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Abstract 8 

The Theory of Island Biogeography yielded the important idea that species richness within 9 

sites should depend on site connectivity, i.e. its connection with surrounding potential sources 10 

of immigrants. However, the effect of connectivity on species presence and community 11 

richness in empirical studies is often quite limited, partly because classic indices used to 12 

quantify connectivity (e.g. distance to nearest habitat patch) need improvement. Current 13 

methodological advances for quantifying connectivity lie along three directions: building better 14 

indices that more carefully trace potential fluxes of individual between habitat units, combining 15 

such indices and searching for the most appropriate way of describing habitat spatial 16 

distribution, using patches or cells as elementary units. Here we assessed the potential of 63 17 

contemporary connectivity indices that explore these different tracks by applying them to virtual 18 

habitat maps with contrasted habitat amount and configuration coupled with a neutral 19 

metacommunity model. We found that choosing buffers indices (and more generally flux 20 

indices computed using habitat cells) is the most fruitful methodological choice to improve the 21 

explanation of species richness. Refining the scaling of flux indices could bring an additional 22 

improvement although quite limited. Combining indices of different type (connector and flux) 23 

also marginally improved the ability to explain species richness. In line with the habitat amount 24 

hypothesis, our results suggest that buffer connectivity indices are a simple and robust 25 

approach that may prove sufficient for capturing connectivity effects in many contexts, 26 

potentially leading to very strong effect sizes upon community richness. 27 
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Introduction 31 

In community ecology, the Niche Theory [1]–[3] predicts that local environmental conditions 32 

and species interactions are the dominant drivers of species composition within sites. It has 33 

led to practical tools such as species distribution models, which are remarkably efficient for 34 

understanding the distribution of species in space, especially at coarse spatial grain [4]. 35 

However, since the Theory of Island Biogeography [5], it is commonly acknowledged that 36 

species presence in strongly isolated communities such as islands also depends on their ability 37 

to colonize sites through immigration and to avoid random extinction thanks to large population 38 

sizes. Area and geographic isolation of sites could thus be additional major drivers of 39 

community composition, especially in fragmented habitats where habitat patches behave like 40 

islands within an archipelago. TIB principles fostered an important body of empirical research 41 

in a wide array of ecosystems about how the surrounding availability and spatial configuration 42 

of habitats affect community composition. In particular, the geographic isolation of patches has 43 

now been developed into the concept of “patch structural connectivity”, which quantifies the 44 

potential flux of immigrants coming into a focal patch from surrounding habitats based on 45 

habitat mapping [6]. However, reviews about the effect of the area and the structural 46 

connectivity of patches on species presence and community composition in fragmented 47 

landscapes suggest that the effects of local environmental conditions within a patch occur more 48 

frequently and with stronger magnitudes than the effects of area and connectivity on species 49 

presence [7]–[9]. Connectivity and area of patches tend to have weak absolute effect sizes [8] 50 

and their respective contributions are sometimes hard to disentangle [10].  51 

Those limited effects are partly due to several limitations of classic patch structural connectivity 52 

indices. First, many empirical studies used the distance to the nearest or the few nearest 53 

patches as a patch structural connectivity index, whereas [11] and [12] showed that it is a poor 54 

predictor of species presence compared to indices that more extensively account for 55 

surrounding patches, such as buffers or indices adapted from the incidence function model 56 

[13]. Second, patch structural connectivity indices based on the distance between the focal 57 

patch and the surrounding habitat (which we call “flux indices” below) do not account for 58 

exchanges of individuals among the surrounding patches themselves, which potentially 59 

modulate the occupancy of species in the surrounding habitat and thus affect immigration 60 

chances within the focal patch. The use of graph theory [14] opens the way for addressing 61 

such limitations. In particular, patch-based “connector” indices [15] quantify to what extent a 62 

given patch contributes to the connection among the other patches in the landscape. For a 63 

given amount of habitat around the focal patch, a lower connector score of the focal patch may 64 

therefore indicate that surrounding patches depend less on the focal patch to connect one with 65 

another, i.e. that direct fluxes among surrounding patches are stronger. [16] further showed 66 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/640995doi: bioRxiv preprint 

https://doi.org/10.1101/640995
http://creativecommons.org/licenses/by-nc/4.0/


that connector indices convey complementary information about landscape structure around 67 

focal patches compared to flux indices, which suggests that combining them with flux indices 68 

to explain species presence and community composition may increase explanatory power 69 

without generating confounding effects. Third, describing landscapes as sets of well-delineated 70 

patches of habitats embedded in a matrix of non-habitat is often too simplistic, because habitat 71 

in real landscape may occur in a more continuous and diffuse manner in space, e.g. following 72 

ecological gradients, without forming discrete spatial entities. In particular, [17] challenged the 73 

patch-based methodological framework by suggesting that the concept of patch itself, and the 74 

subsequent dichotomy between patch area and isolation, may be misleading. Indeed, species 75 

presence at some positions in space may rather come from the total amount of habitat in some 76 

surrounding area, irrespective of whether this habitat belongs to the focal patch (patch area) 77 

or not (structural connectivity). This “habitat amount hypothesis” suggests considering the 78 

habitat spatial distribution as a “raster” of cells rather than a “vector map” of patches (using 79 

[14] terminology). Consequently, the effect of connectivity on community composition should 80 

rather be studied at the finer habitat cell level rather than at the patch level [18]. 81 

