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Abstract 

Gene and protein expressions are key determinants of cellular function. Neurons are the building 

blocks of brain circuits, yet the relationship between their molecular identity and the spatial 

distribution of their dendritic inputs and axonal outputs remain incompletely understood. The 

open-source knowledge base Hippocampome.org amasses such transcriptomic data from the 

scientific literature for morphologically defined neuron types in the rodent hippocampal 

formation: dentate gyrus (DG), CA3, CA2, CA1, subiculum (SUB), and entorhinal cortex (EC). 

Positive, negative, or mixed expression reports were initially obtained from published articles 

directly connecting molecular evidence to neurons with known axonal and dendritic patterns 

across hippocampal layers. Here, we supplement this information by collating, formalizing, and 

leveraging relational expression inferences (REIs) that link a gene or protein expression or lack 

thereof to that of another molecule or to an anatomical location. With these additional 

interpretations, we freely release online a comprehensive human- and machine-readable 

molecular profile for the more than 100 neuron types in Hippocampome.org. Analysis of these 

data ascertains the ability to distinguish unequivocally most neuron types in each of the major 

subdivisions of the hippocampus based on currently known biochemical markers. Moreover, 

grouping neuron types by expression similarity reveals eight super-families characterized by a 

few defining molecules. 

 

Key words:  neuropeptides, receptors, calcium-binding proteins, molecular clusters 

 

Significance Statement 

The molecular composition of cells underlies their structure, activity, and function. Neurons are 

arguably the most diverse cell types with their characteristic tree-like shapes mediating synaptic 

communication throughout the brain. Biochemical marker data are available online for hundreds 

of morphologically identified neuron types in the mammalian hippocampus, including 

expression of calcium-binding proteins, receptors, and enzymes. Here, we augment this evidence 

by systematically applying logical rules empirically derived from the published literature (e.g. 

“presence of molecule X implies lack of molecule Y”). The resulting substantially expanded 

expression profiles provide nearly unique molecular identities for most known hippocampal 
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neuron types while revealing previously unrecognized genetic similarities across anatomical 

regions and morphological phenotypes. 

 

Introduction 

Neurons expressing different molecular markers have been found in numerous mammalian brain 

regions, including the hippocampus (Klausberger, 2008; Baude et al., 2007), barrel cortex 

(Karagiannis et al., 2009), prefrontal cortex (Caballero et al., 2014), entorhinal cortex (Ferrante 

et al., 2016), striatum (Garas et al., 2016), retina (Shekhar et al., 2016), and olfactory bulb (Eyre 

et al., 2009). Because many genes are differentially expressed in different cells, they can serve as 

chemical identifiers for subsets of cell types. Large-scale efforts examining expression of 

thousands of genes at the single-cell level are underway (Zeng et al., 2012; Tasic et al., 2016; 

Poulin et al., 2016; Macosko et al., 2015; Zeisel et al., 2015; Chen et al., 2017; Hu et al., 2017; 

Raj et al., 2018). The big data from these studies will advance significantly our knowledge of the 

molecular markers controlling neuronal function. However, full elucidation of how the brain 

works will likely require additional dimensions of information that may not be directly derivable 

from the transcriptome alone. In particular, synaptic connectivity, which depends at least in part 

upon the spatial overlap of the axons and dendrites of two neurons, may also be necessary (see, 

however, Paul et al., 2017). 

 

Some neurons with known axonal-dendritic patterns are associated with particular molecular 

markers. For example, hippocampal CA1 Oriens/Lacunosum-Moleculare (O-LM) and 

neocortical Martinotti neurons express the neuropeptide somatostatin (SOM); however, these are 

not the only SOM-positive cells in their respective brain regions (Leao et al., 2012; McGarry et 

al., 2010; Markram et al., 2004). Thus, SOM is a biochemical marker for these neurons, but it 

does not uniquely identify them. To date, no single marker has been found to uniquely identify a 

morphologically- or electrophysiologically-distinct neuron type. Rather, uniquely identifying 

neuron types requires molecular expression information for several markers. 

