1	Efficient horizontal transmission without viral super-spreaders may cause the high
2	prevalence of STLV-1 infection in Japanese macaques
3	
4	Megumi Murata ^a , Jun-ichirou Yasunaga ^b , Ayaka Washizaki ^a , Yohei Seki ^a , Wei Keat TAN ^a ,
5	Takuo Mizukami ^c , Masao Matsuoka ^b , Hirofumi Akari ^{a, d} #
6	
7	^a Primate Research Institute, Kyoto University, Aichi, Japan
8	^b Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto
9	University, Kyoto, Japan
10	^c Department of Safety Research on Blood and Biological Products, National Institute of
11	Infectious Diseases, Tokyo, Japan.
12	^d Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences,
13	Kyoto University, Kyoto, Japan
14	
15	Running Head: The high prevalence of STLV-1 in Japanese macaques
16	
17	#Address correspondence to Hirofumi Akari: <u>akari.hirofumi.5z@kyoto-u.ac.jp</u>
18	
19	Word count : Abstract: 240 words
20	Text: 3050 words

21 Abstracts (231 words)

23	Simian T-cell leukemia virus type-1 (STLV-1) is disseminated among various
24	non-human primate species and is closely related to human T-cell leukemia virus type-1
25	(HTLV-1), the causative agent of adult T-cell leukemia and HTLV-1-associated
26	myelopathy/tropical spastic paraparesis. Notably, the prevalence of STLV-1 infection in
27	Japanese macaques (JMs) is estimated to be much greater than that in other non-human
28	primates; however, the mechanism and mode of STLV-1 transmission remain unknown.
29	We hypothesized that a substantial proportion of infected macaques may play a critical role
30	as viral super-spreaders for efficient inter-individual transmission leading to the high
31	prevalence of infection. To address this, we examined a cohort of 280 JMs reared in a free-
32	range facility for levels of anti-STLV-1 antibody titers (ABTs) and STLV-1 proviral loads
33	(PVLs). We found that the prevalence of STLV-1 in the cohort reached up to 65%
34	(180/280), however, the ABTs and PVLs were normally distributed with mean values of
35	4076 and 0.62%, respectively, which were comparable to those of HTLV-1-infected
36	humans. Contrary to our expectations, we did not observe the macaques with abnormally
37	high PVLs and poor ABTs, and therefore, the possibility of viral super-spreaders was
38	unlikely. Results from further analyses regarding age-dependent changes in STLV-1
39	prevalence and a longitudinal follow-up of STLV-1 seroconversion strongly suggest that

- 40 frequent horizontal transmission is a major route of STLV-1 infection, probably due to the
- 41 unique social ecology of JMs associated with environmental adaptation.

Importance (143 words)

44	We investigated the cause of the high prevalence of STLV-1 infection in the studied JMs
45	cohort. Contrary to our expectations, the potential viral super-spreaders as shown by
46	abnormally high PVLs and poor ABTs were not observed among the JMs. Rather, the
47	ABTs and PVLs among the infected JMs were comparable to those of HTLV-1-infected
48	humans although the prevalence of HTLV-1 in humans is much less than the macaques.
49	Further analyses demonstrate that the prevalence drastically increased over one year of
50	age and most of these animals over 6 years of age were infected with STLV-1, and that in
51	the longitudinal follow-up study frequent seroconversion occurred in not only infants but
52	also in juvenile and adult seronegative monkeys (around 20% per year). This is the first
53	report showing that frequent horizontal transmission without viral super-spreaders may
54	cause high prevalence of STLV-1 infection in JMs.

55 Introduction

57	Simian T-cell leukemia viruses (STLVs) are classified into the Deltaretrovirus
58	genus, which includes human T-cell leukemia viruses (HTLVs). The first human retrovirus,
59	HTLV-1, was identified in 1980 (1-3), even though the disease entity of adult T-cell
60	leukemia (ATL) had been described in Japan before the identification of this virus (4).
61	Eventually, HTLV-1 was found to be the causative agent of not only ATL but also HTLV-
62	1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP) (1, 2, 5-10). It is
63	estimated that 10-20 million people worldwide are infected with HTLV-1 (11). HTLV-1
64	infections are endemic in southern Japan, Africa, the Caribbean, Central and South
65	America, and intertropical Africa (12-14). An estimated one million people in Japan are
66	thought to be HTLV-1 carriers, corresponding to 1% of the total population (14-16). In
67	most cases, HTLV-1 infection remains asymptomatic, whereas 5% of carriers develop ATL
68	and/or HAM/TSP (17-24). STLVs infect a variety of non-human primates in Asia and
69	Africa but not in America (25-28). STLV-1 and STLV-2 have human counterparts, HTLV-
70	1 and HTLV-2 (29-32). A third subspecies, STLV-3, was isolated from an Eritrean sacred
71	baboon (Papio hamadryas) and a red-capped mangabey (Cercocebus torquatus) (33, 34).
72	A recent report showed that STLV-4 was isolated from gorillas and that the virus was
73	endemic to gorillas (35). It has been reported that STLVs are also associated with

74 leı	ıkemia/lym	phoma (36-4)) and that h	unting and	severe bites b	y non-human	primates are
--------	------------	-------------	---------------	------------	----------------	-------------	--------------

the likely routes of zoonotic transmission of STLVs (26, 41-45).

76	Japanese macaques (JMs: Macaca fuscata) inhabit much of Japan (except
77	Hokkaido and Okinawa). JMs are found infected with STLV-1, and their seroprevalence is
78	much greater than that of other primates (46-52). Watanabe et al. reported that the sequence
79	homology of STLV-1 to that of HTLV-1 was 90% (29). Given this genetic similarity, it
80	was suspected that zoonotic STLV transmission might be, at least in part, the cause of
81	HTLV-1 dissemination among Japanese people. However, phylogenetic analysis between
82	HTLV-1 isolated from Japanese people and STLV-1 isolated from JMs demonstrated that
83	STLV-1 was distinct from HTLV-1 (53). Furthermore, some groups have reported that the
84	geographical distribution of HTLV-1 in Japan did not correspond to the habitat of JMs (50,
85	54). From genomic and epidemiological evidence, it was concluded that Japanese HTLV-
86	1 originated from Mongoloid people moving from North Asia but not from JM STLV-1
87	(53, 55).

A high proportion (60% on average) of JMs has been reported as infected with STLV-1, whereas the prevalence of STLV in other natural hosts among non-human primates, including Asian macaques, is generally much lower than with JMs (25, 50-52, 56-62). The reason of the high prevalence remains unknown. However, it was proposed that STLV-1 in JMs may have an alternative transmission route via maternal infection (51). We hypothesized that the substantial proportion of infected macaques may play critical

94	roles as viral super-spreaders for efficient inter-individual transmission, likely due to
95	abnormally high proviral loads (PVLs) and eventual incidence of poor humoral immune
96	response against STLV-1. We recently experienced an outbreak of infectious malignant
97	thrombocytopenia in JMs by simian retrovirus type 4 (SRV-4) infection (63). Importantly,
98	some of the monkeys who developed persistent SRV-4 infection exhibited viremia without
99	an SRV-4-specific antibody response and became viral super-spreaders (64). Taking this
100	example into account, we evaluated antibody titers (ABTs) against STLV-1 and PVLs in
101	the JM cohort.