In a nutshell, studying how structural connectivity affect species presence and community 82 

composition within a given location may benefit from methodological advances in several non-83 

excluding directions: (i) optimizing flux connectivity indices, (ii) combining flux and connector 84 

connectivity indices and (iii) changing the grain of landscape analysis from habitat patch to 85 

habitat cell. Virtual datasets stemming from spatially explicit metacommunity models constitute 86 

an ideal context to assess such advances for they offer perfect control of the spatial distribution 87 

of habitat and the ecological features of species. By doing so, they eliminate potential 88 

observational biases and they allow discussing best strategies as a function of landscape and 89 

species features. Such virtual approaches have already been used to study the optimization 90 

of indices. For instance, [19] have used neutral metacommunity simulations to show that 91 

changing the scaling of patch connectivity indices coming from graph theory (from capturing 92 

only the immediate neighborhoods to capturing the whole landscape composition) can change 93 

the effect size of connectivity on patch species diversity. They further showed that the higher 94 

the dispersal ability of species, the larger the scaling of indices should be. Similarly, a 95 

metapopulation simulation study [20] showed that there exists some optimal buffer radius that 96 

maximizes the effect size of connectivity upon local species presence. They further suggested 97 

that this optimal size, called the “scale of effect” should lie between four and nine times the 98 

average dispersal distance of the target species.  99 

Here, we extend these previous studies based on virtual metacommunity models towards 100 

exploring the three axes of methodological advances identified earlier. We refine previous 101 

results about how optimizing flux connectivity indices modulate the effect size of connectivity 102 
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on local species richness by considering a broad set of indices with contrasted scaling and 103 

heterogeneous theoretical backgrounds in a single study. We also explore what benefit can be 104 

obtained from combining connectivity indices of different kinds compared to using a single 105 

connectivity index. At last, our study compare indices based on patches as elementary habitat 106 

unit and indices based on habitat cells. 107 

Materials and methods 108 

Landscape generation - We considered binary landscapes made of suitable habitat pixels and 109 

inhospitable matrix pixels. We generated virtual landscapes composed of 100×100 cells using 110 

a midpoint-displacement algorithm [21] which allowed us covering different levels of habitat 111 

quantity and fragmentation. The proportion of habitat cells varied according to three modalities 112 

(10%, 20% of 40% of the landscapes). The spatial aggregation of habitat cells varied 113 

independently, and was controlled by the Hurst exponent (0.1, 0.5, and 0.9 in increasing order 114 

of aggregation; see Fig. S1 for examples). Ten replicates for each of these nine landscape 115 

types were generated, resulting in 90 landscapes. Higher values of the Hurst exponent for a 116 

given value of habitat proportion increased habitat patch size and decreased the number of 117 

patches (Fig. S2). Higher habitat proportion for a constant Hurst coefficient value resulted in 118 

higher mean habitat patch size. 119 

Neutral metacommunity simulations - We simulated spatially explicit neutral metacommunities 120 

on virtual heterogeneous landscapes. We resorted to using a spatially explicit neutral model 121 

of metacommunities, where all species have the same dispersal distance. We used a discrete-122 

time model where the metacommunity changes by steps. All habitat cells were occupied, and 123 

community dynamics in each habitat cell followed a zero-sum game, so that habitat cells 124 

always harbored 100 individuals at the beginning of a step. One step was made of two 125 

consecutive events. Event 1: 10% of individuals die in each cell – they are picked at random. 126 

Event 2: dead individuals are replaced by the same number of recruited individuals that are 127 

randomly drawn from a multinomial distribution, each species having a weight equal to 0.01×i 128 

+ ∑k Aik exp(-dkf /λs) where i is the relative abundance of species i in the regional pool, Aik is 129 

the local abundance of species i in habitat cell k, dkf is the Euclidean distance (in cell unit) 130 

between the focal habitat cell f and the source habitat cell k, λs represents the average 131 

dispersal distance of individuals in the metacommunity and the sum is over all habitat cells k 132 

of the landscape. The regional pool was an infinite pool of migrants representing biodiversity 133 

at larger spatial scales than the focal landscape, it contained 100 species, the relative 134 

abundances of which were sampled once for all at the beginning of the simulation in a Dirichlet 135 

distribution with concentration parameters i equal to 1 (with i from 1 to 100). Metacommunity 136 

were simulated forward in time, with 1000 burn-in steps and 500 steps between each 137 
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replicates. Simulation was structured as a torus to remove unwanted border effects in 138 

metacommunity dynamics. Metacommunities were simulated with three average dispersal 139 

values (“true” simulated average dispersal λs = 0.25, 0.5 and 1 cell). We performed 10 140 

replicates for each dispersal value and in each landscape. This constituted a total of 2700 141 

metacommunity simulations. For each metacommunity simulation, species richness was 142 

computed at the cell level with R [22]. 143 

Local connectivity indices – For a given habitat cell, we considered 17 types of structural 144 

connectivity indices (CIs), summarized in Table 1. Six CIs were computed at the cell grain, i.e. 145 

considering a cell as the elementary unit of habitat, while 11 were computed at the patch grain, 146 

i.e. considering patches (maximal sets of contiguous habitat cells) as the elementary unit of 147 

habitat. In the latter case, all habitat cells within a patch harbored the same value of CI. Six 148 

CIs corresponded to measures of “flux” (red in Table 1), i.e. they quantified the intensity of the 149 

connection between the focal cell or patch and the surrounding habitat using a weight function 150 

decreasing with distance. Note that we considered buffer indices as measures of flux, since 151 

they quantify the connection between the focal cell or patch and the surrounding habitat using 152 

a step weight function decreasing with distance. Four other CIs were connector indices, i.e. 153 

they quantified how the focal cell or patch contributed to create connections among other 154 

habitat units (green in Table 1). Two other CIs were related to the area of the focal patch (blue 155 

in Table 1). At last, five additional CIs were composite, simultaneously quantifying area, flux 156 

and connector features in a single index (white in Table 1). 157 

Buffer indices corresponded to the proportion of habitat cells within circles of different radius 158 

(rbuf = 1, 2, 4, 5, 8 cells) around the focal cell. Graph CIs (dH, dF, dIIC and its components, 159 

dPC and its components) were based on nodes corresponding either to cells or to patches, 160 

although some of them were computationally too demanding at the cell grain and were thus 161 

only considered at the patch grain (see Table S1 for the complete list of indices considered). 162 

Pairs of nodes were connected to each other by links. Links’ weights wij between cells i and j 163 

in the network decreased according to the formula exp(-dij/λc), where dij is the Euclidean 164 

distances between cells i and j and λc is a scale parameter [14], [23]. λc may be interpreted as 165 

the hypothesized average dispersal distance of target organisms in the landscape (which may 166 

differ from the “true” simulated average dispersal distance due to habitat fragmentation). We 167 

considered four scale parameter values (λc = 0.25, 0.5, 1 and 2 cells). Some graph CIs (dH, 168 

dIIC and its components) considered a binary graph, where each cell pair was considered 169 

either connected (1) or not (0) relatively to a minimal link weight (wmin = 0.005). All indices with 170 

a name starting by “d” were computed using a cell or patch removal procedure, depending on 171 

the grain (Table 1). All indices were computed with Conefor 2.7 (command line version for 172 
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Linux, furnished by S. Saura, soon publicly available on www.conefor.org; [24]). Altogether, 173 

we computed 63 distinct CIs in each sampled cell of each simulation. 174 

Table 1: Connectivity indices (CIs) description at patch (P) and cell grain (C). Red: flux 175 
indices; blue: area indices; green: connector indices; white: composite indices. 176 

CI Definition Ref. 