 

The potential implications of the ongoing transcriptomics revolution are unambiguously 

recognized in the neuroscience community and the advent of high-throughput single cell 

sequencing techniques such as DropSeq (Macosko et al., 2015) is rapidly delivering on the 
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promise of much needed large-scale datasets. However, scientific consensus has yet to be 

reached as to which genes should be considered as relatively stable and informative with respect 

to neuron types and which may be more dependent on the organism’s state or individual life 

history. In particular, two critical questions remain open: based on current knowledge of 

molecular expression, how many morphologically or functionally distinguished neuron types can 

we uniquely identify in a given brain region based on biochemical markers? And what is the 

minimal subset of robust neurochemical markers required for such identification?  

 

Molecular expression information for neurons in the rodent hippocampal formation, one of the 

most studied mammalian brain systems, is available at Hippocampome.org, a free internet 

knowledge base that also provides morphological, electrophysiological, and synaptic information 

(Wheeler et al., 2015). Hippocampome.org groups neurons into types based on their primary 

neurotransmitter and the presence or absence of their axons and dendrites in the layers of each 

hippocampal subregion.  

 

The present work focuses on the molecular marker profiles for the 122 neuron types in 

Hippocampome.org version (v.) 1.3. We first profiled each type with biochemical expression 

data explicitly linked to the identified morphology in the published literature. Then we augment 

this neuron type-specific evidence by leveraging relational expression inferences (REIs), which 

link the presence or absence of a gene or protein to that of another molecule (e.g. co-expression 

or mutual exclusion), or the particular anatomical location of the soma in the hippocampus. 

Lastly, we explore the ability of these molecular profiles to distinguish neuron types, as well as 

to suggest molecular families of neuron types. Importantly, the public online release of these 

augmented profiles in both human- and machine-readable formats enables many additional 

analyses that may help elucidate the function of both neuron types and genes. 

 

Materials and Methods 

Obtaining direct molecular expression evidence 

Over 1,000 peer-reviewed publications were data mined for molecular expression information in 

neurons of the hippocampal formation of rats or mice. From this literature, 237 papers showed 

data indicating expression or lack of expression via immunohistochemistry, in situ hybridization, 
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or single cell RT-PCR in neurons matching the descriptions of Hippocampome.org types based 

on neurite location and putative neurotransmitter. In addition, we used data from the Allen Gene 

Expression Atlas as the basis for assigning the presence or absence of certain molecular markers 

in the principal neuron types DG Granule, CA1 Pyramidal, CA2 Pyramidal, and CA3 Pyramidal 

(Hamilton et al., 2017). All of these data are considered neuron type-specific evidence and lead 

to interpretations of positive or negative expression in Hippocampome.org. In certain cases, 

contrasting evidence exists for a given marker being present and absent in a neuron type 

(“mixed” expression). This could point to the existence of neuronal subtypes or to differences 

between species (e.g. mouse vs. rat), protocol (e.g. gene vs protein detection), subcellular 

localization (e.g. somatic vs neuritic) or unknown factors. Each piece of evidence was annotated 

with essential metadata and all relevant excerpts (text, figures, and references) were stored in and 

made available through Hippocampome.org (hippocampome.org/markers). 

 

Obtaining relational expression inferences (REIs) 

REIs were data mined from the 237 articles that provided neuron type-specific interpretations. 

From these, 742 distinct inferences were obtained under three broad categories. In the first, if 

expression data indicates that an entire hippocampal formation layer or subregion is negative for 

a given marker, Hippocampome.org neuron types with soma locations exclusively in the 

encompassed parcel are inferred to be negative for that marker. The remaining categories of 

REIs capitalize on expression relationships between two markers. One occurs when the literature 

indicates that expression of a given marker implies co-expression of another marker. This co-

expression relation, annotated in Hippocampome.Org as “probability-positive,” is directional, 

because the presence of the second marker does not always imply that the first one is expressed 

as well. When data demonstrated actual bidirectional co-expression, we created two probability-

positive REIs. The last category consists of a literature indication that the presence of a given 

marker implies the absence of another marker. This “probability-negative” exclusivity relation is 

also generally directional: as with the probability-positive REIs, the cases in which presence of 

the second marker also entails absence of the first (mutual exclusion) are represented by two 

REIs. 
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These latter two REI categories are formal IF/THEN statements; consequently, each has a logical 

contrapositive. In the contrapositives, the position of the markers in the IF/THEN statements is 

swapped, and the expression interpretation for each is reversed (i.e. positive becomes negative 

and vice versa). For co-expression REIs, which are of the form “if marker 1 is positive, then 

marker 2 is positive,” the contrapositive states “if marker 2 is negative, then marker 1 must be 

negative”. Similarly, for exclusion REIs of the form “if marker 1 is positive, then marker 2 is 

negative,” the contrapositive is “if marker 2 is positive, then marker 1 must be negative.”

