine), we can compare the amounts of 

pOV8/Kb derived from the construct with pOV8 on the N-terminal (colored in red) with 

those from the construct with pOV8 on the C-terminal (colored in green) of the same 

protein. Since the expression level of each chimeric protein was quantified by its 

fluorescence intensity, it was clear that the efficiency of pOV8/Kb complex formation 

was higher in the N-terminal pOV8 than the C-terminal pOV8 (Fig. 1A, F, G 

right-most). Next, we examined the correlational functions among the fluorescent 

intensity and the expression level of the pair of fluorescent chimeric proteins, 
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pOV8-YFP and YFP-pOV8, by flow cytometry with the monoclonal anti-GFP antibody 

clone E4 and RQ2. From the overlapping fluorescence histograms as Fig. 1A, the 

correlation was approximately equivalent in DC2.4 (Fig. 1B). We also checked these 

differences were neither the results of the difference in transcription (Fig. 1C), nor 

expression (Fig. 1D), nor the stabilities (Fig. 1E), nor the localizations (Fig. 1H), and 

nor the fluorescence intensities (Fig. 5B) of the pair of fluorescent chimeric proteins. It 

was noteworthy that 4-6 h was enough to bring about the N-terminal predominance 

from the subsequent experiments (Fig. 3B, C, and D), stabilities of pOV8-YFP and 

YFP-pOV8 were equivalents after 6 h of treatments by Cycloheximide (Fig. 1E), by 

α-amanitin (Fig. 4F). It was also notable that the N-terminal predominance was 

detectable with Azamigreen (Fig. 1G). 

 

The predominant presentation of N-terminal antigenic peptides other than pOV8 

 

 Next, we examined whether the N-terminal predominance was observed with 

Ag peptides other than pOV8. Since we have no antibody other than 25-D1.16 to detect 

the peptide-MHC-I complex, we examined intra-molecular competition of pOV8 by 

Ag-peptides from GST or VSV. The VSV epitope has been shown to compete for Kb 

with pOV8 (Strehl et al., 2005). It is predicted that two independent Ag-peptides derived 

from GST would compete with pOV8 by database analysis (TABLE 1) (Johansen et al., 

1997). As an Ag-peptide in the N-terminal of one protein was more efficiently 

complexed with MHC-I than the same Ag-peptide in the C-terminal of the same protein, 

when pOV8 binding was competed more effectively by N-terminally located GST 

(VSV) than C-terminally located GST (VSV), 25D-1.16 binding would be inhibited 

more efficiently by N-terminal GST (VSV) than C-terminal GST (VSV). We examined 

the effect of in vitro competition of pOV8 with GST derived peptides, GST48, GST111, 

and a peptide derived from VSV protein at first. DC2.4 cells were incubated with the 

constant concentration of peptides (50 μM), in which the decreasing concentrations of 

pOV8 (50-0 μM) with the increasing concentrations of competing Ag-peptides (VSV, 

GST48 or, GST111; 0-50 μM) were combined. In consequence, we compared pOV8 

presentation under the following conditions; 50 μM of pOV8 and 0 μM of competitive 

peptide, 40 μM of pOV8 and 10 μM of competitive peptide, 25 μM of pOV8 and 25 μM 
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of competitive peptide, 10 μM of pOV8 and 40 μM of competitive peptide, and 0 μM of 

pOV8 and 50 μM of competitive peptide (Fig. 3 A and B). Increasing amounts of each 

competitive peptide inhibited 25-D1.16 binding comparatively (Fig. 2 A and B), 

indicating that both GST48 and GST111 competed with pOV8 for Kb as VSV epitope. 

Then, we examined intra-molecular competition of pOV8 by GST or VSV, by 

comparing the pOV8 presentation between pOV8-YFP-GST (Fig. 2C upper-left, red) 

and pOV8-GST-YFP (Fig. 2C upper-left, green), between YFP-GST-pOV8 (Fig. 2C 

upper-right, red) and GST-YFP-pOV8 (Fig. 2C upper-right, green), between 

YFP-VSV-pOV8 (Fig. 2D, upper-left, red) and VSV-YFP-pOV8 (Fig. 2 D, 

upper-middle, green). We again confirmed that expression levels (Fig. 2C bottom and 

2D bottom) and localization of chimeric fluorescent proteins (Fig. 2E) were equivalent 

among each pair. Then we evaluated amounts of antigen presentation in addition to cell 

numbers; we quantified the amounts of pOV8/Kb presentations by the average 

fluorescence level of each histogram of Fig. 2 C and D as described in Fig. 2F. All color 

combine histograms (Fig. 2C top, D upper-right) and quantification analysis (Fig. 2G) 

showed that N-terminally located GST (VSV) competed with pOV8 more efficiently 

than C-terminally located GST (VSV), indicating that the N-terminal GST (VSV) 

derived Ag-peptides were complexed with Kb more efficiently than the C-terminal GST 

(VSV) derived peptides (Fig. 2C, D, and G). These results suggest that the Ag-peptide 

located in the N-terminal of one protein is more effectively complexed with MHC-I 

compared with the same Ag-peptide in the C-terminal of the same protein. 

 

Kinetics of surface pOV8/Kb complex generation 

 

 To gain a more quantitative understanding of Ag-peptides generation, we 

examined the kinetics of pOV8/Kb complex formation in DC2.4 cells, which were 

transfected with either one of the pair of fluorescent chimeric proteins; pOV8-YFP and 

YFP-pOV8. After 12h, the cells were washed with acid (A.W.; acid wash) to remove 

preexisting Kb bound pOV8 on the cell surface, and the cells were then allowed to 

recover in normal medium for the indicated periods (Fig. 3A). Then we evaluated 

amounts of antigen presentation of Fig. 3 B and C as described in Fig. 2F (Fig. 3D). 

Though A.W. for 30 s removed more than 90% of the preexisting pOV8, a little 
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difference remained between fluorescent histograms of the N-terminal pOV8 and the 

C-terminal pOV8 (Fig. 3D and Fig. 4B A.W.). Since elongated A.W. resulted in a 

marked increase for the rate of dead cells and hampered former experiments, we carried 

out following experiments by A.W. for 30 s. Because the expression of chimeric 

fluorescent proteins became plateau after 12 to 24 h and the amounts of pOV8/Kb 

complex rather reduced after 24 h in our assay system using transient transfectants of 

DC2.4, the recovery of a newly assembled pOV8/Kb complex on the cell surface was 

then assessed by 25-D1.16 for 12 h after A.W. (Fig. 3A). Both cells transfected with 

N-terminally located pOV8 and C-terminally located pOV8 generated the pOV8/Kb 

complex steadily and rapidly (Fig. 3B, C, and D) in these periods even 1 h from A.W. 