Buffer P: undefined; C: buf𝑘 =
𝑎

𝜋𝑟2
∑ 1𝑑𝑖𝑘≤𝑟

𝑛
𝑖=1
𝑖≠𝑘

 [11] 

Harary P or C : dH𝑘 =
100

𝐻
[∑

1

nl𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

+ ∑ ∑
(𝑛𝑙𝑖𝑗

〈−𝑘〉
−𝑛𝑙𝑖𝑗)

nl𝑖𝑗nl𝑖𝑗
〈−𝑘〉

𝑛
𝑗=𝑖+1

𝑗≠𝑘

𝑛−1
𝑖=1
𝑖≠𝑘

] 
[25] 

Integral index of 

connectivity 

P: dIIC𝑘 =
100

𝐼𝐼𝐶
[𝑎𝑘

2 + 2 ∑
𝑎𝑘𝑎𝑖

1+nl𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

+ 2 ∑ ∑
𝑎𝑖𝑎𝑗(𝑛𝑙𝑖𝑗

〈−𝑘〉
−𝑛𝑙𝑖𝑗)

(1+nl𝑖𝑗)(1+nl𝑖𝑗
〈−𝑘〉

)

𝑛
𝑗=𝑖+1

𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

]  

C: dIIC𝑘 =
100𝑎2

𝐼𝐼𝐶
[1 + 2 ∑

1

1+nl𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

+ 2 ∑ ∑
(𝑛𝑙𝑖𝑗

〈−𝑘〉
−𝑛𝑙𝑖𝑗)

(1+nl𝑖𝑗)(1+nl𝑖𝑗
〈−𝑘〉

)

𝑛
𝑗=𝑖+1

𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

] 

[26] 

dIIC intra-patch P: dIICintra𝑘 =
100

𝐼𝐼𝐶
𝑎𝑘

2; C: constant [15] 

dIIC connector 

P: dIICconn𝑘 =
100

𝐼𝐼𝐶
[2 ∑ ∑

𝑎𝑖𝑎𝑗(𝑛𝑙𝑖𝑗
〈−𝑘〉

−𝑛𝑙𝑖𝑗)

(1+nl𝑖𝑗)(1+nl𝑖𝑗
〈−𝑘〉

)

𝑛
𝑗=𝑖+1

𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

]  

C: dIICconn𝑘 =
100𝑎2

𝐼𝐼𝐶
[2 ∑ ∑

(𝑛𝑙𝑖𝑗
〈−𝑘〉

−𝑛𝑙𝑖𝑗)

(1+nl𝑖𝑗)(1+nl𝑖𝑗
〈−𝑘〉

)

𝑛
𝑗=𝑖+1

𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

] 

[15] 

dIIC flux P: dIICflux𝑘 =
100

𝐼𝐼𝐶
[2 ∑

𝑎𝑘𝑎𝑖

1+nl𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

]; C: dIICflux𝑘 =
100𝑎2

𝐼𝐼𝐶
[2 ∑

1

1+nl𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

] [15] 

Probability of 

connectivity 

P: dPC𝑘 =
100

𝑃𝐶
[𝑎𝑘

2 + 2 ∑ 𝑎𝑘𝑎𝑖𝑝𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

+ 2 ∑ ∑ 𝑎𝑖𝑎𝑗(𝑝𝑖𝑗 − 𝑝𝑖𝑗
〈−𝑘〉

)𝑛
𝑗=𝑖+1

𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

] 

C: computationally too demanding 

[27] 

dPC intra-patch Not reported, because nearly identical to dIICintra𝑘 
[15] 

dPC connector 
P: dPCconn𝑘 =

100

𝑃𝐶
[2 ∑ ∑ 𝑎𝑖𝑎𝑗(𝑝𝑖𝑗 − 𝑝𝑖𝑗

〈−𝑘〉
)𝑛

𝑗=𝑖+1
𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

]; 

C: computationally too demanding 

[15] 

dPC flux 
P: dPCflux𝑘 =

100

𝑃𝐶
[2 ∑ 𝑎𝑘𝑎𝑖𝑝𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

]; C: computationally too demanding 
[15] 

Flux P or C : dF𝑘 = 2 ∑ 𝑤𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

 
[14],[21] 

Betweenness 

centrality 
P: BC𝑘 = ∑ ∑

𝑛𝑠𝑝𝑖𝑗(𝑘)

𝑛𝑠𝑝𝑖𝑗

𝑛
𝑗=1
𝑗≠𝑘

𝑛
𝑖=1
𝑖≠𝑘

; C: numerically unstable 
[28] 

Area P: dA𝑘 = 𝑎𝑘; C: constant 
— 

Notations: 𝑛: total number of nodes (patches or cells) in a graph;  𝑎: area of a cell; 𝑎𝑖: area of patch 𝑖; 𝑟: radius of a buffer; nl𝑖𝑗: 177 
shortest path between nodes 𝑖 and 𝑗 in a binary graph; nl𝑖𝑗