 

Evaluating usability of REIs 

The REIs were collected from articles that presented the data in different forms, ranging from 

those that provided frequency of the event and sample size to those that consisted of a text 

statement describing an expression relationship. We established rules for using each of these to 

avoid including and propagating inferences based on weak evidence. In formulating the rules, we 

took into account our confidence in the data and the resulting number of usable REIs. To clarify, 

if we only accepted REIs that were true in 500 neurons 100% of the time, very limited 

knowledge could be gained. Conversely, if we accepted those that sampled 3 or more cells and 

were true >50% of the time, we would have many inferences but diminished confidence. The 

rules that we established balance these factors. 

 

The layer negative (category one) REIs were considered usable if the layer was completely 

negative for a molecular marker. Any evidence of neuronal expression of the given marker in 

that layer disqualified the REI.  

 

For probability-positive and probability-negative inferences, the strength of the REI depends on 

the sample size (n) and the frequency for which the expression relationship holds (% times true: 

PTT). When both of these were reported, we calculated the 95% binomial confidence interval 

using the Clopper-Pearson method (Clopper & Pearson, 1934). We set the threshold for usability 

at a Clopper-Pearson interval lower bound of 67%, indicating 95% confidence that the REI is 

true for at least two-thirds of the neurons in the population covered by the REI. The actual 

average PTT for the REIs included using this criterion data was 93.5% (range 72.0 - 100%), and 

more than 70% of these REIs had PTT ≥90%. 
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For many inferences, either the sample size was not provided or the PTT was very high but the 

sample size was low. We established the following provision for using this material. Inferences 

with a PTT of 90% or greater were included regardless of sample size. Some evidence for an REI 

was in the form of text statements that provided no n’s and only implying a PTT (e.g. “No SS 

[somatostatin] immunoreactivity was found in any 5-HT3R-expressing neurons, although single 

SS-immunopositive or 5-HT3R-expressing neurons were identified readily in cortex and 

hippocampus” (Morales & Bloom, 1997)). In these cases, the REIs were used when the 

statements implied a PTT of 100%.  

 

Experimental design 

We developed MATLAB code for applying the usable REIs to the Hippocampome.org 

knowledge base. In order to leverage information chaining, the algorithm applies usable REIs in 

several iterations, each building off of both direct neuron type-specific evidence and REI-based 

interpretations obtained in previous applications of the rules. The initial data for REI application 

are the set of solely positive or negative (i.e. not mixed) neuron type-specific molecular marker 

interpretations in Hippocampome.org. Subsequent passes applied the REIs to REI-based 

interpretations obtained in earlier iterations if not resulting in a suggestion of mixed expression. 

Markers that became mixed in the iterative applications were discontinued from further REI 

application. Iteration stopped when application of the set of REIs yielded no new information. 

 

Statistical analysis and correlation-produced REIs 

To uncover possible new relationships between markers in our knowledge base, a 2-by-2 

contingency table for each pair of markers was assessed using Barnard’s exact test. This 

statistical test is the most robust for contingency tables where the row and column totals can vary 

(Lydersen, Fagerland, & Laake, 2009).  

 

Correlations that were statistically significant (p ≤ 0.05) and were not already present in the 

usable REIs were added to the REI list. Subsequently, these correlation-produced inferences 

were applied once to non-mixed expression interpretations based on neuron type-specific and 

“regular” REIs; however, no additional iterations were carried out using the interpretations 
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derived from the correlation-produced REIs because of the weaker nature of this evidence 

compared to regular REIs. Specifically, correlation-produced REIs are based on neuron types, 

and we do not have counts of how many neurons might be in these neuron types or if these types 

are the only neurons in a subregion. In addition, unlike regular REIs, they are linked to 

subregions and not hippocampal formation layers.  