The rates of generation of pOV8/Kb complexes in YFP-pOV8 cells were about 50 % in 

compared with that of pOV8-YFP cells throughout our experiment, and the N-terminal 

predominance was eminent 4 h after the A.W. (Fig. 3D). 

 

The predominance of N-terminal Ag-peptide is dependent on the translation 

 

 We next investigated the efficiency of pOV8/Kb complex generation under 

the existence of several pharmacological inhibitors; α-amanitin for mRNA synthesis, 

anisomycin for peptidyl transfer, emetine for ribosomal translocation, amino acid analog, 

canavanine and azetidine acid, for protein folding, MG132 and lactacystin for 

proteasomes, and chloroquine for end/lysosome proteases. We measured the generation 

of newly synthesized pOV8/Kb complexes in standard medium for 6 h with several 

pharmacological inhibitors after the A.W. (Fig. 4A) and compared with the pOV8/Kb 

complex among N-terminal pOV8 and the C-terminal pOV8 (Fig. 4 B, C, and D). The 

generation of a pOV8/Kb complex was actively suppressed by inhibitors of proteasomes 

(Fig. 4B, E) but not with inhibitors of the end/lysosome proteases (Fig. 4B, E). Drugs 

inhibiting de novo protein synthesis also reduced the recoveries, but mainly influenced 

fluorescence histograms, measures of carrier proteins (Fig. 4C). Under these conditions, 

however, it was noteworthy that the predominance of N-terminus was largely 

diminished (Fig. 4C, E) without affecting pre-existing amounts of pOV8-YFP or 

YFP-pOV8 (Fig. 4F). On the contrary, drugs affecting protein folding thus promoting 

abnormal protein structures after translation, such as canavanine and azetidine acid (Fig. 
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4D, E), showed a significant increase of difference between the pair of histograms. 

These results indicate that the predominance of N-terminus is largely dependent upon de 

novo protein synthesis and degradations by proteasomes, but less dependent upon 

stabilities of proteins and degradations by end/lysosome proteases.  

 We then delivered purified mature fluorescent proteins (Fig. 5A third of the 

left-most) into cells directly. First, we introduced purified OVA into cells with or 

without MG132. 25-D1.16 staining (fraction Q1) was increased specifically in cells that 

introduced OVA (Fig. 5A top of the right-second) but decreased in cells with MG132 

(Fig. 5A top of the right-most). The delivery of pOV8-YFP (Fig. 5A third of the 

left-second, red) and the delivery of YFP-pOV8 (Fig. 5A third of the right-second, 

green) showed no difference upon the generation of pOV8/Kb complex (Fig. 5A third of 

the right-most and Fig. 5C), indicating that when a pair of mature fluorescent proteins 

were delivered into cells directly, no predominance of N-terminus came about. These 

presentations were proteasomes-dependent because the simultaneous additions of 

MG132 with deliveries of fluorescent chimeric proteins strongly inhibited the 

generation of the pOV8/Kb complex (Fig. 5A bottom of left-second and bottom of 

right-second), but they also showed a marked reduction for the rate of living cells. 

Besides, these presentations were not the results from cross-presentation because the 

small amounts of the pOV8/Kb complex were detected without the delivery reagent 

(Fig. 5A next to the right-second, next to the right-most, and C). Again, we checked that 

there were no differences in amounts of delivered proteins (Fig. 5D) nor localization of 

these proteins (Fig. 5E). 

 

The effects of IFN-γ upon the predominant presentation of N-terminal antigenic peptides 

We last investigated the effect of IFN-γ, which enhances expression of MHC-I 

and substantially alters the cleavage sites of substrates and therefore dramatically 

improves Ag presentation (Rammensee et al., 1999), upon the predominance of the 

N-terminal pOV8 (Fig. 6A). We quantified the amounts of pOV8/Kb presentations by 

the average fluorescence level of each histogram of Fig. 6A as Fig. 2F. The addition of 

IFN-γ enhanced the amount of pOV8/Kb about 2.2- and 3.1-fold in our experimental 

conditions from pOV8-YFP and YFP-pOV8 respectively by the whole histogram  (Fig. 
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6B left, TP20-10000 of IFN-γ+/ IFN-γ- for pOV8-YFP and YFP-pOV8) and 1.9- and 

2.8-fold by 103 fluorescent units of YFP (Fig. 6B left, TP20-1000 of IFN-γ+/ IFN-γ- for 

pOV8-YFP and YFP-pOV8). N-terminal pOV8 complexed with Kb was about 1.9-folds 

high compared with C-terminal pOV8 by the whole histogram (Fig. 6B right, TP20-10000 

of pOV8-YFP/YFP-pOV8 for IFN-γ-) or 3.1-folds by 103 fluorescent units (Fig. 6B 

right, TP20-1000 of pOV8-YFP/YFP-pOV8 for IFN-γ-) in absence of IFN-γ, and 2.1-folds 

high by the whole histogram (Fig. 6B right, TP20-10000 of pOV8-YFP/YFP-pOV8 for 

IFN-γ+) or 2.8-folds by 103 fluorescent units (Fig. 6B right, TP20-1000 of 

pOV8-YFP/YFP-pOV8 for IFN-γ+) in presence of IFN-γ. These results indicate that 

pOV8 located in the N-terminal of one protein was more efficiently complexed with 

MHC-I compared with pOV8 located in the C-terminal of the same protein. And that, 

this predominance was independent of the presence of IFN-γ (Fig. 6A, B). 
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Discussion 

  

 In this report, we showed a novel rule for the direct presentation; an Ag 

peptide located in the N-terminus of a protein is more efficiently complexed with 

MHC-I compared with the same Ag- peptide located in the C-terminus of the protein 

(Fig. 1). This predominance was independent of cell types (Fig. 1A), proteins harboring 

the Ag-peptide (Fig. 1A, G), the kind of Ag-peptides (Fig. 2), and the 

immunomodulation by IFN-γ (Fig. 6A). Since in series of our experiments the antigen 

presentation efficiencies were compared N-terminally tagged fluorescent proteins and 

C-terminally tagged proteins based on the fluorescence intensities, we showed every 

biological property of the pair of fluorescent protein shown below was equivalent: the 

fluorescent intensity (Fig. 5B), the transcriptions (Fig. 1C), the amounts (Fig. 1D), the 

cellular localization (Fig. 1H), and correlation of the fluorescent intensity and the 

expression level (Fig. 1D). In addition, 4-6 h was enough to bring about the N-terminal 

predominance (Fig. 3B, C, and D), amounts of pOV8-YFP and YFP-pOV8 were 

equivalents after 6 h of treatments by Cycloheximide (Fig. 1E) and α-amanitin (Fig. 4F), 

indicating that the stability of the pair of fluorescent protein was equivalent in this 

meanwhile. Throughout these experiments, we can find a significant population of 

pOV8/Kb-positive cells that were not fluorescent. These cells, which were 

pOV8/Kb-positive but did not show any fluorescence, were the results of non-specific 

binding of 25D1.16 antibody upon cell surfaces, because these populations were 

detectable in control cells without pOV8 (Fig. 1A, YFP and Fig. 5A Chariot only), did 

not decrease after acids wash (Fig. 3B and C).  