〈−𝑘〉
: shortest path between nodes 𝑖 and 𝑗 in a binary graph after node 𝑘 178 

has been removed;  H=
1

2
∑ ∑ 1 nl𝑖𝑗⁄𝑛

𝑗=1,𝑗≠𝑖
𝑛
𝑖=1 : Harary index of a graph; IIC= ∑ ∑ 𝑎𝑖𝑎𝑗 (1 + nl𝑖𝑗)⁄𝑛

𝑗=1
𝑛
𝑖=1 : integral index of connectivity 179 

of a graph; 𝑑𝑖𝑗: Euclidean distance between nodes 𝑖 and 𝑗; 𝑤𝑖𝑗: probability weight of the link between nodes 𝑖 and 𝑗 in a weighted 180 
graph; 𝑝𝑖𝑗: maximal product of links’ probability weight across all paths connecting nodes 𝑖 and 𝑗 in a weighted 181 
graph; PC= ∑ ∑ 𝑎𝑖𝑎𝑗𝑝𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 : probability of connectivity index of a graph; 𝑛𝑠𝑝𝑖𝑗: number of shortest paths between nodes 𝑖 and 𝑗 182 

in a binary graph; 𝑛𝑠𝑝𝑖𝑗(𝑘): number of shortest paths between nodes 𝑖 and 𝑗 in a binary graph that contain node 𝑘.  183 
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We analyzed correlations among these indices using ascending hierarchical classification. 184 

Within each of the 90 simulated landscapes, we computed the values of the 63 indices in all 185 

habitat cells, which yielded 63 vectors of length 1000 to 4000 depending on the habitat 186 

proportion. We scaled the 63 vectors to mean 0 and variance 1, divided them by the square 187 

root of the number of habitat cells in the landscapes and computed pairwise Euclidean 188 

distances among them. We thus obtained one 63×63 distance matrix among CIs in each of 189 

the 90 landscapes. Note than with our convention, the Euclidean distance between two CIs 190 

corresponds to √2 − 2𝑟, where r is the Pearson correlation between the two CIs across all 191 

habitat cells of the considered landscapes. We then averaged the 90 distance matrices to 192 

obtain one single 63×63 distance matrix as a basis for classification. We built two ascending 193 

non-supervised classification (hclust function of R base package), using the complete and 194 

single methods for group merging respectively. A monophyletic group G with common ancestor 195 

located at value r has a different meaning depending on the method used. According to the 196 

complete method, it means than any pair of CIs within G has a correlation above r. According 197 

to the single method, it means that any CI within G has a correlation with CIs outside G lower 198 

than r. We delineated minimum monophyletic groups with common ancestor at a correlation 199 

value equal or below 0.7 according to the two classification methods simultaneously. These 200 

groups are therefore set of indices such that any two CIs in the set have correlation above 0.7 201 

and any CI in the set has correlation with CIs outside the set below 0.7. 202 

Statistical analysis - We considered communities in habitat cells away from each other’s for a 203 

minimal distance of 12 cells, to reduce spatial auto-correlation. We also reduced potential 204 

landscape border effect (that could decouple landscape indices and actual migrants received) 205 

by excluding cells near landscape borders (to a distance inferior or equal to eight cells, 206 

equivalent to the longest buffer radius). Each landscape counted in average 25 sampled cells 207 

(CI-95% = [23, 27]). For each CI, each landscape and each metacommunity replicate, we 208 

computed the Pearson correlation coefficient r between CIs and species richness in sampled 209 

cells, which yielded 2700 × 63 = 170100 r values. We analyzed how CIs type, scaling of CIs, 210 

habitat proportion, habitat aggregation and community dispersal affected the value of r using 211 

linear models (lm function in R base package), considering all the covariates as categorical 212 

variables. 213 

We tested whether combining a connector index (dIICconnector) to a cell-based dF index 214 

improved the model of species richness. In each simulation, we first selected the dF index that 215 

had the most significant effect upon species richness in a linear model. Then we tested whether 216 

some dIICconnector at the cell grain could have a significant additional effect using a likelihood 217 

ratio test. If so, we measured the relative increase of the model R2 induced by adding the 218 

selected dIIC connector index. We also analyzed how habitat proportion, habitat aggregation 219 
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and community dispersal modulated the potential gain of combining dF and dIICconnector 220 

indices. 221 

Results 222 

Correlation among CIs - Our preliminary analysis of pairwise correlations among CIs revealed 223 

that average pairwise correlation were globally high with many extreme values towards 1 224 

(median = 0.49; CI-95% = [-0.0353, 0.9998]). Classification of indices based on the complete 225 

method (searching for correlation within groups above 0.7; Fig. 1) clearly distinguished clusters 226 

corresponding to patch and cell-based indices respectively. Among patch-based indices, those 227 

that quantified the connector fraction of connectivity formed one cluster (plus two isolated 228 

singletons), while the rest of patch based indices formed another cluster. By contrast, a more 229 

complex structure emerged among cell-based indices where scale, edges handling, and focal 230 

component of connectivity (flux versus connector fraction) all mattered in the delineation of 231 

clusters. Classification based on the single method (searching for correlation among groups 232 

below 0.7; Fig. S3) was much simpler: nearly all the indices fell into the same cluster, 233 

irrespective of grain, type and scale, suggesting that most of the clusters evidenced in the first 234 

classification partially overlap one with another and cannot be treated as independent groups 235 

without risk. Only cell-based binary connector CIs stood out as having profiles distinct from the 236 

vast majority of indices. The combination of our two classification hence suggested that the 237 

only combination of CIs showing a robust pattern of complementarity across landscapes 238 

involves cell-based binary connector indices (potentially several scale at a time) and one index 239 

chosen among all the others. 240 

Correlation between CIs and species richness - Averaging over all landscape configuration, all 241 

community dispersal levels, all scaling parameter values and all replicates, every CI showed a 242 

significantly positive correlation with species richness (Fig. 2). Connector indices at patch and 243 

cell grain showed a significantly lower correlation than other CIs. Buffers and dF at cell grain 244 

clearly stepped out as yielding the highest correlation values on average (average correlation 245 

with species richness above 0.7; Fig. 2). 246 

  247 
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Figure 1: Classification of connectivity indices (CIs) across all landscapes using the 248 
“complete” method for group merging. We delineated minimum monophyletic groups with 249 
common ancestor at a correlation value equal or below 0.7, meaning that any pair of indices 250 
within groups has correlation above 0.7 across our simulated landscapes. These groups are 251 
represented using frames and colors in each dendrogram. Red frames correspond to flux 252 
indices, green frames to connector indices, purple frames to a mixture of area and flux indices. 253 
Unframed CIs constituted monophyletic groups on their own. See Table S1 for the precise 254 
meaning of indices names. 255 