Results

104	To validate the STLV-1 prevalence in JMs, we first examined the anti-STLV-1
105	ABTs from the plasma of 280 JMs derived from five independent troops originating from
106	inhabitants of different areas. We found that 180 macaques (65%) were seropositive (Table
107	1), which was generally consistent with previous reports (47, 48, 50, 52). We then
108	determined the variation in the seroprevalence among the troops. The numbers of
109	seropositive individuals were 59, 17, 36, 34, and 34, with a frequency of 68%, 55%, 63%,
110	56%, and 77%, respectively (Table 1). The seroprevalence was generally comparable with
111	that in wild JMs as previously reported (50, 52). In addition, the rearing density in each
112	troop was not correlated with the seroprevalence, suggesting that relatively higher
113	population density may not cause the high prevalence (Table 1).
113 114	population density may not cause the high prevalence (Table 1). We then investigated the cause of high STLV-1 prevalence. We hypothesized that
114	We then investigated the cause of high STLV-1 prevalence. We hypothesized that
114 115	We then investigated the cause of high STLV-1 prevalence. We hypothesized that a substantial proportion of infected macaques may play a critical role as viral super-
114 115 116	We then investigated the cause of high STLV-1 prevalence. We hypothesized that a substantial proportion of infected macaques may play a critical role as viral super- spreaders for efficient inter-individual transmission, likely due to abnormally high PVLs
114 115 116 117	We then investigated the cause of high STLV-1 prevalence. We hypothesized that a substantial proportion of infected macaques may play a critical role as viral super- spreaders for efficient inter-individual transmission, likely due to abnormally high PVLs and eventual incidence of poor humoral immune response against STLV-1. To examine
114 115 116 117 118	We then investigated the cause of high STLV-1 prevalence. We hypothesized that a substantial proportion of infected macaques may play a critical role as viral super- spreaders for efficient inter-individual transmission, likely due to abnormally high PVLs and eventual incidence of poor humoral immune response against STLV-1. To examine this possibility, we evaluated ABTs and PVLs in the JM cohort and found that the ABTs

122	among the five troops (Fig. 1C). We also examined the STLV-1 PVLs in the JMs PBMC
123	samples and found that the PVLs among 168 macaques positive for the proviral DNA were
124	normally distributed and ranged from $0.01\%-20\%$ with a geometric mean of 0.62% and
125	PVLs of 0.64%-1.28% at the maximum number of individuals (Fig. 2A, Fig. S2). Again,
126	we observed no statistical differences in the PVLs between males and females (Fig. 2B) or
127	among the troops (Fig. 2C). The data regarding ABTs and PVLs from the 183 macaques
128	positive for either value (herein tentatively regarded as 'STLV-1-infected') were plotted as
129	shown in Figure 3. Among the JMs, 168 were positive for both values, whereas three were
130	negative for ABTs but positive for PVLs, and 12 were positive for ABTs but negative for
131	PVLs. Contrary to our expectations, we observed no monkeys with abnormally high PVLs
132	and poor ABTs (Fig. 3). It is notable that the three ABT-PVL ⁺ monkeys belonged to two
133	troops (two macaques in troop C and one in troop D), and their PVLs were comparable or
134	less than the mean PVLs. It is, therefore, unlikely that only three monkeys caused the high
135	prevalence in all the independent troops. In addition, we observed positive correlation
136	between ABTs and PVLs ($R = 0.50, p < 0.0001$) (Fig. 3), suggesting that humoral immunity
137	was properly induced in response to the increasing viral loads in these macaques.
138	In the absence of potential viral super-spreaders, we aimed to clarify the possible
139	route(s) of transmission by which this high prevalence occurred. If maternal transmission
140	were the main route of infection, the infection rate would drastically increase at around one
141	year of age, followed by a gradual increase with age. On the other hand, if horizontal

142	transmission were the main route, the infection rate would be low in younger ages, followed
143	by a steep increase with age. To verify these possibilities, we examined the age-dependent
144	change of seroprevalence in the cohort. The frequencies of seropositive individuals in each
145	age group were 19%, 33%, 58%, 79%, 95%, 100%, and 96% at age groups of 0, 1, 2, 3–5,
146	6–9, 10–11, and \geq 12 years, respectively (Fig. 4, solid line). We also analyzed the age-
147	dependent change of proviral DNA prevalence (Fig. 5). The frequencies of proviral DNA-
148	positive individuals in each age group were 13%, 33%, 55%, 75%, 91%, 100%, and 93%
149	for age groups at 0, 1, 2, 3–5, 6–9, 10–11, and \geq 12 years of age, respectively, which was
150	consistent with those shown in Fig. 4. These results indicate that the infection rate
151	drastically increased after one year of age and most of these animals over 6 years of age
152	were infected with STLV-1, which supports the latter hypothesis that horizontal
153	transmission would be the major route. Importantly, relatively large numbers of younger
154	individuals (i.e., 0-1 years of age) whose STLV-1 prevalence was relatively low,
155	apparently reduced the total prevalence to 65%. However, almost all of the adult
156	individuals (i.e., sexually mature ones of more than 6 years of age) were infected with
157	STLV-1 (Figs. 4 and 5, bar graphs). Each troop showed comparable results in both
158	parameters (data not shown).

Results described above suggest horizontal transmission as the major route of
STLV-1 infection. There still remains a possibility that the seroconversion in the offspring
of STLV-1-infected mothers, after the establishment of maternal transmission, could

162	require up to three years due to long-term latency as shown in the case of HTLV-1 (65-67).
163	If this is the case, then maternal transmission, rather than horizontal transmission, could be
164	the major route. Therefore, we conducted a longitudinal study of the STLV-1
165	seroprevalence in this cohort (Table 2). We selected 139 monkeys whose serum samples
166	in both 2011 and 2015 were available (PBMC samples in 2011 were not available). In 2011,
167	111 of 139 monkeys were seropositive, whereas 28 were seronegative. It was found that
168	among the 28 seronegative monkeys in 2011, 24 were seroconverted for the antibody
169	within four years from 2011 to 2015. Remarkably, among ten seronegative monkeys of
170	four years old and above in 2011, eight were seroconverted within four years (80%), which
171	was comparable with the monkeys of three years old and below in 2011 (16/18, 89%). The
172	fact that frequent seroconversion occurred even in the seronegative monkeys of four years
173	old and above suggests lower probability of long-term latency post-maternal transmission
174	and supports the notion that horizontal STLV-1 transmission frequently occurs among JMs,
175	which may eventually result in almost all adult monkeys infected with STLV-1.