  Although we were able to examine the rule only for Kb, because of the limited 

availability of antibody for peptide-MHC-I complex, our results strongly suggest that 

this rule is conserved in the process of the direct presentation. It should be noted that the 

effects of the N-terminal predominance were comparable with the enhanced MHC-I 

presentation by IFN-γ (Fig. 6A, B). We first quantified the amounts of the pOV8/Kb 

complex from the whole histogram up to 104 fluorescent units of the horizontal 
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axis-YFP (Fig. 6B, left). Thousands of fluorescent units for vertical axis-25D1.16 

correspond to full surface MHC-I as judged from the addition of excess amounts of the 

pOV8 peptide, indicating that the most of the surface MHC-I (104-105 MHC-I 

molecules) were occupied by pOV8. This saturation of MHC-I differ from physiological 

conditions, and thus pOV8-YFP showed a small difference with or without IFN-γ 

compared with YFP-pOV8 (Fig. 6B, left). It is noteworthy that 101 fluorescent units of 

vertical axis-25D1.16 correspond to no pOV8/Kb complex (Fig.1 A, YFP histogram). 

We re-quantified and compared the amounts of pOV8/Kb from a restricted area of each 

histogram up to 103 fluorescent units of the horizontal axis-YFP (Fig. 6B right). The 

resultant re-quantification showed that the effect of N-terminal predominance was 

comparable with the effect of IFN-γ (Fig. 6B right). Since CTL can be triggered by a 

small number of complexes (Wherry et al., 1999), these results suggest that the effect of 

N-terminal predominance plays a pivotal role under physiological conditions.  

 What is the molecular mechanism determining the N-terminal predominance? 

Ag-peptides are for the most part provided from two sources; retirees and DRiPs 

(Lelouard et al., 2002; Lelouard et al., 2004; Pierre, 2005; Yewdell et al., 1996). Besides, 

a subset of the nascent polypeptide, which is directly delivered to the 20S proteasome, 

also provides Ag-peptides (Starck et al., 2016; Voo et al., 2004; Yewdell and Nicchitta, 

2006). Retirees are once matured proteins, which completed their lifetimes or damaged 

by environmental stress. In contrast, DRiPs are nascent proteins, which is terminated 

before completing their synthesis. A large proportion of newly translated proteins (up to 

30 %) are degraded as DRiPs before maturation. DRiPs are further divided into 

premature termination products (tDRiPs) and misfolded full-length products (mDRiPs) 

(Yewdell et al., 1996). Since all proteins start their translation from the N-terminal 

methionine and complete at the C-terminal termination codons, while retirees and 

mDRiPs include equivalent amounts of N-terminus and C-terminus Ag-peptides, most 

of the tDRiPs contain N-terminal Ag-peptides without C-terminal Ag-peptides. Because 

most tDRiPs only provides N-terminal Ag-peptides, the predominance of N-terminal 

peptides is likely derived from tDRiPs. In our experimental conditions, the N-terminal 

predominance was dependent upon degradation by proteasomes (Fig. 4B, E) and de 

novo protein synthesis (Fig. 4C, E), strongly indicating that the N-terminal 

predominance was dependent upon DRiPs. It is also noteworthy that the N-terminal 

predominance was increased to some extent by amino acid analogs, canavanine and 
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azetidine acid, which inhibit protein folding and results in an increase of mDRiPs, 

suggesting that the N-terminal predominance was dependent more upon tDRiPs and less 

upon mDRiPs (Fig. 4D right two columns and E). Also, the forced introduction of 

folded proteins showed little difference between N-terminal epitope and C-terminal 

epitope, indicating that the N-terminal predominance was dependent upon the de novo 

protein synthesis (Fig. 5A, C). All the above results were showing that the N-terminal 

predominance is results of tDRiPs and that this rule would be a general rule for the 

direct presentation. 

 As noted previously, GFP variants produce mortally shows fragmentation to 

create DRiPs (Wei et al., 2015). These Triton X-100-insoluble proteasome substrates 

were hardly detectable in our experimental conditions. It might be because these 

by-products were results of chromophore rearrangements, transfected cells are kept in 

the dark condition in the course of experiments (Barondeau et al., 2006; Remington, 

2006). Also, though these fragmentations would also contribute Ag-presentation in our 

assay system, they would not bring about the N-terminal predominance, because these 

fragmentations were classified mDRiPs. As noted above the contribution of mDRiPs 

upon N-terminal predominance was small enough compared with tDRiPs. Furthermore, 

we also observed the N-terminal predominance with structurally distinct fluorescent 

proteins, Azamigreen (Fig. 1G). These results strongly deny the N-terminal 

predominance was the results of specific fragmentations by GFP variants. 

 DC can present exogenous Ag upon MHC-I (Imai et al., 2205; Villadangos et 

al., 2007), which is called cross-presentation (CP). The CP is independent of protein 

synthesis in DCs (Donohue et al., 2006; Palliser et al., 2005) and thus unrelated to 

N-terminal predominance. In cancer cells or virally infected cells, protein translation 

rates are high enough to produce excess amounts of unfolded proteins for the protein 

degradations machinery then these cells produce unfolded proteins or aggregated 

proteins. Since unfolded proteins interact with several kinds of molecular chaperones 

and molecular chaperones are known to enhance the efficiency of CP (Binder and 

Srivastava, 2005; Flechtner et al., 2006; Kunisawa and Shastri, 2006). Aggregated 

proteins were incorporated into autophagosomal membranes and released from the cell 

surface by unconventional protein secretion. These secretory fractions were called 

DRibbles (DRibbles; Defective Ribosomal products-containing autophagosome-rich 

blebs). DRibbles were the more effective source for CP in DC compared with cell lysate 
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and soluble antigens (Hampton, 2002; Wiertzn et al., 1996). Since those unfolded 

proteins and aggregated proteins inevitably contain tDRiPs, it might be possible that the 

N-terminal predominance might be detectable in CP, because CTL attack target cells by 

recognizing peptides with MHC-I, the peptide selection between DCs and target cells 

would be key for the effective cell-mediated immunity. Because only small numbers of 

peptide-MHC-I complex per DC is sufficient for activating CD8+ T cells (Palliser et al., 

2005), the N-terminus predominance might play important roles in cell-mediated 

immunity.  