 256 

  257 
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Figure 2: Average correlation between local connectivity indices (CIs) and species 258 
richness. For each CI, we reported the average correlation across all landscape types, all 259 
landscape replicates and all community replicates (grey bars). Error bars correspond to 260 
estimated 95% confidence interval of the mean, computed as 1.96 times the standard error of 261 
the mean. 262 

 263 

The effect of dF (computed at cell grain) and buffer indices on species richness depended on 264 

a triple interaction among community dispersal, habitat proportion and habitat aggregation  and 265 

on a double interaction between index scaling and community dispersal. However, for the sake 266 

of interpretation, we studied how the effect of dF and buffer on species richness varied 267 

according to habitat proportion, to habitat aggregation, to community dispersal and to the 268 

interaction between index scaling and community dispersal separately. The effects of buffers 269 

and dF at cell grain on species richness were maximized for intermediary community dispersal 270 

level and increased with the habitat proportion in the landscape (Fig. 3). In addition, the effect 271 

of habitat aggregation on the correlation with species richness was unimodal for buffers and 272 

decreasing for dF. The scale parameter values that maximized cell-based dF and buffer 273 
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correlations with species richness increased with community dispersal level (Table 2). The 274 

optimal radius (rbuf) for buffers was about 8 times the community dispersal level (λs), while the 275 

optimal scale parameter of dF at cell grain (λc) was about 2 times the community dispersal 276 

level (λs). 277 

Figure 3: Community dispersal and habitat proportion effects on the correlation 278 
between buffers (resp. dF at cell grain) and species richness. Panels A and B (resp. C 279 
and D) correspond to buffer indices (resp. dF at cell grain). Panels A and C (resp. B and D) 280 
show the effect of community dispersal (resp. habitat proportion). Grey bars indicate the 281 
average correlation across all the simulation corresponding to the considered dispersal or 282 
landscape parameter. The error bars correspond to 1.96 times the standard error of the mean. 283 

 284 

  285 
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Table 2: Effect of buffer radius (rbuf) and dF at cell grain scale parameter (λc) on the 286 
correlation with species richness as a function of community dispersal (λs). Figures in 287 
the table correspond to average correlation value across simulation for a given CI scale 288 
parameter (or radius) and a given community dispersal level. For each value of community 289 
dispersal (table rows), and each CI type: (i) we indicated in bold the maximal correlation value 290 
obtained across scales; (ii) we indicated in normal black font the correlation values that did not 291 
differ significantly differ from the maximal value (checking that their estimated 95% confidence 292 
intervals, obtained as 1.96 times the standard error of the mean, overlapped with the highest 293 
correlation value); (iii) we indicated in light grey font the correlation values that were 294 
significantly lower than the maximal correlation value. 295 

 296 

  Buffer radius (rbuf) dF scale parameter (λc) 

  1 2 4 6 8 0.25 0.5 1 2 

C
o

m
m

u
n
it
y
 d

is
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e
rs

a
l 

(λ
s
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0.25 0.68 0.69 0.66 0.63 0.60 0.69 0.70 0.69 0.66 

0.5 0.70 0.81 0.84 0.83 0.80 0.74 0.80 0.84 0.85 

1 0.55 0.60 0.63 0.66 0.66 0.57 0.60 0.63 0.66 

 297 

Combining different CIs to predict species richness - We explored to what extent 298 

complementing dF computed at cell grain – that showed among the strongest correlation with 299 

species richness – with a dIICconnector index allowed explaining an even higher proportion of 300 

species richness variance across sampled sites. dIICconnector had a significant additional 301 

effect on species richness in about 44% of the simulations. As an element of comparison, 302 

adding a second dF index with different scaling instead of a dIICconnector index significantly 303 

improved the effect on species richness in only 9% of the simulations. Including dIICconnector 304 

as a complementary index more often resulted in a significantly improved model fit to species 305 

richness with increasing community dispersal levels (Fig. 4). However, the relative R2 increase 306 

when dIICconnector significantly improved the model fit was quite variable, but generally 307 

minor, with a skewed distribution (between 0% and 122%, with a median at 2%). In particular, 308 

higher relative increase of R2 was observed for habitats with higher aggregation (Fig. 4). 309 
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Figure 4: Effect of adding dIICconnector at cell grain to dF at cell grain on model’s fit to 311 
species richness. Across simulations, the additional contribution of dIICconnector could be 312 
significant or not, which is assessed as the proportion of simulations where dIICconnector 313 
complementary effect is detected as significant using a likelihood ratio test with level 0.05. 314 
Panel A shows this proportion as a function of community dispersal used in simulation. When 315 
significant, dIICconnector complementary effect could be quantified as a relative increase in 316 
model’s R2 compared to the model with dF only. Panel B shows the relative increase of R2 317 
induced by dIICconnector when significant, as a function of landscape Hurst coefficient in 318 
simulation (Hurst coefficient was the main driver of this quantity). 319 

 320 

Discussion 321 

Only connector indices at cell grain can be combined with other CIs for analyzing species 322 

richness - Our simulation allowed us to explore virtual landscapes that covered a wide variety 323 

of spatial distribution of habitats (Figs. S1, S2). Over this range of scenarios, we could identify 324 

strongly correlated CIs that may capture similar information about the spatial configuration of 325 

the surrounding habitat. [29] already performed classification of CIs according to their similarity 326 

in patch prioritization. They identified three main groups of CIs: those that quantify immigrant 327 

fluxes within the focal patch, those that quantify the role of the focal pacth as a connector, and 328 

patch area. Here we extended and refined this analysis in several aspects : (i) we considered 329 

a broader set of CIs and include the new axis of landscape grain (patch versus cell); (ii) we 330 

considered distinct scale parameter values (or radius) for each indices, with no a priori 331 

hypothesis about whether indices of same type but different scaling should be more similar 332 

one with another that indices with different types but similar scaling; (iii) our clusters were 333 

directly defined in terms of Pearson correlation thresholds, which contributed to characterize 334 

which CIs can be used as complementary covariates in statistical modeling of metacommunity 335 

biodiversity; (iv) we used a methodology where clusters stems from the classification itself with 336 

clear thresholds, rather than a posteriori graphical interpretation of NMDS, which made our 337 
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approach more replicable. Our classification of CIs partially echoed the results of [29] for patch 338 

based indices: when making groups of CIs with tight pairwise correlation within groups 339 