176 Discussion

178	In this study, we aimed to investigate the cause of the high prevalence of STLV-1
179	infection in the studied JMs cohort. We initially examined the prevalence of STLV-1
180	infections in the JMs derived from five independent troops originating from inhabitants of
181	different areas and found that 65% (180/280) of the macaques were seropositive, which
182	was generally consistent with previous reports (47, 48, 50, 52) (Table 1). Contrary to our
183	expectations, we found that the ABTs and PVLs among the infected macaques were
184	normally distributed with mean values of 4076 and 0.62%, respectively (Figs. 1, 2, S1, and
185	S2). This was comparable to those of HTLV-1-infected humans. In addition, we did not
186	observe macaques with abnormally high PVLs and poor ABTs (Fig. 3). Thus, the
187	possibility of viral super-spreaders is unlikely. To further determine the possible route(s)
188	of transmission, the influence of age on frequency of STLV-1 infection in the cohort was
189	examined. We found that the frequency drastically increased over one year of age and most
190	of these animals over 6 years of age were infected with STLV-1 (Figs. 4 and 5). Moreover,
191	the longitudinal follow-up study of this cohort demonstrated that frequent seroconversion
192	occurred in not only infants but also in juvenile and adult seronegative monkeys (Table 2).
193	Taken together, our findings strongly suggest that frequent horizontal transmission is the
194	major route of STLV-1 infection in JMs, which eventually result in almost all adult
195	monkeys infected with STLV-1. These findings were unexpected considering human cases

196	of HTLV-1 infection, of which the prevalence rate is only 1% (or below) in Japan (an
197	endemic country) (16). What causes the high frequency of horizontal STLV-1 transmission
198	in JMs? It was shown that JMs genetically originate from rhesus macaques (RMs) as the
199	ancestor macaques came over from the Asian Continent to Japan around 0.5 million years
200	ago (68). It was reported that much less frequency of RMs are infected with STLV-1 than
201	the case of JMs (69). Similarly, the prevalence rate of STLV-1 in RMs bred and reared in
202	our free-ranging facility as well as JMs is less than 1% (52). It is therefore reasonable to
203	speculate that STLV-1 was broadly disseminated after ancestor macaques started
204	inhabiting Japan. As for the migrated JMs, foods such as leaves, fruits, and nuts in their
205	habitats were insufficient in the cold winter season so they probably needed to form troops
206	to keep their territories for foods and to stay warm by assembling together (70). They
207	eventually established a promiscuous mating system without having fixed partners/mates
208	to circumvent the genetic disadvantages caused by inbreeding within the troop (71). It is
209	possible that promiscuity increased the opportunity to transmit STLV-1, which led to the
210	high STLV-1 prevalence. In fact, it was reported that a relatively high prevalence of HTLV-
211	1 was occasionally observed in isolated Japanese populations (72), which is generally
212	consistent with the phenomenon observed in JMs.

Results obtained in this study indicate that less than 20% of infants (i.e., 0-yearold) were positive for either antiviral antibodies or proviral DNA (Figs. 4 and 5). This is
generally comparable with the estimated frequency of maternal transmission of HTLV-1

216	in humans (73). However, it remains to be elucidated whether long-term latent STLV-1
217	infection in infants and eventual seroconversion from latency of a couple of years after
218	birth could occur frequently. It was shown that frequency of maternal transmission was
219	associated with the PVLs of the pregnant mothers (74-77). If this is the case in JMs, this
220	suggests that mean PVLs, as well as their distribution among the macaques (Figs. 1 and 2),
221	are similar to human cases (78, 79), and this may support the possibility that frequency of
222	maternal STLV-1 transmission might be comparable to humans. It is intriguing to
223	determine the frequency of mother-to-child STLV-1 transmission as well as the period of

time required for the seroconversion in the mother-to-child transmission as done herein.

225 Materials and methods

226

```
227 Animals
```

228	JMs bred and reared in the free-range facility of the Primate Research Institute,
229	Kyoto University (KUPRI) were used in this study. All the troops were isolated and had
230	no physical connection with each other. All animal experiments were approved by the
231	Animal Welfare and Animal Care Committee of KUPRI (approval numbers: 2014-092,
232	2015-040, and 2016-135) and were conducted in accordance with the Guidelines for Care
233	and Use of Nonhuman Primates (Version 3) by the Animal Welfare and Animal Care
234	Committee of KUPRI.
235	
236	Preparation of plasma and peripheral blood mononuclear cells (PBMCs)
237	Blood samples were collected from JMs at routine health checkups under
238	ketamine anesthesia with medetomidine, followed by administration of its antagonist,
239	atipamezole, at the end of the procedure. PBMCs were separated from blood samples with
240	Ficoll-paque PLUS (GE Healthcare, Buckinghamshire, UK) by density gradient
241	centrifugation. Plasma and PBMCs were frozen at -80°C until use. Cellular DNA was
242	purified via a QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany), according to the
243	manufacturer's instructions.
044	

245 Titration of the STLV-1-specific antibody

Plasma samples were evaluated for ABTs with a particle-agglutination assay using
Serodia-HTLV-1 (Fujirebio Inc. Tokyo, Japan) as previously described (52). The plasma
cut-off titer was a 1:16 dilution.

249

250 Quantification of STLV-1 PVLs

251 Cellular DNA collected from PBMCs was measured for STLV-1 PVLs via a 252 real-time PCR quantification of copy numbers of the STLV-1 tax gene and RAG1 gene of 253 JMs as previously described (52). PCR was performed using Thunderbird Probe qPCR mix 254 (TOYOBO, Osaka, Japan). The following primers and probes were used: RAG1-2F 255 (CCCACCTTGGGACTCAGTTCT), RAG1-2R (CACCCGGAACAGCTTAAATTTC), a 256 RAG1 probe (5'- FAM CCCCAGATGAAATTCAGCACCCATATA TAMRA -3'), 257 STLV-1 tax-F2 (CTACCCTATTCCAGCCCACTAG), STLV-1 tax-R3 258 (CGTGCCATCGGTAAATGTCC), STLV-1 probe (5'and а tax FAM 259 CACCCGCCACGCTGACAGCCTGGCAA TAMRA -3'). Copy number of STLV-1 260 proviral DNA per cell was standardized with that of the RAG1 gene. The detection limit of 261 PVLs was 0.01%.

262

263 Statistical analyses

264	We tested the normal distribution of the data and applied parametric or non-
265	parametric methods according to the experiment. Pearson's correlation coefficient was
266	employed for correlation of two parameters, and two-tailed Student's <i>t</i> -tests were employed
267	for comparison of two groups. For multiple comparisons with more than two groups, a one-
268	way ANOVA with Tukey's multiple comparison test was used.