  Recent reports have demonstrated that no significant preference was observed 

for N-terminally located antigenic peptides. Either by the in silico analysis exploiting 

the available data in the Immune Epitope Database and Analysis Resource (Hassan et al., 

2013; Kim et al., 2013) or by in vitro analysis using dynamic stable isotope labeling by 

amino acids in cell culture  (Bourdetsky et al., 2014; Hassan et al., 2013) showed no 

positional skew. It is possible to describe our observations as artifacts by several 

assumptions; it might be plausible that our observations were results of 

vector-dependent mistranslations, such as the premature translation termination 

(tDRiPs), impaired stability (mDRiPs), or the downstream initiation (Berglund et al., 

2007). Since recent researches strongly designate that DRiPs are one of the main 

sources of antigenic peptides (Antón et al., 2014), though the N-terminal predominance 

was overestimated in our assay system, it is also possible that this rule has the definite 

possibility as the real cellular phenomenon. On the contrary, the downstream initiation 

rather induces the C-terminal predominance, even if that was the case, it rather reduced 

the N-terminal predominance.  

  Nevertheless, it is also likely that large-scale studies harbor their experimental 

system-specific errors. In Sirico analysis, it is likely that CTL epitopes for viral Ags are 

largely dependent upon the affinity against MHC I and less dependent upon the location 

of the Ag-peptide. In SILAC experiments, antigenic peptides were purified by a specific 

antibody against MHC I (Bourdetsky et al., 2014). Through purifications, antigenic 

peptides with lower affinity against MHC I might be lost. In addition, there were rather 

restricted numbers of antigenic peptides, which were both available for the ratio 

between the rates of synthesis of themselves and of their source proteins, because the 
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proteome analysis has lower sensitivity against proteins with low expression level or 

proteins with lower stability. In consequence, analyzed antigenic peptide tend to be 

derived from abundant proteins or to show higher affinity with MHC I. Since the 

quantity of the precursor peptide and the affinity of the precursor peptide against MHC I 

are the most fundamental qualification of antigenic peptides upon MHC I, these 

antigenic peptides show a smaller effects with the positions of their source. Hence the 

positional skew would be under quantified in SILAC experiments. Large-scale 

experiments are effective methods to overlook the cellular phenomenon, but these 

experiments can't directly compare the positional skew of the same antigenic peptide 

derived from the equivalent source proteins. In contrast, a cell-based assay system 

utilizing specific probes shows higher distinctiveness against restricted cellular 

phenomena. Both methods are indispensable to elucidate complicated cellular 

phenomenon. 

 In this study, we found a novel rule for the direct presentation, the N-terminal 

predominance of Ag-peptides. In cancer immunotherapy, it is very difficult to find out 

effective Ag-peptides, which induce T cell responses against cancer. Since cancer is 

derived from self, CD8+ T cells strongly reactivate with self-peptides were excluded in 

the thymus or fell in anergy (Janeway et al., 2001). Thus it is likely that CTLs 

reactivated with natural cancer derived peptide-MHC-I complexes are likely of low 

affinity against the complexes supplemented by the number of the complexes as higher 

avidity. The higher efficiency of the N-terminal Ag-peptide presentation results in 

higher avidity and might show a new criterion for finding out effective cancer 

Ag-peptides. In addition, the introduction of cancer-specific Ag-peptide as a fusion 

protein with a carrier protein into cancer to induce T cell responses is one of the 

strategies for cancer immunotherapy (Lei et al., 2015; Petrovsky et al., 2004; Rappuoli 

et al., 2011). The N-terminal predominance might provide pivotal information upon the 

configurations of recombinant proteins. An important question is whether N-terminal 

predominance has any physiological roles in the immune system. However, some 

clinical studies still indicated that N-terminally located Ag-peptides elicit stronger 

immune responses compared with C-terminally located Ag-peptides (Kawashima et al., 

1998; Ma et al., 2004; Monji et al., 2004). These results suggest that the N-terminal 
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predominance might play certain roles in our immune system. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/653170doi: bioRxiv preprint 

https://doi.org/10.1101/653170


 - 17 - 

Materials and Methods 

 

Cells and cultures 

DC2.4, a DC line (31), was provided by Dr. K. L. Rock (Dana-Farber Cancer Institute). 

EL4, a lymphoma line, was our laboratory stock. MC57G, a fibrosarcoma cell line, was 

purchased from ATCC. Cells were cultured in RPMI-1640 (SIGMA) supplemented 

with 2 mM L-glutamine, 1 mM sodium pyruvate, 0.1 mM non-essential amino acid, 100 

units ml-1 penicillin-streptomycin, 55 μM 2-mercaptoethanol, 10 mM Hepes (pH 7.5) 

and 10% FCS or DMEM (Gibco) supplemented with 10% FCS with or without 100 

units of IFN-γ (Becton Dickinson) at 37°C in 5% CO2 unless otherwise indicated. 

Polymyxin B (50 μg/ml) was present throughout in cell cultures. 

 

Plasmids 

The pOV8 epitope (SIINFEKL) with each five flanking amino acid in its N- and C- 

terminus (LEQLESIINFEKLTEWTS) was created using convergent primers, 

5'-GCGTGATCACTTGAGCAGCTTGAGAGTATAATCAACTTTGAAAAACTGAC

-3' and 

5'-CGCAGATCTGGATCCACTGGTCCATTCAGTCAGTTTTTCAAAGTTGAT-3'. 

The created fragment harbored N-terminal Bcl I site, C-terminal Bam HI site and 

C-terminal Bgl II site, and was sub-cloned into the pT7 vector to produce pT7-pOV8. 