 

Molecular marker usefulness rating for discriminating neuron types 

Following the application of REIs, the molecular markers were assessed in terms of their 

potential usefulness for identifying neuron types. The assessment took into account the number 

of neuron types with positive or negative expression interpretations and measured up each 

marker against a hypothetical, optimally informative marker that would be known for all neuron 

types and split them evenly into positive or negative (i.e. 50% would be positive and 50% 

negative). The usefulness ratio was calculated by dividing the product of the numbers of positive 

and negative neuron types for the marker in question by this same product for the optimal 

marker, which for the 122 neuron types in Hippocampome.org is 3,721 (61*61).  

 

Cluster analysis to group neuron types by molecular similarity 

SPSS TwoStep Cluster analyses were performed on the molecular marker expression data. Both 

automated and manual modes were tested: in manual mode the user designates the markers used 

and the number of clusters in the output, whereas in automated mode the program selects the 

optimal number of clusters and markers to use. These cluster analysis were always unsupervised, 

meaning that we never ourselves assigned neuron types to specific clusters. 

 

We obtained results for from five to 20 clusters, using from eight to 20 markers or all markers 

(224 total outputs). The 20 markers used followed the order of their usefulness ratings, namely 

PV, CR, SOM, mGluR1a, GABA-Aa1, CB, NG, VIP, CCK, CB1, NPY, a-act2, CoupTF II, AR-

beta1, 5HT-3, RLN, nNOS, vGluT3, sub P rec, and ErbB4 (see Figure 1 for abbreviations). To 

assess the quality of the clustering outputs, we compared the between-neuron marker profile 

similarity within and across clusters. In particular, the ideal output would group neuron types 

into tight and well-separated clusters. A tight cluster consists of a set of neuron types with very 

similar marker profiles, whereas two neuron types from well-separated clusters would have very 
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different marker profiles. We quantified the marker profile similarity for a given pair of neuron 

types as the difference between the number of markers with the same expression (positive in 

both types or negative in both types) and the number of markers with opposite expression 

(positive in one type and negative in the other). We then measured the quality of clustering 

output using the Calinski-Harabaz index, defined as the ratio between the average pairwise 

similarity within clusters and the average pairwise similarity across clusters (Calinski & Haraasz, 

1974). The highest within-cluster/across-cluster average similarity ratio indicated optimal 

clustering result.  

 

Data Availability 

A complete list of the “regular” REIs and correlation-produced REIs can be found in the Help 

menu of Hippocampome.org (hippocampome.org/phpdev/data/REIs.xlsx). In addition, the 

evidence supporting each expression interpretation can be obtained by clicking the symbols in 

the molecular marker matrix (hippocampome.org/phpdev/markers.php). 

 

Results 

Collating molecular marker evidence: neuron type-specific evidence and REIs 

The molecular marker interpretations in Hippocampome.org v.1.3 provides information for 97 

genes/proteins for which expression or lack of expression was shown in at least one of the 122 

morphologically-identified neuron types in the knowledge base (hippocampome.org/markers). 

This massive endeavor yielded expression information for 894 of the 11,834 entries in the full 

neuron-type × marker matrix (7.5% filled), as illustrated in Figure 1 for a subset of the available 

data. These data are represented in the matrix by the (right-facing) green flag (positive 

expression), (left-facing) blue flag (negative expression) or by a variety of flags indicating mixed 

expression for different reasons: green and blue (subtypes), orange (species and/or protocol 

differences), purple (subcellular expression differences, for example soma vs. axons), and red 

flags (contrasting experimental evidence for unresolved reasons). 

 

Approximately 50 articles describing neuron type-specific molecular evidence in 

Hippocampome.org also contained REI information, and from them 742 REIs were obtained. Of 

these, 504 met the usability criteria. The full catalog of REIs includes the contrapositives of the 
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probability positive and probability negative REIs, yielding a total of 988 usable REIs. 

Approximately half, 477, were applicable to Hippocampome v.1.3 neuron types (Table 1). 