269 Acknowledgements

271	This research was supported by AMED under Grant Number JP19fk0108059.

- 272 The blood samples of JMs used in this study were partly provided by National Bio-
- 273 Resource Project "Japanese Monkey" of MEXT, Japan. We thank Kaoru Tsuji and
- 274 colleagues of Center for Human Evolution Modeling Research in KUPRI for their
- technical assistance.

276 **References**

278	1.	Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. 1980.
279		Detection and isolation of type C retrovirus particles from fresh and cultured
280		lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U
281		S A 77:7415-7419.
282	2.	Poiesz BJ, Ruscetti FW, Reitz MS, Kalyanaraman VS, Gallo RC. 1981. Isolation
283		of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with
284		Sezary T-cell leukaemia. Nature 294:268-271.
285	3.	Popovic M, Reitz MS, Jr., Sarngadharan MG, Robert-Guroff M, Kalyanaraman
286		VS, Nakao Y, Miyoshi I, Minowada J, Yoshida M, Ito Y, Gallo RC. 1982. The
287		virus of Japanese adult T-cell leukaemia is a member of the human T-cell
288		leukaemia virus group. Nature 300:63-66.
289	4.	Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. 1977. Adult T-cell
290		leukemia: clinical and hematologic features of 16 cases. Blood 128:2745.
291	5.	Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI,
292		Shirakawa S, Miyoshi I. 1981. Adult T-cell leukemia: Antigen in an ATL cell line
293		and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S
294		A 78:6476-6480.
295	6.	Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, Nagata K,

296		Hinuma Y. 1981. Type C virus particles in a cord T-cell line derived by co-
297		cultivating normal human cord leukocytes and human leukaemic T cells. Nature
298		294:770-771.
299	7.	Yoshida M, Miyoshi I, Hinuma Y. 1982. Isolation and characterization of
300		retrovirus from cell lines of human adult T-cell leukemia and its implication in the
301		disease. Proc Natl Acad Sci U S A 79:2031-2035.
302	8.	Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, de The G. 1985.
303		Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic
304		paraparesis. Lancet 326:407-410.
305	9.	Hirose S, Uemura Y, Fujishita M, Kitagawa T, Yamashita M, Imamura J, Ohtsuki
306		Y, Taguchi H, Miyoshi I. 1986. Isolation of HTLV-I from cerebrospinal fluid of a
307		patient with myelopathy. Lancet 328:397-398.
308	10.	Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara
309		M. 1986. HTLV-I associated myelopathy, a new clinical entity. Lancet 327:1031-
310		1032.
311	11.	Willems L, Hasegawa H, Accolla R, Bangham C, Bazarbachi A, Bertazzoni U,
312		Carneiro-Proietti AB, Cheng H, Chieco-Bianchi L, Ciminale V, Coelho-Dos-Reis
313		J, Esparza J, Gallo RC, Gessain A, Gotuzzo E, Hall W, Harford J, Hermine O,
314		Jacobson S, Macchi B, Macpherson C, Mahieux R, Matsuoka M, Murphy E,
315		Peloponese JM, Simon V, Tagaya Y, Taylor GP, Watanabe T, Yamano Y. 2017.

316		Reducing the global burden of HTLV-1 infection: An agenda for research and
317		action. Antiviral Res 137:41-48.
318	12.	de The G, Bomford R. 1993. An HTLV-I vaccine: why, how, for whom? AIDS
319		Res Hum Retroviruses 9:381-386.
320	13.	Edlich RF, Arnette JA, Williams FM. 2000. Global epidemic of human T-cell
321		lymphotropic virus type-I (HTLV-I). J Emerg Med 18:109-119.
322	14.	Gessain A, Cassar O. 2012. Epidemiological Aspects and World Distribution of
323		HTLV-1 Infection. Front Microbiol 3:388. doi: 10.3389/fmicb.2012.00388.
324	15.	Tajima K. 1990. The 4th nation-wide study of adult T-cell leukemia/lymphoma
325		(ATL) in Japan: estimates of risk of ATL and its geographical and clinical
326		features. The T- and B-cell Malignancy Study Group. Int J Cancer 45:237-243.
327	16.	Satake M, Yamaguchi K, Tadokoro K. 2012. Current prevalence of HTLV-1 in
328		Japan as determined by screening of blood donors. J Med Virol 84:327-335.
329	17.	Shimoyama M. 1991. Diagnostic criteria and classification of clinical subtypes of
330		adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group
331		(1984-87). Br J Haematol 79:428-437.
332	18.	Takatsuki K. 2005. Discovery of adult T-cell leukemia. Retrovirology 2:16. doi:
333		10.1186/1742-4690-2-16.
334	19.	Goncalves DU, Proietti FA, Ribas JG, Araujo MG, Pinheiro SR, Guedes AC,

335		Carneiro-Proietti AB. 2010. Epidemiology, treatment, and prevention of human
336		T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev 23:577-589.
337	20.	Kamoi K, Mochizuki M. 2012. HTLV infection and the eye. Curr Opin
338		Ophthalmol 23:557-561.
339	21.	Ishitsuka K, Tamura K. 2014. Human T-cell leukaemia virus type I and adult T-
340		cell leukaemia-lymphoma. The Lancet Oncology 15:e517-e526.
341	22.	McKendall RR. 2014. Neurologic disease due to HTLV-1 infection. Handb Clin
342		Neurol 123:507-530.
343	23.	Bangham CR, Araujo A, Yamano Y, Taylor GP. 2015. HTLV-1-associated
344		myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers 1:15012. doi:
345		10.1038/nrdp.2015.12.
346	24.	Bangham CR, Ratner L. 2015. How does HTLV-1 cause adult T-cell
347		leukaemia/lymphoma (ATL)? Curr Opin Virol 14:93-100.
348	25.	Ishikawa K, Fukasawa M, Tsujimoto H, Else JG, Isahakia M, Ubhi NK, Ishida T,
349		Takenaka O, Kawamoto Y, Shotake T, Ohsawa H, Ivanoff B, Cooper RW, Frost
350		E, Grant FC, Spriatna Y, Sutarman., Abe K, Yamamoto K, Hayami M. 1987.
351		Serological survey and virus isolation of simian T-cell leukemia/T-lymphotropic
352		virus type I (STLV-I) in non-human primates in their native countries. Int J
353		Cancer 40:233-239.
354	26.	Koralnik IJ, Boeri E, Saxinger WC, Monico AL, Fullen J, Gessain A, Guo HG,