Then, the Sma I site of pT7-pOV8 was changed to Bgl II site with ten mer Bgl II linker 

(GCAGATCTCG, TAKARA) to produce pT7-Bgl II-pOV8. VSV epitope 

(RGYVYQGL) with each five flanking amino acid in its N- and C- terminus 

(LEQLERGYVYQGLTEWTS) was created using convergent primers, 

5'-GCGAGATCTATGCTTGAGCAGCTTGAGCGTGGTTATGTTTATCAAGGTTT-

3' and 
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5'-CGCCTCGAGGGATCCACTGGTCCATTCAGTTAAACCTTGATAAACATAAC

C-3'. The created fragment was used as pOV8. The complete YFP, OVA, GST, 

Azamigreen coding region was amplified by PCR from appropriate plasmids using 

convergent primers; YFP with 5'-GCGAGATCTATGGTGAGCAAGGGCGAG-3' and 

5'-CGCGGATCCGAGTCCGGACTTGTACAGCTC-3', OVA with 

5'-GCGAGATCTATGGGCTCCATCGGT-3' and 

5'-CGCGGATCCTAGCTAGCAGGGGAAACACATCTG-3', Azamigreen with 

5'-GCGAGATCTATGGTGAGTGTGATTAAA-3', and GST with 5'- 

GCGAGATCTATGTCCCCTATACTAGGT-3' and 

5'-CGCAGATCTTCAGGATCCACGCGGAACCAGATCC-3'. All created fragments 

harbor N-terminal Bgl II site and C-terminal Bam HI site and were subcloned into the 

pT7 vector to produce, pT7-YFP, pT7-OVA, pT7-Azamigreen, and pT7-GST. Because 

Bam HI site, Bgl II site, and Bcl I site are all compatible with each other, we inserted 

YFP fragments from Bgl II site to Bam HI site of pT7-YFP into Bgl II site of pT7-GST 

and pT7-OVA to produce pT7-YFP-GST and pT7-YFP-OVA or into Bam HI site of 

pT7-GST and pT7-OVA to produce pT7-GST-YFP and pT7-OVA-YFP. Above 

fragments were then inserted into the pEF/myc/cyto (Invitrogen) vector with some 

modifications. The Pst I site of pEF/myc/cyto was changed to Bgl II site with ten mer 

Bgl II linker (above) after blunting. Then the fragment between Bgl II site and Bcl I site 

were converted using convergent primers to produce pEF-Bgl II; 

5'-GATCTTAACTAGCTGATCAGATATCG-3' and 

5'-GATCTTAACTAGCTGATCAGATATCG-3'. To produce expression vectors used 

in this study, we inserted fragments described above into pEF-Bgl II vector in order of 

the indicated name. To produce pEF-YFP, pEF-OVA, pEF-YFP-OVA, pEF-OVA-YFP, 

pEF-Azamigreen, pEF-GST-YFP, and pEF-YFP-GST, YFP, OVA, YFP-OVA, 

OVA-YFP, Azamigreen, GST-YFP, and YFP-GST fragments of Bgl II site to Bam HI 

site were inserted into Bgl II site of pEF-Bgl II, respectively. To produce pEF-pOV8, 

the pOV8 fragment of Bcl I site to Bgl II site was inserted into pEF-Bgl II. Then YFP, 
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Azamigreen, GST-YFP, and YFP-GST fragments of Bgl II site to Bam HI site were 

inserted into Bam HI and Bgl II site of pEF-pOV8 to produce pEF-pOV8-YFP, 

pEF-pOV8-Azamigreen, pEF-pOV8-GST-YFP, pEF-pOV8-YFP-GST, respectively. To 

produce pEF-Bgl II-pOV8, pOV8 fragment from Bgl II site to Bam HI from pT7-Bgl 

II-pOV8 was inserted into pEF-Bgl II. Then YFP, Azamigreen, GST-YFP, and 

YFP-GST fragments of Bgl II site to Bam HI site were inserted into Bgl II and Bcl I site 

of pEF-Bgl II-pOV8 to produce pEF-YFP-pOV8, pEF-Azamigreen-pOV8, 

pEF-GST-YFP-pOV8, pEF-YFP-GST-pOV8, respectively. For expression in E.coli, 

pET30a-YFP, pET30a-pOV8-YFP, and pET30a-YFP-pOV8 were produced as above 

series of pEF vectors. To produce pT7-pOV8-YFP, the YFP fragments from Bgl II site 

to Bam HI site from pT7-YFP were inserted Bam HI site of pT7-pOV8 to produce 

pET30a-YFP. To produce pT7-YFP-pOV8, the pOV8 fragments from Bcl I site to Bam 

HI site from pT7-pOV8 were inserted Bam HI site of pT7-YFP to produce 

pT7-YFP-pOV8. The YFP fragments of Bgl II site to Bam HI, the pOV8-YFP 

fragments of Bcl I site to Bam HI site, and the YFP-pOV8 fragments of Bgl II site to 

Bam HI site, were inserted Bam HI site of pET30a (Qiagen) to produce pET30a-YFP, 

pET30a-pOV8-YFP, and pET30a-YFP-pOV8. 

 

Transfection 

All plasmids used in this study were purified by EndoFree Plasmid Purification system 

(Qiagen) according to the supplier's protocol to remove endotoxin. Cells were 

transfected with these plasmids using Superfect Transfection Reagent (Qiagen). 

 

Antibodies and reagents 

Anti-GFP (rabbit for Western blotting; MBL, mouse clone E4 and RQ2 for in cell 
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staining; MBL), Anti-Azamigreen (rabbit; MBL), Anti-actin (mouse; Millipore), and 

25-D1.16 were used in this study. All peptides used in peptide loading experiments were 

obtained from Peptide Institute Inc. CHX, MG132, Lactacystin, chloroquine, α-amanitin, 

Anisomycin, Emetine, L-Canavanine, Azetidine-3-Carboxylic Acid, purified ovalbumin 

(OVA) were purchased from Sigma Chemical Co. Protein concentration was determined 

using BCA protein assay reagent (Pierce Chemical Co.) with bovine serum albumin 

(Sigma) as the standard.  

 

Antigen presentation assay 

pOV8/Kb levels were determined by incubating cells for one h on ice with the 25-D1.16 

antibody followed by one h on ice with secondary goat anti-mouse antibody conjugated 

to Alexa Fluor 647 (Molecular Probes). Cellular fluorescent proteins and Alexa Fluor 

647 levels were determined on a FACS Calibur cytofluorograph (Beckton Dickinson) 

using CellQuest (Beckton Dickinson) software (Fig. 1A, F, G, 2A, C, D, F, 3B, C, 4B, C, 

D, 5A, and 6A). 