(complete methods), we found that connector indices (red in Fig. 1) were clearly separated 340 

from indices based on patch area and those based on flux coming within patches. However, 341 

we did not retrieve the separation proposed by the authors between patch area and flux 342 

indices, which all lied in the same cluster (purple in Fig. 1, meaning correlation above 0.7). 343 

Looking more closely at the internal structure of this cluster, we could retrieve the separation 344 

between area and flux indices, but it occurred at higher correlation thresholds. The typology of 345 

[29] should therefore be simplified, flux and area indices being in practice too tightly connected 346 

to make efficient complementary indices. CI classification was more complex when moving to 347 

a cell-based analysis of the landscape, scaling and type showing an interacting effect on the 348 

correlation among indices (Fig. 1). 349 

A striking feature of our classification of indices computed at the cell grain is the tight correlation 350 

between buffers and dF indices at cell grain. In our study, a buffer index resembled a dF index 351 

when the buffer radius was about 4 times the dF scale parameter value. [11] had already 352 

evidenced that correlations between IFM index (a generalization of the dF index; [13]) and 353 

buffers could reach 0.9 in a real landscape (their study did not focus on how the scaling of both 354 

indices could affect the correlation). However, their finding was based on IFM index computed 355 

at patch grain. Surprisingly, we did not find a similar strong relationship between buffers and 356 

dF at patch grain. This apparent paradox probably comes from the fact that the real landscape 357 

considered by [11] is highly fragmented, making patches and cells similar spatial entities. Our 358 

virtual study thus suggests that the pattern evidenced by [11] is restricted to highly fragmented 359 

contexts, while buffer – dF correlation at cell grain should apply to a broader variety of 360 

landscapes. Such a similarity between buffers and dF at cell grain was quite expected since 361 

both indices share the same general structure: a weighted sum of surrounding habitat cells 362 

contribution where weights decreases with distance following a particular kernel. dIICflux at 363 

cell grain also has a similar structure, considering topological rather than Euclidean distance, 364 

and this index was also tightly correlated with buffers and dF. Regarding the shape of the 365 

kernel, buffers are based on a step function while dF indices are based on an decreasing 366 

exponential kernel. We therefore interpret our results as the fact that changing the decreasing 367 

function used as a kernel may little affect the local connectivity as long as scaling is adjusted. 368 

This may explain why [30] found that: (i) switching from buffer to continuously decreasing 369 

kernel little affected AIC or pseudo R2 of models used to predict species abundances; (ii) 370 

neither continuously decreasing nor step function was uniformly better to explain species 371 

abundance across four case studies; (iii) different continuous shapes of kernel had quite 372 

indiscernible predictive performance. 373 
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In a nutshell, our classification analysis based on two complementary similarity metrics (Fig. 1 374 

and Fig. S3) revealed that there were only two groups of CIs that could be considered as 375 

relatively independent: connector indices at cell grain on the one hand, and a vast group 376 

gathering all the other CIs on the other hand. In the context of our study, it is therefore of little 377 

interest to combine several flux indices to predict species richness. By contrast, our analysis 378 

of CIs correlation suggests that combining a connector index at cell grain with some other CI 379 

(e.g. a flux index) may provide complementary insights, since both aspects of local connectivity 380 

are quite uncorrelated. This means in particular that considering separately connector 381 

dIICconnector and flux fraction dIICflux of the integral index of connectivity dIIC unravel two 382 

independent types of pattern that cannot be disentangled when using dIIC index, as already 383 

emphasized by [15]. 384 

Cell-based flux indices and buffers are the best CIs for explaining species richness - All CIs 385 

except connectors reached good levels of correlation of 0.5 or more with species richness. 386 

Best indices were buffers and dF at cell grain, that reached very strong correlation (average 387 

above 0.7) outperforming patch-based indices. Finding dF and buffers as the best-performing 388 

indices brings support to the habitat amount hypothesis [17]. It demonstrates that quantifying 389 

the amount of habitat around the community of interest through a continuous (dF) or 390 

discontinuous kernel (buffer) is an efficient approach to capture immigration effects upon 391 

community species richness under our metacommunity model assumptions. Optimizing buffer 392 

(resp. dF) radius (resp. scaling parameter) could further improve the correlation, sometimes 393 

by more than 0.1. For buffers, we found that the optimal radius was about 8 times the 394 

community dispersal level implemented in simulations, which was similar to the previous 395 

findings of [20] for predicting species occurrence. Since we mentioned earlier that dF and 396 

buffers had very similar profiles when the scale parameter of dF was approximately 1/4 the 397 

radius of the buffer, it came as no surprise that, for cell-based dF, we found the best correlation 398 

with species richness when the scale parameter was equal to about twice the community 399 

dispersal level. The effect of varying buffer or dF scaling parameter upon the correlation with 400 

species richness (Table 2) was however quite moderate compared to variation among types 401 

of CIs or grain of analysis (Fig. 2), and all the tested scale parameter values yielded high 402 

correlations. This tended to suggest that finding the scaling parameter that maximizes the 403 

correlation is probably not an accurate method to obtain estimate of species dispersal level. It 404 

also means, as a corollary, that buffer or dF indices are quite robust to inaccurate knowledge 405 

of dispersal distances of species. This matches the observation that, in empirical systems, 406 

buffer radii showing correlation with species richness similar to that obtained from the “scale 407 

of effect” radius can spread over a large array of distances, sometimes covering several orders 408 

of magnitude (e.g. [31]). 409 
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Combining cell-based flux and connector indices can improve the explanation of species 410 

richness - Adding a connector index to a flux index often lead to a significant but moderate 411 

improvement of the R2 of species richness models in our virtual study. The relative increase of 412 