355		Gallo RC, Markham P, Kalyanaraman V, Hirsch V, Allan J, Murthy K, Alford P,
356		Slattery JP, O'brien SJ, Franchini G. 1994. Phylogenetic associations of human
357		and simian T-cell leukemia/lymphotropic virus type I strains: evidence for
358		interspecies transmission. J Virol 68:2693-2707.
359	27.	Ibuki K, Ido E, Setiyaningsih S, Yamashita M, Agus LR, Takehisa J, Miura T,
360		Dondin S, Hayami M. 1997. Isolation of STLV-I from orangutan, a great ape
361		species in Southeast Asia, and its relation to other HTLV-Is/STLV-Is. Jpn J
362		Cancer Res 88:1-4.
363	28.	Verschoor EJ, Warren KS, Niphuis H, Heriyanto, Swan RA, Heeney JL. 1998.
364		Characterization of a simian T-lymphotropic virus from a wild-caught orang-utan
365		(Pongo pygmaeus) from Kalimantan, Indonesia. J Gen Virol 79:51-55.
366	29.	Watanabe T, Seiki M, Tsujimoto H, Miyoshi I, Hayami M, Yoshida M. 1985.
367		Sequence homology of the simian retrovirus genome with human T-cell leukemia
368		virus type I. Virology 144:59-65.
369	30.	Digilio L, Giri A, Cho N, Slattery J, Markham P, Franchini G. 1997. The simian
370		T-lymphotropic/leukemia virus from Pan paniscus belongs to the type 2 family
371		and infects Asian macaques. J Virol 71:3684-3692.
372	31.	Van Brussel M, Salemi M, Liu HF, Gabriels J, Goubau P, Desmyter J, Vandamme
373		AM. 1998. The simian T-lymphotropic virus STLV-PP1664 from Pan paniscus is
374		distinctly related to HTLV-2 but differs in genomic organization. Virology

376	32.	Gabet AS, Gessain A, Wattel E. 2003. High simian T-cell leukemia virus type 1
377		proviral loads combined with genetic stability as a result of cell-associated
378		provirus replication in naturally infected, asymptomatic monkeys. Int J Cancer
379		107:74-83.
380	33.	Meertens L, Mahieux R, Mauclere P, Lewis J, Gessain A. 2002. Complete
381		sequence of a novel highly divergent simian T-cell lymphotropic virus from wild-
382		caught red-capped mangabeys (Cercocebus torquatus) from Cameroon: a new
383		primate T-lymphotropic virus type 3 subtype. J Virol 76:259-268.
384	34.	Meertens L, Gessain A. 2003. Divergent simian T-cell lymphotropic virus type 3
385		(STLV-3) in wild-caught Papio hamadryas papio from Senegal: widespread
386		distribution of STLV-3 in Africa. J Virol 77:782-789.
387	35.	LeBreton M, Switzer WM, Djoko CF, Gillis A, Jia H, Sturgeon MM, Shankar A,
388		Zheng H, Nkeunen G, Tamoufe U, Nana A, Le Doux Diffo J, Tafon B, Kiyang J,
389		Schneider BS, Burke DS, Wolfe ND. 2014. A gorilla reservoir for human T-
390		lymphotropic virus type 4. Emerg Microbes Infect 3:e7. doi: 10.1038/emi.2014.7.
391	36.	Tsujimoto H, Noda Y, Ishikawa K, Nakamura H, Fukasawa M, Sakakibara I,
392		Sasagawa A, Honjo S, Hayami M. 1987. Development of adult T-cell leukemia-
393		like disease in African green monkey associated with clonal integration of simian
394		T-cell leukemia virus type I. Cancer Res 47:269-274.

Traina-Dorge V, Blanchard J, Martin L, Murphey-Corb M. 1992.

395

37.

396		Immunodeficiency and lymphoproliferative disease in an African green monkey
397		dually infected with SIV and STLV-I. AIDS Res Hum Retroviruses 8:97-100.
398	38.	Voevodin A, Samilchuk E, Schatzl H, Boeri E, Franchini G. 1996. Interspecies
399		transmission of macaque simian T-cell leukemia/lymphoma virus type 1 in
400		baboons resulted in an outbreak of malignant lymphoma. J Virol 70:1633-1639.
401	39.	Akari H, Ono F, Sakakibara I, Takahashi H, Murayama Y, Hiyaoka A, Terao K,
402		Otani I, Mukai R, Adachi A, Yoshikawa Y. 1998. Simian T cell leukemia virus
403		type I-induced malignant adult T cell leukemia-like disease in a naturally infected
404		African green monkey: implication of CD8+ T cell leukemia. AIDS Res Hum
405		Retroviruses 14:367-371.
406	40.	Turpin J, Alais S, Marcais A, Bruneau J, Melamed A, Gadot N, Tanaka Y,
407		Hermine O, Melot S, Lacoste R, Bangham CR, Mahieux R. 2017. Whole body
408		clonality analysis in an aggressive STLV-1 associated leukemia (ATLL) reveals
409		an unexpected clonal complexity. Cancer Lett 389:78-85.
410	41.	Slattery JP, Franchini G, Gessain A. 1999. Genomic evolution, patterns of global
411		dissemination, and interspecies transmission of human and simian T-cell
412		leukemia/lymphotropic viruses. Genome Res 9:525-540.
413	42.	Locatelli S, Peeters M. 2012. Cross-species transmission of simian retroviruses:

414		how and why they could lead to the emergence of new diseases in the human
415		population. AIDS 26:659-673.
416	43.	Filippone C, Betsem E, Tortevoye P, Cassar O, Bassot S, Froment A, Fontanet A,
417		Gessain A. 2015. A Severe Bite From a Nonhuman Primate Is a Major Risk
418		Factor for HTLV-1 Infection in Hunters From Central Africa. Clin Infect Dis
419		60:1667-1676.
420	44.	Kazanji M, Mouinga-Ondeme A, Lekana-Douki-Etenna S, Caron M, Makuwa M,
421		Mahieux R, Gessain A. 2015. Origin of HTLV-1 in hunters of nonhuman primates
422		in Central Africa. J Infect Dis 211:361-365.
423	45.	Mossoun A, Calvignac-Spencer S, Anoh AE, Pauly MS, Driscoll DA, Michel AO,
424		Nazaire LG, Pfister S, Sabwe P, Thiesen U, Vogler BR, Wiersma L, Muyembe-
425		Tamfum JJ, Karhemere S, Akoua-Koffi C, Couacy-Hymann E, Fruth B, Wittig
426		RM, Leendertz FH, Schubert G. 2017. Bushmeat Hunting and Zoonotic
427		Transmission of Simian T-Lymphotropic Virus 1 in Tropical West and Central
428		Africa. J Virol 91:e02479-02416. doi: 10.1128/JVI.02479-16.
429	46.	Miyoshi I, Yoshimoto S, Fujishita M, Taguchi H, Kubonishi I, Niiya K,
430		Minezawa M. 1982. Natural adult T-cell leukemia virus infection in Japanese
431		monkeys. Lancet 320:658.
432	47.	Ishida T, Yamamoto K, Kaneko R, Tokita E, Hinuma Y. 1983.
433		Seroepidemiological study of antibodies to adult T-cell leukemia virus-associated