 

In cell staining  

Cells were washed twice with FACS buffer (2.68 mM KCl, 1.47 mM KH2PO4, 136.89 

mM NaCl, 8.10 mM Na2HPO4, 1% BSA) and fixed by 2% formaldehyde in FACS 

buffer at 25°C for twenty min. Fixed cells were washed twice by FACS buffer and 

permeabilized by 2% saponin in FACS buffer at 25°C for ten min. The amounts of actin 

(YFP) were determined by incubating cells for one h on ice with the ant-actin antibody 

(anti-GFP antibody clone E4 or RQ2) followed by one h on ice with secondary goat 

anti-mouse antibody conjugated to Alexa Fluor 647 (Molecular Probes). Cellular 

fluorescent proteins and Alexa Fluor 647 levels were determined on a FACSCanto II 

(Beckton Dickinson) using BD FACSDivaTM (Beckton Dickinson) software (Fig. 1B). 
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RT-PCR 

 Total cellular RNA was isolated by the NucleoSpin® RNA II kit 

(Macherey-Nagel), according to the manufacturer’s recommendations. RNA (500 

ng) was reverse- transcribed to cDNA (BcaBEST™ RNA PCR Kit Ver. 1.1), 

subjected to real-time PCR. The expression level of each gene is normalized to 

ubiquitin. The oligonucleotides used are described below.  

Ubiquitin Forward 5'-GCGAGATCTATGCAAATCTTTGTGAAAAC-3' 

Ubiquitin Reverse 5'-CGCGGATCCCCCACCTCTGAGGCGAAGGACCA-3'  

YFP Forward 5'-GCGAGATCTATGGTGAGCAAGGGCGAG-3' 

YFP Reverse 5'-CGCGGATCCGAGTCCGGACTTGTACAGCTC-3' 

 

Western blotting 

Cells were washed twice with PBS and solubilized in TNE (20 mM Tris-HCl pH 7.4, 

150 mM NaCl, 0.5 M EDTA, 1% Nonidet P-40) with protease inhibitor cocktails 

(Sigma), cell debris were removed by centrifugation (16,000 X g, 5 min, 4°C). In case 

to detect fragmented GFP, cells were solubilized in SDS extraction buffer (1% SDS, 50 

mM Tris-HCl (pH 7.4), 5 mM EDTA, 15 units/ml DNase) with protease inhibitor 

cocktails (Sigma), cell debris were removed by centrifugation (16,000 X g, 5 min, 4°C). 

Cell lysates were subjected to SDS-PAGE transferred onto PVDF membrane. Then the 

blot was developed with the indicated primary antibodies, horseradish peroxidase 

conjugated secondary antibodies and the chemiluminescent substrate. 
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Microscopy 

Images were obtained using A1 ver. 4.60 (Nikon, Tokyo, Japan) laser confocal 

microscopy.  

 

Peptide loading experiments 

DC2.4 cells were incubated for one h at 37°C in medium with indicated peptides. After 

washed twice with PBS, the amounts of the pOV8/Kb complex were determined by  

 

Acid wash recovery assay 

DC2.4 cells were washed with PBS and exposed to 0.131 M sodium citrate and 0.066 M 

sodium phosphate (pH 3.10). After 30 sec incubation, cells were washed twice with 

PBS and once with a medium. Then cells were grown in the medium for the indicated 

time with or without inhibitors. 

 

Quantification of the amounts of pOV8/Kb complexes 

The total amount pOV8/Kb (TP) of each histogram was quantified by adding up each 

average fluorescents unit for the vertical axis-25D1.16 (APk) multiplying cell numbers 

of the corresponding fluorescents unit for horizontal axis-YFP (CNk);  

TP20~1000 = ∑
k=20

1000

APk × CNk  or TP20~10000 = ∑
k=20

10000

APk ×CNk  

APks were worked out by the approximation curve of each histogram plotted horizontal 

axis-YFP against vertical axis-25D1.16 as Fig. 2F. Since cells with low fluorescents 

unit of YFP contained cells without antigenic proteins, AP1~10 was left out. CNks were 
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calculated by each histogram plotted YFP against cell number as Fig. 2F right-most. 

Without any comments, TP20~10000 were indicated as quantifications (Fig. 2G, 3D, 4E). 

 

Purification of recombinant proteins 

His-tag purified recombinant proteins were expressed in E.coli and purified by 

Ni+-NTA-agarose column (Qiagen). Then, contaminated endotoxin was removed by 

Detoxi-Gel (PIERCE Biotechnology, Inc.), twice according to the supplier's protocol. 

 

Direct delivery of purified proteins 

For direct delivery of purified proteins into cells, we used the amphipathic peptide 

carrier system, called ChariotsTM (AnaSpec, Inc.) according to the supplier's protocol. 

 

Fluorescent Intensity 

The fluorescent intensities of purified proteins were obtained using Perkin Elmer 1420 

multi-label counter ARVOTM MX fluorescent spectrum meter, CW-lamp filter name 

F485, CW-lamp filter slot A5, CW-lamp energy 40000, emission filter name F535 nm, 

emission filter slot A5, and measurement time for 1.0 S. 
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Figure legends 

 

Figure 1. pOV8/Kb complex and chimeric fluorescent protein levels in transfected cell 

lines. A, F, and G. pOV8/Kb complex on the cell surface was plotted against the 

fluorescent intensity of the fluorescent protein. Each cell lines indicated left was 

transfected with a panel of fluorescent proteins indicated above. The surface pOV8/Kb 

complex was quantified by 25-D1.16 staining 24 hr after transfection for DC2.4 or 48 hr 

for EL4 and MC57G. The pair of fluorescent histograms from pOV8 containing 

fluorescent chimeric proteins was compared by color-combined analysis (right-most). 

(A), The fluorescent histograms of YFP (left-most), pOV8-YFP (left-middle, red), 

YFP-pOV8 (right-middle, green), and color-combined analysis (right-most). (B), The 

amount of protein (actin and YFP) in DC2.4 was plotted against the fluorescent 

intensity of chimeric protein. Each antibody indicated left (anti-actin and anti-GFP 

clone E4 or RQ2). Antibody against GFP also recognizes YFP, a color variant of GFP. 

The pair of fluorescent histograms from pOV8 containing fluorescent chimeric proteins 

were compared by color-combined analysis (right-most). (C), an RT-PCR analysis in 

DC2.4 comparing transcription of YFP, pOV8-YFP, and YFP-pOV8 (top). Ubiquitin as 

a loading control (middle). Quantification of RT-PCR (bottom). (D), immunoblot 

analysis in DC2.4 comparing amounts of YFP, pOV8-YFP, and YFP-pOV8. 