R2 could reach 10% in landscape with rather continuous habitat, which roughly corresponds to 413 

a 30% increase in R. Although limited, this effect is higher than the effect of varying scale 414 

parameters in flux indices (buffer or dF). The contribution of connector indices to species 415 

richness explanation might come from the fact that they implicitly capture habitat amount at 416 

very large scales, beyond the reach of flux indices considered in our study. It could also be 417 

due to some other phenomenon. For instance, while buffers and dF indices would quantify the 418 

quantity of migrants coming into the focal cell, connector indices may be modulating the 419 

species diversity of these migrants. 420 

How robust are our results with respect to assumptions underpinning virtual experiments? In 421 

our simulations, best CIs reached very strong correlation (average above 0.7). Such degrees 422 

of correlation never occur in empirical studies, because many other processes than 423 

immigration and drift shape community composition and potentially break down this ideal 424 

relationship. Placing ourselves in an idealized virtual framework allowed us revealing 425 

performance contrasts and possible combinations among CIs, but our conclusions are 426 

obviously strongly dependent on the basic assumption that species considered are similar both 427 

in terms of habitat preference and in dispersal abilities. In that respect, our results should be 428 

seen as setting a reference describing how indices should perform if communities were neutral. 429 

Discrepancies with field observations would then convey information about non-neutral 430 

processes at work [32].  431 

While using a neutral model is undoubtedly an advantage for our theoretical exploration of CI 432 

properties, we must ask to what extent the ranking of CIs obtained here depends on the other 433 

instrumental choices we made in our model beyond the neutrality assumption. Part of the 434 

relative success of cell-based dF and buffers compared to patch-based indices probably stems 435 

from the fact that we did not include different resistance values to habitat and matrix cells. 436 

Strong resistance of matrix should give more biological meaning to patch frontiers, as habitat 437 

continuity become a central feature for individuals dispersal. In addition, when heterogeneous 438 

resistance occurs, landscape connectivity including displacement costs (e.g. least cost path, 439 

circuit theory) can be markedly different from prediction based on Euclidean distance only [33], 440 

and may better capture the movement of organisms in real case study [34], [35]. This probably 441 

also applies to patch or cell connectivity and may partially explain why we do not observe in 442 

empirical systems as strong effects of Euclidean indices as in our simulations. However, we 443 

advocate that most of our results here should at least qualitatively apply to scenarios with 444 
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heterogeneous resistance. Indeed, since our study is purely virtual, we could as well consider 445 

that distances among cells in the model are not Euclidean but ecological distances. This would 446 

have amounted to saying that landscapes considered in our study are “distorted” maps. Based 447 

on this mind experiment, we still expect a strong effect of dF in landscape with heterogeneous 448 

resistance, provided that it is computed with ecological distances rather than Euclidean 449 

distances. Buffers in terms of ecological distances (which are not circles anymore in the 450 

Euclidean space) should also have strong effects on species richness. Importantly, all these 451 

conclusions would still depend on the neutrality assumption, a central hypothesis of our study, 452 

which would imply that resistance of the landscape should be similar for all species. 453 

The grid cell resolution used to depict CI at the cell grain exactly matches the grid used to 454 

simulate the metacommunity processes of demographic stochasticity and dispersal. One may 455 

question whether this does not provide an advantage to indices computed at the cell grain. We 456 

believe that it is true, and that cell-based indices may show decreased performance if the size 457 

of a cell is very different from the size of a community, which we define as the maximum size 458 

where internal distance is not a strong limiting factor for interactions between individuals. We 459 

advocate that the grid resolution used for landscape analysis should be based on such 460 

ecological consideration, and that cells should match the typical size of communities. 461 

Conclusion 462 

We had identified three non-excluding methodological axes for improving the potential of CIs 463 

for explaining species presence and community richness in space: optimizing indices, 464 

combining indices and changing the grain of habitat description. Our study suggests that the 465 

most promising direction is to select appropriate indices capturing a concept of flux (buffers, 466 

dF, dIICflux), and applying them at cell grain. In line with the habitat amount hypothesis, simple 467 

buffers are probably the best tool to capture the effect of immigration upon community species 468 

richness, although more complex notion of distance should probably be used in real context, 469 

accounting for matrix resistance and dispersal barriers. These indices can reach very strong 470 

levels of correlation in a neutral metacommunity, suggesting that poorer performance in real 471 

landscape stems from the preponderance of non-neutral processes such as heterogeneity in 472 

dispersal and contrasted niches and habitats of species. By contrast combining CIs of different 473 

types showed a quite limited potential for improving the prediction of species richness. Buffers 474 

might therefore be a sufficient tool to capture landscape effects on community composition 475 

within a locality, while more complex indices may have more decisive contribution when 476 

studying landscape-scale connectivity. 477 
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Supplementary figures 573 

Figure S1: Four examples of extreme landscapes in terms of aggregation (hurst) and 574 
habitat proportion (prop) in our study. Habitat is pictured in green, matrix in brown. 575 

 576 
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Figure S2: Average size and number of patches in the virtual landscapes used in our 578 
study. Colors correspond to distinct combinations of Hurst exponent and habitat proportion. 579 
Ellipses correspond to 95%-CI of a fitted bivariate Student distribution. 580 
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Figure S3: Classification of connectivity indices (CIs) across all landscapes using the 584 
“single” method for group merging. We delineated minimum monophyletic groups with 585 
common ancestor at a correlation value equal or below 0.7, meaning two indices belonging to 586 
distinct groups has correlation below 0.7 across our simulated landscapes. These groups are 587 
presented using colors and frames. Indices in green are connector indices. The grey frame 588 
encompasses a mixture of connector, area and flux indices. CIs without frame constitute 589 
monophyletic groups on their own. The “very small-scale connector” group is identical to that 590 
of Fig. 1 in main text and indices within it are computed at cell grain. See Table S1 for the 591 
precise meaning of indices names. 592 
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Supplementary tables 