434		antigen (ATLA) in free-ranging Japanese monkeys (Macaca fuscata). Microbiol
435		Immunol 27:297-301.
436	48.	Miyoshi I, Fujishita M, Taguchi H, Matsubayashi K, Miwa N, Tanioka Y. 1983.
437		Natural infection in non-human primates with adult T-cell leukemia virus or a
438		closely related agent. Int J Cancer 32:333-336.
439	49.	Miyoshi I, Yoshimoto S, Fujishita M, Ohtsuki Y, Taguchi H, Shiraishi Y, Akagi
440		T, Minezawa M. 1983. Isolation in culture of a type C virus from a Japanese
441		monkey seropositive to adult T-cell leukemia-associated antigens. Gan 74:323-
442		326.
443	50.	Hayami M, Komuro A, Nozawa K, Shotake T, Ishikawa K, Yamamoto K, Ishida
444		T, Honjo S, Hinuma Y. 1984. Prevalence of antibody to adult T-cell leukemia
445		virus-associated antigens (ATLA) in Japanese monkeys and other non-human
446		primates. Int J Cancer 33:179-183.
447	51.	Eguchi K, Ohsawa K, Fuse-Kiyono M, Suzuki J, Kurokawa K, Yamamoto T.
448		2011. Short communication: epidemiological evidence that simian T-
449		lymphotropic virus type 1 in Macaca fuscata has an alternative transmission route
450		to maternal infection. AIDS Res Hum Retroviruses 27:113-114.
451	52.	Miura M, Yasunaga J, Tanabe J, Sugata K, Zhao T, Ma G, Miyazato P, Ohshima
452		K, Kaneko A, Watanabe A, Saito A, Akari H, Matsuoka M. 2013.
453		Characterization of simian T-cell leukemia virus type 1 in naturally infected

454		Japanese macaques as a model of HTLV-1 infection. Retrovirology 10:118. doi:
455		10.1186/1742-4690-10-118.
456	53.	Song KJ, Nerurkar VR, Saitou N, Lazo A, Blakeslee JR, Miyoshi I, Yanagihara
457		R. 1994. Genetic analysis and molecular phylogeny of simian T-cell lymphotropic
458		virus type I: evidence for independent virus evolution in Asia and Africa.
459		Virology 199:56-66.
460	54.	Gallo RC, Sliski A, Wong-Staal F. 1983. Origin of human T-cell leukaemia-
461		lymphoma virus. Lancet 322:962-963.
462	55.	Miura T, Fukunaga T, Igarashi T, Yamashita M, Ido E, Funahashi S, Ishida T,
463		Washio K, Ueda S, Hashimoto K, Yoshida M, Osame M, Singhal BS, Zaninovic
464		V, Cartier L, Sonoda S, Tajima K, Ina Y, Gojobori T, Hayami M. 1994.
465		Phylogenetic subtypes of human T-lymphotropic virus type I and their relations to
466		the anthropological background. Proc Natl Acad Sci U S A 91:1124-1127.
467	56.	Saksena NK, Herve V, Durand JP, Leguenno B, Diop OM, Digouette JP, Mathiot
468		C, Muller MC, Love JL, Dube S, Sherman MP, Benz PM, Erensoy S, Galat-
469		Luong A, Galat G, Baishali P, Dube DK, Sinoussi BS, Poiesz BJ. 1994.
470		Seroepidemiologic, molecular, and phylogenetic analyses of simian T-cell
471		leukemia viruses (STLV-I) from various naturally infected monkey species from
472		central and western Africa. Virology 198:297-310.
473	57.	Nerrienet E, Meertens L, Kfutwah A, Foupouapouognigni Y, Gessain A. 2001.

474		Molecular epidemiology of simian T-lymphotropic virus (STLV) in wild-caught
475		monkeys and apes from Cameroon: a new STLV-1, related to human T-
476		lymphotropic virus subtype F, in a Cercocebus agilis. J Gen Virol 82:2973-2977.
477	58.	Takemura T, Yamashita M, Shimada MK, Ohkura S, Shotake T, Ikeda M, Miura
478		T, Hayami M. 2002. High Prevalence of Simian T-Lymphotropic Virus Type L in
479		Wild Ethiopian Baboons. J Virol 76:1642-1648.
480	59.	Andrade MR, Yee J, Barry P, Spinner A, Roberts JA, Cabello PH, Leite JP,
481		Lerche NW. 2003. Prevalence of antibodies to selected viruses in a long-term
482		closed breeding colony of rhesus macaques (Macaca mulatta) in Brazil. Am J
483		Primatol 59:123-128.
484	60.	Courgnaud V, Van Dooren S, Liegeois F, Pourrut X, Abela B, Loul S, Mpoudi-
485		Ngole E, Vandamme A, Delaporte E, Peeters M. 2004. Simian T-Cell Leukemia
486		Virus (STLV) Infection in Wild Primate Populations in Cameroon: Evidence for
487		Dual STLV Type 1 and Type 3 Infection in Agile Mangabeys (Cercocebus agilis).
488		J Virol 78:4700-4709.
489	61.	Mee ET, Murrell CK, Watkins J, Almond N, Cutler K, Rose NJ. 2009. Low rates
490		of transmission of SRV-2 and STLV-I to juveniles in a population of Macaca
491		fascicularis facilitate establishment of specific retrovirus-free colonies. J Med
492		Primatol 38:160-170.
493	62.	Ahuka-Mundeke S, Lunguya-Metila O, Mbenzo-Abokome V, Butel C,

494		Inogwabini BI, Omasombo V, Muyembe-Tamfum JJ, Georgiev AV, Muller MN,
495		Ndjango JN, Li Y, Delaporte E, Hahn BH, Peeters M, Ayouba A. 2016. Genetic
496		diversity of STLV-2 and interspecies transmission of STLV-3 in wild-living
497		bonobos. Virus Evol 2:vew011. doi: 10.1093/ve/vew011.
498	63.	Cyranoski D. 2010. Japanese monkey deaths puzzle. Nature 466:302-303.
499	64.	Okamoto M, Miyazawa T, Morikawa S, Ono F, Nakamura S, Sato E, Yoshida T,
500		Yoshikawa R, Sakai K, Mizutani T, Nagata N, Takano J, Okabayashi S, Hamano
501		M, Fujimoto K, Nakaya T, Iida T, Horii T, Miyabe-Nishiwaki T, Watanabe A,
502		Kaneko A, Saito A, Matsui A, Hayakawa T, Suzuki J, Akari H, Matsuzawa T,
503		Hirai H. 2015. Emergence of infectious malignant thrombocytopenia in Japanese
504		macaques (Macaca fuscata) by SRV-4 after transmission to a novel host. Sci Rep
505		5:8850. doi: 10.1038/srep08850.
506	65.	Hino S, Yamaguchi K, Katamine S, Sugiyama H, Amagasaki T, Kinoshita K,
507		Yoshida Y, Doi H, Tsuji Y, Miyamoto T. 1985. Mother-to-child transmission of
508		human T-cell leukemia virus type-I. Jpn J Cancer Res 76:474-480.
509	66.	Kusuhara K, Sonoda S, Takahashi K, Tokugawa K, Fukushige J, Ueda K. 1987.
510		Mother-to-child transmission of human T-cell leukemia virus type I (HTLV-I): a
511		fifteen-year follow-up study in Okinawa, Japan. Int J Cancer 40:755-757.
512	67.	Nyambi PN, Ville Y, Louwagie J, Bedjabaga I, Glowaczower E, Peeters M,
513		Kerouedan D, Dazza M, Larouze B, van der Groen G, Delaporte E. 1996. Mother-