Immunoblot analysis of YFP, pOV8-YFP, and YFP-pOV8 (top). Anti-Actin as a loading 

control (middle). Quantification of amounts of YFP, pOV8-YFP, and YFP-pOV8 

(bottom). (E), a pulse-chase analysis in DC2.4 comparing stabilities of YFP, pOV8-YFP, 

YFP-pOV8, and actin under addition of 100 μg/ml of Cycloheximide. Immunoblot 

analysis comparing amounts of YFP, pOV8-YFP, and YFP-pOV8 (upper-left) and actin 

as a loading control (lower-left). Quantification of amounts of YFP, pOV8-YFP, and 

YFP-pOV8 (upper-middle) and actin (lower-middle). The amounts YFP, pOV8-YFP, 

and YFP-pOV8 were normalized against actin (righ-tmost). (F), The fluorescent 

histograms of OVA (left-most, red), OVA-YFP (left-middle, red), YFP-OVA 

(right-middle, green), and color-combined analysis (right-most). (G), The fluorescent 

histograms of Azamigreen (left-most, red), pOV8-Azamigreen (left-middle, red), 

Azamigreen-pOV8 (right-middle, green), and color-combined analysis (right-most). (H), 

Localization of YFP (b), pOV8-YFP (c), YFP-pOV8 (d), Azamigreen (e), 
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pOV8-Azamigreen (f), and Azamigreen-pOV8 (g) in DC2.4. Intracellular localization of 

fluorescent proteins was detected by fluorescence of each protein. (a) as the control 

without fluorescent proteins. Bar, 10 μm. Student's test was used to compare pOV8-YFP 

sample with YFP-pOV8 sample. Data were shown as mean ± S.D. (error bars). NS, 

not significant, n=3. 

 

 

Figure 2. pOV8/Kb complex formations under intramolecular competitions. (A), Flow 

cytometric analysis of DC2.4 cells pulsed with the constant concentration of peptides 

(50 μM), in which the decreasing concentrations of pOV8 (50-0 μM) with the increasing 

concentrations of competitive Ag-peptides (0-50 μM; VSV, GST48, GST111). The 

relative amounts of each peptide were indicated above each histogram; 50 μM of pOV8 

and 0 μM of competitive peptide, 40 μM of pOV8 and 10 μM of competitive peptide, 25 

μM of pOV8 and 25 μM of competitive peptide, 10 μM of pOV8 and 40 μM of 

competitive peptide, and 0 μM of pOV8 and 50 μM of competitive peptide. The surface 

pOV8/Kb complex was quantified by 25-D1.16. (B), The relative fluorescent unit of 

horizontal axis-25D.1.16 at the peak of cell numbers from A were plotted against the 

rate of the pOV8 peptide. (C), The intramolecular competition of the pOV8/Kb complex 

formations by GST. Each cell lines indicated above was transfected with a pair of 

fluorescent proteins. Generation of the pOV8/Kb complex from the pair of equivalent 

transfectants was analyzed by color combine as Fig. 1 (upper-left; red with 

pOV8-YFP-GST and green with pOV8-GST-YFP. upper-right; red with 

YFP-GST-pOV8 and green with GST-YFP-pOV8). Immunoblot analysis in DC2.4 

comparing amounts of pOVA-YFP-GST, pOVA-GST-YFP, YFP-GST-pOVA, and 

GST-YFP-pOVA (lower-left). Anti-Actin as a loading control. Quantification of 

amounts of pOVA-YFP-GST, pOVA-GST-YFP, YFP-GST-pOVA, and GST-YFP-pOVA 

(lower-right). (D), The intramolecular competition of the pOV8/Kb complex formations 

by the VSV derived antigenic peptides. DC2.4 was transfected with a pair of fluorescent 

proteins. Generation of the pOV8/Kb complex from the pair of equivalent transfectants 
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was analyzed by color combine as Fig. 1 (upper-left; red with YFP-VSV-pOV8, 

upper-middle; green with VSV-YFP-pOV8, and upper-left; color combine). Immunoblot 

analysis comparing amounts of YFP-VSV-pOV8 and VSV-YFP-pOV8 (bottom-left). 

Anti-Actin as a loading control. Quantification of amounts of YFP-VSV-pOV8 and 

VSV-YFP-pOV8 (bottom-right). (E), Localization of pOVA-YFP-GST (b), 

pOVA-GST-YFP (c), YFP-GST-pOVA (d), and GST-YFP-pOVA (e) in DC2.4. 

Intracellular localization of fluorescent protein was detected by fluorescence of YFP. (a) 

as the control without fluorescent proteins. Bar, 10 μm. (F), Quantification of the 

amounts of pOV8/Kb complexes. Amounts of the pOV8/Kb complex of each 

experiment were worked out as Material and Methods. (G), Quantification of decreased 

presentation of the pOV8/Kb complex of DC2.4 by competition with GST derived 

peptides (TP20~10000) and the VSV antigenic peptide(TP20~10000) shown in C and D by 

DC2.4. Student's test was used to compare the quantified results. Data were shown as 

mean ± S.D. (error bars). ***, p<0.01, **,p<0.1, and NS, not significant. n=3. 

 

 

Figure 3. Kinetics of generation of the surface pOV8/Kb complex. (A), DC2.4 cells 

were acid washed after 12 h of transfection. Cells without acid wash were sampled as a 

control. Cells were sampled at each time point after the acid wash. B and C, Generation 

of pOV8/Kb complex in DC2.4 cells transfected with pOV8-YFP (B) and YFP-pOV8 

(C). Upper lane; fluorescent histograms for the generation of the pOV8/Kb complex in 

each sample (red). Second lane; fluorescent histograms of each sample (red, first lane) 

were compared with the sample of time 0 (green, left) by a color combine. Third lane; 

fluorescent histograms for the generation of the pOV8/Kb complex in each sample 

(green). Lower lane; fluorescent histograms of each sample (green, third lane) was 

compared with the sample of control (red, left) by a color combine. (D), Surface 

pOV8/Kb complex levels were quantified by the average expression for each sample 

and indicated as a percent of the control of pOV8-YFP as Fig. 2F. Note that, though 
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quantitative analyses show equivalent linear kinetics from three independent 

experiments, results shows significant difference among each experiment, because of 

cellar or staining conditions never strictly agrees with each other. A typical the pair of a 

result was indicated by the deviation of each quantification to show the linear kinetics. 