Table S1: List of all patch structural connectivity indices (CIs) considered in our study. 
CIs labels are made of three parts separated by underscores “_”. The first part of the name 
indicates the type of the index (“buf”, “dA”, “dF”, “dH”, “BC”, “dPC”, “dPCflux”, “dPCconnector”, 
“dIIC”, “dIICintra”, “dIICflux”, “dIICconnector”; see Table 1 for description). The second part of 
the name indicates the scale parameter of the index (“d025”, “d050”, “d100”, 
“d200”  corresponding to λc = 0.25, 0.5, 1, 2 cells respectively, and “1”, “2”, “4”, “6”, “8” 
corresponding to buffer radius rbuf in cells). The last part refers to the grain used to compute 
the index (“pbp” and “b005p” corresponding to patch grain, (“pbx” and “b005x ” corresponding 
to cell grain) 

CI labels 
Edges 

handling 
CI type 

Habitat 

grain 

CI 

scaling 

/radius 

buf_1  - buffer cell 1 

buf_2  - buffer cell 2 

buf_4  - buffer cell 4 

buf_6  - buffer cell 6 

buf_8  - buffer cell 8 

dA_d025_b005p  - area patch  - 

dIICintra_d025_b005p  - 

internal fraction of the integral index of 

connectivity patch  - 

BC_d025_b005p binary betweenness connectivity patch 0,25 

BC_d050_b005p binary betweenness connectivity patch 0,5 

BC_d100_b005p binary betweenness connectivity patch 1 

BC_d200_b005p binary betweenness connectivity patch 2 

dH_d025_b005p binary Harary index patch 0,25 

dH_d050_b005p binary Harary index patch 0,5 

dH_d100_b005p binary Harary index patch 1 

dH_d200_b005p binary Harary index patch 2 

dH_d025_b005x binary Harary index cell 0,25 

dH_d050_b005x binary Harary index cell 0,5 

dH_d100_b005x binary Harary index cell 1 

dH_d200_b005x binary Harary index cell 2 

dIIC_d025_b005p binary integral index of connectivity patch 0,25 

dIIC_d050_b005p binary integral index of connectivity patch 0,5 

dIIC_d100_b005p binary integral index of connectivity patch 1 

dIIC_d200_b005p binary integral index of connectivity patch 2 

dIIC_d025_b005x binary integral index of connectivity cell 0,25 

dIIC_d050_b005x binary integral index of connectivity cell 0,5 

dIIC_d100_b005x binary integral index of connectivity cell 1 

dIIC_d200_b005x binary integral index of connectivity cell 2 

dIICconnector_d025_b

005p binary 

connector fraction of the integral index of 

connectivity patch 0,25 
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dIICconnector_d050_b

005p binary 

connector fraction of the integral index of 

connectivity patch 0,5 

dIICconnector_d100_b

005p binary 

connector fraction of the integral index of 

connectivity patch 1 

dIICconnector_d200_b

005p binary 

connector fraction of the integral index of 

connectivity patch 2 

dIICconnector_d025_b

005x binary 

connector fraction of the integral index of 

connectivity cell 0,25 

dIICconnector_d050_b

005x binary 

connector fraction of the integral index of 

connectivity cell 0,5 

dIICconnector_d100_b

005x binary 

connector fraction of the integral index of 

connectivity cell 1 

dIICconnector_d200_b

005x binary 

connector fraction of the integral index of 

connectivity cell 2 

dIICflux_d025_b005p binary 

flux fraction of the integral index of 

connectivity patch 0,25 

dIICflux_d050_b005p binary 

flux fraction of the integral index of 

connectivity patch 0,5 

dIICflux_d100_b005p binary 

flux fraction of the integral index of 

connectivity patch 1 

dIICflux_d200_b005p binary 

flux fraction of the integral index of 

connectivity patch 2 

dIICflux_d025_b005x binary 

flux fraction of the integral index of 

connectivity cell 0,25 

dIICflux_d050_b005x binary 

flux fraction of the integral index of 

connectivity cell 0,5 

dIICflux_d100_b005x binary 

flux fraction of the integral index of 

connectivity cell 1 

dIICflux_d200_b005x binary 

flux fraction of the integral index of 

connectivity cell 2 

dF_d025_pbp 

continuous 

weights flux index patch 0,25 

dF_d050_pbp 

continuous 

weights flux index patch 0,5 

dF_d100_pbp 

continuous 

weights flux index patch 1 

dF_d200_pbp 

continuous 

weights flux index patch 2 

dF_d025_pbx 

continuous 

weights flux index cell 0,25 

dF_d050_pbx 

continuous 

weights flux index cell 0,5 

dF_d100_pbx 

continuous 

weights flux index cell 1 
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dF_d200_pbx 

continuous 

weights flux index cell 2 

dPC_d025_pbp 

continuous 

weights probability of connectivity index patch 0,25 

dPC_d050_pbp 

continuous 

weights probability of connectivity index patch 0,5 

dPC_d100_pbp 

continuous 

weights probability of connectivity index patch 1 

dPC_d200_pbp 

continuous 

weights probability of connectivity index patch 2 

dPCflux_d025_pbp 

continuous 

weights 

flux fraction of probability of connectivity 

index patch 0,25 

dPCflux_d050_pbp 

continuous 

weights 

flux fraction of probability of connectivity 

index patch 0,5 

dPCflux_d100_pbp 

continuous 

weights 

flux fraction of probability of connectivity 

index patch 1 

dPCflux_d200_pbp 

continuous 

weights 

flux fraction of probability of connectivity 

index patch 2 

dPCconnector_d025_p

bp 

continuous 

weights 

connector fraction of probability of 

connectivity index patch 0,25 

dPCconnector_d050_p

bp 

continuous 

weights 

connector fraction of probability of 

connectivity index patch 0,5 

dPCconnector_d100_p

bp 

continuous 

weights 

connector fraction of probability of 

connectivity index patch 1 

dPCconnector_d200_p

bp 

continuous 

weights 

connector fraction of probability of 

connectivity index patch 2 
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