514		to-child transmission of human T-cell lymphotropic virus types I and II (HTLV-
515		I/II) in Gabon: a prospective follow-up of 4 years. J Acquir Immune Defic Syndr
516		Hum Retrovirol 12:187-192.
517	68.	Nozawa K, Shotake T, Ohkura Y, Tanabe Y. 1977. Genetic variations within and
518		between species of Asian macaques. Jpn J Genet 52:15-30.
519	69.	Daniel MD, Letvin NL, Sehgal PK, Schmidt DK, Silva DP, Solomon KR, Hodi
520		FS Jr., Ringler DJ, Hunt RD, King NW, Desrosiers RC. 1988. Prevalence of
521		antibodies to 3 retroviruses in a captive colony of macaque monkeys. Int J Cancer
522		41:601-608.
523	70.	Anderson JR. 2000. Sleep-related behavioural adaptations in free-ranging
524		anthropoid primates. Sleep Med Rev 4:355-373.
525	71.	Fooden J, Aimi M. 2006. Systematic Review of Japanese Macaques, Macaca
526		fuscata (Gray, 1870). Fieldiana Zoology 104:1-198.
527	72.	Tachibana K, Ito S, Shirahama S, Nagatomo M, Kinoshita K, Tajima K. 1991.
528		Epidemic patterns of hepatitis type B virus (HBV) and human T lymphotropic
529		virus type I (HTLV-I) in two ATL-endemic islands in Kyushu, Japan. Nagoya J
530		Med Sci 53:23-32.
531	73.	Cassar O, Gessain A. 2017. Serological and Molecular Methods to Study
532		Epidemiological Aspects of Human T-Cell Lymphotropic Virus Type 1 Infection.

533		In: Casoli C. (eds) Human T-Lymphotropic Viruses. Methods in Molecular
534		Biology, vol 1582. Humana Press, New York, NY
535	74.	Ureta-Vidal A, Angelin-Duclos C, Tortevoye P, Murphy E, Lepere JF, Buigues
536		RP, Jolly N, Joubert M, Carles G, Pouliquen JF, de The G, Moreau JP, Gessain A.
537		1999. Mother-to-child transmission of human T-cell-leukemia/lymphoma virus
538		type I: implication of high antiviral antibody titer and high proviral load in carrier
539		mothers. Int J Cancer 82:832-836.
540	75.	Hisada M, Maloney EM, Sawada T, Miley WJ, Palmer P, Hanchard B, Goedert
541		JJ, Manns A. 2002. Virus markers associated with vertical transmission of human
542		T lymphotropic virus type 1 in Jamaica. Clin Infect Dis 34:1551-1557.
543	76.	van Tienen C, McConkey SJ, de Silva TI, Cotten M, Kaye S, Sarge-Njie R, da
544		Costa C, Goncalves N, Parker J, Vincent T, Jaye A, Aaby P, Whittle H, Schim
545		van der Loeff M. 2012. Maternal proviral load and vertical transmission of human
546		T cell lymphotropic virus type 1 in Guinea-Bissau. AIDS Res Hum Retroviruses
547		28:584-590.
548	77.	Paiva AM, Assone T, Haziot MEJ, Smid J, Fonseca LAM, Luiz ODC, de Oliveira
549		ACP, Casseb J. 2018. Risk factors associated with HTLV-1 vertical transmission
550		in Brazil: longer breastfeeding, higher maternal proviral load and previous HTLV-
551		1-infected offspring. Sci Rep 8:7742. doi: 10.1038/s41598-018-25939-y.
552	78.	Shinzato O, Kamihira S, Ikeda S, Kondo H, Kanda T, Nagata Y, Nakayama E,

Shiku H. 1993. Relationship between the anti-HTLV-1 antibody level, the number

554		of abnormal lymphocytes and the viral-genome dose in HTLV-1-infected
555		individuals. Int J Cancer 54:208-212.
556	79.	Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR,
557		Ogata M, Kikuchi H, Sagara Y, Uozumi K, Mochizuki M, Tsukasaki K, Saburi Y,
558		Yamamura M, Tanaka J, Moriuchi Y, Hino S, Kamihira S, Yamaguchi K. 2010.
559		Human T-cell leukemia virus type I (HTLV-1) proviral load and disease
560		progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in
561		Japan. Blood 116:1211-1219.
562		

563 Figure legends

564

565 Table 1: Seroprevalence in Japanese macaques and other parameters having the566 possibilities of affecting seroprevalence in each area.

567

Table 2 : Longitudinal study of the STLV-1 prevalence in Japanese macaques.

569

570 Figure 1. Distribution of anti-STLV-1 antibody titers (ABTs) in seropositive JMs. (A)

571 Distribution of ABTs in all seropositive cohort JMs. (B) Results of the ABT distribution

572 between male and female JMs and (C) among five troops are indicated. The dotted line

shows the detection limit of the ABT, and the horizontal line indicates the geometric meanof the ABT distribution.

575

576 Figure 2. Distribution of proviral loads (PVLs). (A) Distribution of STLV-1 PVLs in

577 proviral DNA-positive JMs. Results of the PVLs distribution between (B) male and female

- 578 JMs and (C) among five troops (C) are shown. The dotted line indicates the detection limit
- 579 of the PVL, and the horizontal line indicates the geometric mean of the PVL distribution.

580

581 Figure 3. Correlation between antibody titers (ABTs) and proviral loads (PVLs) among

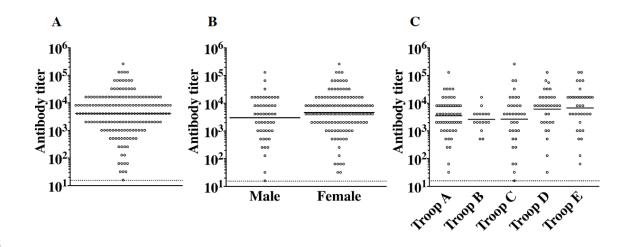
individuals who were positive for either value. Among the macaques (N = 183), 168 were

583	positive for both values, whereas three were seronegative but positive for PVLs, and 12
584	were seropositive but negative for PVLs. There was a significant correlation between the
585	ABTs and the PVLs ($R = 0.50$; $p < 0.0001$).
586	
587	Figure 4. Age-dependent changes of STLV-1 seroprevalence in JMs. The left Y-axis shows
588	the percentage of seropositive individuals (solid line). The right Y-axis indicates positive
589	(closed bars) and negative (open bars) number of individuals.
590	
591	Figure 5. Age-dependent changes in the prevalence in JM positives for STLV-1 proviral
592	DNA. The left Y-axis shows the percentage of proviral DNA-positive individuals (solid
593	line). The right Y-axis indicates positive (closed bars) and negative (open bars) number of
594	individuals.
595	