Student's test was used to compare the pOVA-YFP sample with corresponding 

YFP-pOVA sample. Data were shown as mean ± S.D. (error bars). ***, p<0.01, 

**,p<0.1, and NS, not significant. n=3. 

 

Figure 4. Effects on pOV8/Kb complex generation by different inhibitors altering 

protein degradation or synthesis. (A), DC2.4 cells were acid washed after 12 h of 

transfection as in Fig. 3. Cells were cultured for 6 h in normal medium with or without 

inhibitors. pOV8/Kb complex generation was analyzed as Fig.1. (B), Effects of 

inhibitors for protein degradation on the production of the pOV8/Kb complex. DC2.4 

cells transfected with pOV8-YFP or YFP-pOV8 were cultured with or without 1 μM of 

MG132, 0.2 μM of lactacystin, or 100 μM of chloroquine. Upper lane; fluorescent 

histograms of cells transfected with pOV8-YFP. Middle lane; fluorescent histograms of 

cells transfected with YFP-pOV8. Lower lane; The color combine analyses of above 

two histograms coloring pOV8-YFP transfected cells as red and YFP-pOV8 transfected 

cells as green. (C), Effects of inhibitors for protein synthesis. Cells as in B were cultured 

with or without 10 μg/ml of α-amanitin, 1 μg/ml anisomycin, 1 μg/ml emetine. Each 

fluorescent histograms were analyzed as in B. (D), Effects of inhibitors for protein 

folding. Cells as in B were cultured with or without 15 mM of canavanine, or 15 mM of 

azetidine acid. Each fluorescent histograms were analyzed as in B. (E), Quantification 

for effects reagents upon presentation of the pOV8/Kb complex in B, C, and D as Fig. 

2F. (F), immunoblot analysis comparing amounts of YFP, pOVA-YFP, and YFP- pOVA, 

with or without 10 μg/ml of α-amanitin for 6 h (left-top) and quantification of the 

immunoblot by α-GFP (left-bottom). Anti-Actin as a loading control (middle-top) and 

quantification of the immunoblot by α-actin (middle-bottom). The amounts YFP, 

pOV8-YFP, and YFP-pOV8 were normalized against actin (right-most). Student's test 

was used to compare corresponding pOVA-YFP and YFP-pOVA. Data were shown as 

mean ± S.D. (error bars). ***, p<0.01, **,p<0.1, and NS, not significant. n=3. 
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Figure 5. (A), Direct delivery of mature proteins into cells. The third of right-most; 

purified fluorescent proteins (YFP, pOV8YFP, and YFP-pOV8). DC2.4 cells were 

incubated with 5.6 μM of OVA (top of right-second and right-most), YFP (next of 

left-second), pOV8-YFP (next of right-second, third of left-second, and bottom of 

left-second), or YFP-pOV8 (next of right-most, third of right-second, and bottom of 

right-second) with (+ Chariot) or without ChariotTM (only) and MG132. The fluorescent 

histograms of pOV8-YFP (pOV8-YFP + Chariot) and YFP-pOV8 (YFP-pOV8 + 

Chariot) were analyzed by color combine (pOV8-YFP/YFP-pOV8, third of left-most) as 

Fig. 1A. (B), Fluorescent intensities of mature proteins. Fluorescent intensities of the 

mature proteins (YFP, pOV8-YFP, and YFP-pOV8) were quantified by fluorometer and 

shown by relative intensities against fluorescent control protein (YFP). (C), Surface 

pOV8/Kb complex levels were quantified by Q2/Q4 and shown by relative amounts of 

fluorescent control protein (YFP). Student's test was used to compare the pOV8-YFP by 

ChariotTM sample against YFP-pOV8 by ChariotTM sample, pOV8-YFP by ChariotTM 

sample against pOV8-YFP by ChariotTM sample with MG132, and  YFP-pOV8 by 

ChariotTM sample against YFP-pOV8 by ChariotTM sample with MG132. (D), 

Localization of YFP (b), pOVA-YFP (c), and YFP-pOVA (d) in DC2.4. Intracellular 

localization of fluorescent proteins was detected by fluorescence of YFP. (a) as the 

control without fluorescent proteins. Bar, 10 μm. Data were shown as mean ± S.D. 

(error bars)., ***, p<0.01, NS, not significant, n=3. 

 

Figure 6. The effects of IFN-γupon pOV8/Kb complex. (A), pOV8/Kb complex 

generation from MC57G cells transfected with pOV8-YFP or YFP-pOV8 with or 

without 100 units/ml of IFN-γ. The color combine analyses of the right side were 

designated as above. The lowest lane was a combination of above histograms coloring 

with IFN-γ as red and without as green. (B), Quantification of enhanced presentation of 

pOV8/Kb complex by treatments of IFN-γand the N-terminus location shown in Fig2 F. 

Student's test was used to compare (IFN-γ+/IFN-γ-, MC57G, pOV8-YFP) sample with 

(IFN-γ+/IFN-γ-, MC57G, YFP-pOV8) sample, (pOV8-YFP/YFP-pOV8, MC57G, 

IFN-γ+) sample, and (pOV8-YFP/YFP-pOV8, MC57G, IFN-γ-) sample in both Whole 
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samples and ~103 fluorescent unit respectively. Data were shown as mean ± S.D. 

(error bars). ***, p<0.01, **,p<0.1, NS, not significant, n=3. 
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Tables and their legends 

 

TABLE 1 

Calculated epitope scores on H2Kb (Over 15) 

 

Name  

Position Sequence         Score 

Name  

Position Sequence         Score 

OVA   

258 SIINFEKL 25 

56 KVVRFDKL 22 

177 AEERYPIL 22 

12 NAIVFKGL 22 

26 CFDVFKEL 20 

96 ENIFYCPI 18 

28 DVYSFSLA 17 

 

GFP   

36 GDATYGKL 21 

38 ATYGKLTL 18 

5 GEELFTGV 17 

142 LEYNYNSH 17 

 

VSV   

52 RGYVYQGL 28 

GST   

48 LGLEFPNL  24 

111 YSKDFETL 24 

169 CLDAFPKL 21 

152 DFMLYDAL 20 

3 PILGYWKI 18 

196 SKYIAWPL 17 

70 AIIRYIAD 15 

 

Azamigreen   

214 AVARYSML 23 

51 LPFAYDIL  21 

201 HDKDYNKV 18 

203 KDYNKVKL 17 

112 GDCFFYDI 16 

33 NPYEGTQI 15 

Peptide used were: pOV8, SIINFEKL; VSV, RGYVYQGL; GST48, LGLEFPNL; 

GST111, YSKDFETL. 

Scores were calculated by SYFPEITHI; 

http://www.syfpeithi.de/scripts/MHCServer.dll/home.htm 
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Figure 5A
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Figure  5C
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Figure 6A
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