	Troop A	Troop B	Troop C	Troop D	Troop E	total
Number of individuals (male/female)	87(32/55)	31(9/22)	57(24/33)	61(18/43)	44(19/25)	280(102/178)
STLV-1 seroprevalence						
Number of positive individuals	59	17	36	34	34	180
Number of negative individuals	28	14	21	27	10	100
Positivity (%)	68	55	63	56	77	65
Mean age	5.7	4.5	4.2	6.5	5.0	5.5
Area (m^2)	8500	3400	850	730	1200	14680
Area per individuals (m ²)	7.7	109.7	14.9	12.2	27.3	52.6

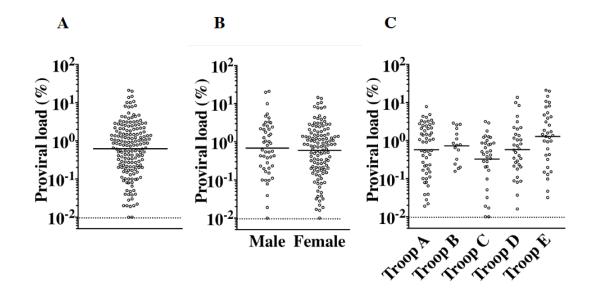
Table 1: Seroprevalence of STLV-1 infection among different troops of JMs.

598


597

36

0 (4) 7		
	6	
1 (5) 1	1	
2 (6) 6	6	
3 (7) 4	3	
0-3 (4-7) 18	16	16/18 (89%)
4 (8) 3	3	
5 (9) 1	1	
6 (10) 3	3	
≥7(≥11) 3	1	
≥4(≥8) 10	8	8/10 (80%)
Total 28	24	24/28 (86%)


Table 2 : Longitudinal study of the STLV-1 prevalence in Japanese macaques

602 Figure 1

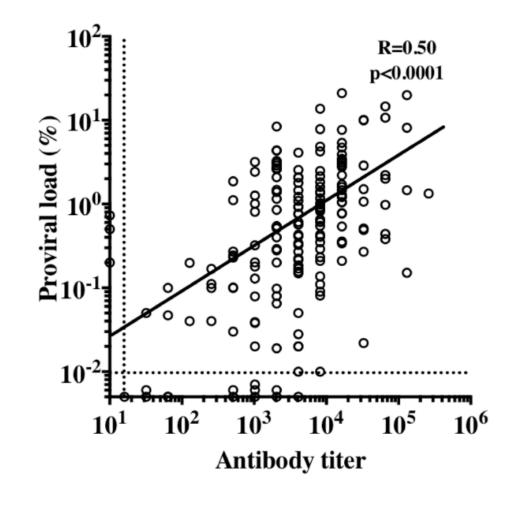
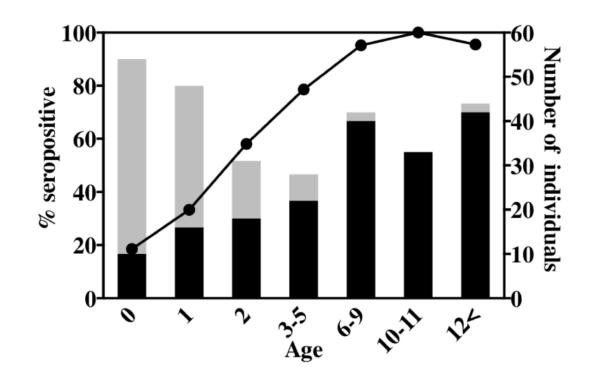
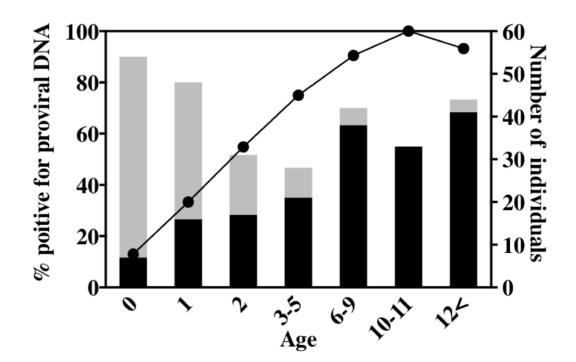

603

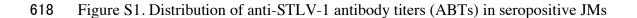
Figure 2

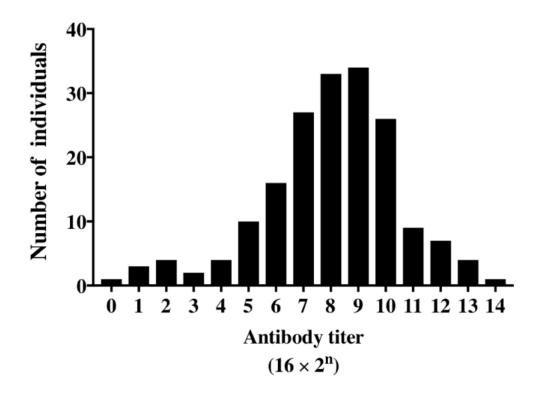

606

608 Figure 3

609 610

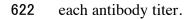

611 Figure 4

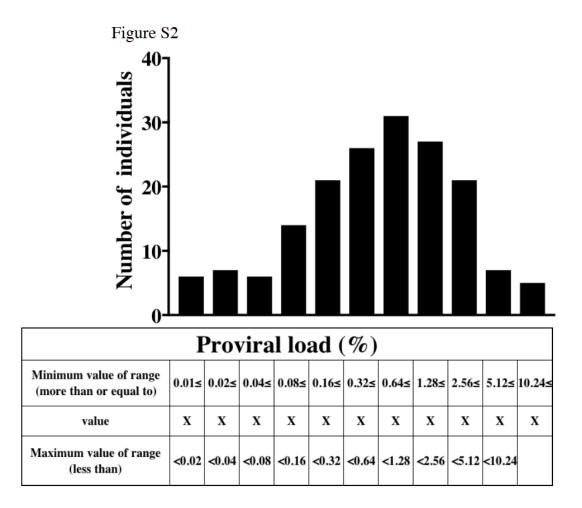

612


614 Figure 5

615

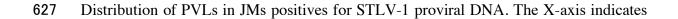
617 Supplemental Information




619

620 The X-axis represents antibody titers ranging from 16–262144, with an ABT of 8192 at

621 the maximum number of individuals. The Y-axis represents the number of individuals in



624 Figure S2. Distribution of STLV-1 proviral loads (PVLs)

625

626

628 PVLs ranging from 0.01%–20%, with PVLs of 0.64%–1.28% at the maximum number

629 of individuals. The Y-axis shows the number of individuals in each PVL group.