 

REIs add significantly to molecular expression data for neuron types 

In the first of the iterative applications of the REIs, all of the usable inferences were assessed 

against the neuron type-specific evidence indicating positive or negative, but not mixed, 

expression (green flags and blue flags in Figure 1). When the criterion for an REI was satisfied, 

the REI was applied. If the REI provided new information, a black flag (right-facing, positive; 

left-facing, negative) was placed in the matrix. If it supported an already present interpretation, a 

white dot was placed in the existing flag, representing an increased level of confidence in that 

interpretation (Figure 2).  

 

In subsequent iterations, the assessment was performed on REI-based interpretations and new 

black flags or white dots in existing black flags were added to the matrix. If contradictory 

information arose in the same iteration, both the positive and negative information was added, 

creating a mixed interpretation. In these cases, we evaluated the evidence to determine whether 

the conflict suggested subtypes, could be attributed to species/protocol differences, or could not 

be resolved (Table 2). All of the 21 mixed occurrences in these analyses belonged to the latter 

category.  

 

The 20 applicable layer-negative REIs provided information for 7 molecular markers, and the 

probability positive/negative and their contrapositive REIs provided information for an 

additional 29 (Figures 1 and 3). Together, they increase expression knowledge for molecular 

markers falling into the categories of calcium-binding proteins, receptors, transporters and 

channels, neuropeptides, enzymes, matrix proteins, and transcription factors in neuron types 

across all hippocampal formation subregions.  

 

The molecular marker with information for the most neuron types is GABA-Aa6 (Figure 3). Of 

the 36 markers presented, it is unique because data show that it is not expressed in the 

hippocampal formation (Hortnagl et al., 2013); consequently, all of the neuron types are negative 

for it. The same interpretations would be made for all genes not transcribed in the hippocampal 
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formation. Although knowledge of these universally negatively expressed genes potentially is 

insightful for elucidating the behavior of neuron types, they are not beneficial in distinguishing 

neuron types. Consequently, we are not presenting more of them in this work. Excluding GABA-

Aa6, the other 35 markers with REI-based interpretations added information to 102 neuron types, 

of which the 88 located in DG, CA3, CA2 or CA1 are shown in Figure 1.  

 

Using the compendium of molecular marker information to identify new REIs 

After filling the marker matrix with neuron type-specific and REI-based marker expression 

interpretations data, we performed correlation analyses that compared the expression of each 

molecular marker to all of the other markers to identify potentially new REIs not discovered 

through literature mining. Thirteen correlations reached significance (p ≤ 0.05). These included 

ones suggesting that the neuropeptide NG and the extracellular matrix protein RLN have 

mutually exclusive expression, and that expression of ErbB4 co-localizes with PV (full list at 

hippocampome.org/phpdev/data/REIs.xlsx). Application of the correlation-produced REIs 

resulted in two new positive and 45 new negative interpretations (Table 2 and grey flags in 

Figure 1). The correlation-produced REIs add the most information to ErbB4, but also contribute 

to GABA-Aa1, mGluR1a, SOM, CB1, CoupTF II, and AR-beta 1 (Figure 3). Altogether, 

leveraging various types of REIs almost doubled the amount of available molecular marker 

information for hippocampal neuron types, generating 823 new expression interpretations for a 

grand-total of 1717 flags or >14.5% of the full molecular marker matrix of 122 neuron types by 

97 markers (Figure 1, Table 2, and hippocampome.org/phpdev/markers.php). Moreover, REIs 

provide supporting data for 244 neuron type-specific and 362 REI-based interpretations. 

 

Metric to evaluate the usefulness of individual markers in distinguishing neuron types 

One potential use of molecular markers is to distinguish neuron types. Among the 36 molecules 

listed in Figures 1 and 3 are some of the most investigated proteins in hippocampal research; 

however, their usefulness in identifying neurons varies depending on their ratios of positive to 

negative interpretations and on the number of neuron types with positive or negative expression. 

A hypothetical optimal marker would have information for all neuron types and have a 

positive/negative ratio of one. The data from each of the 36 markers when compared to this 

optimal marker fall substantially below the ideal (Figure 3). Current data suggest that PV is the 
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most useful in distinguishing rodent hippocampal neuron types with a usefulness rating of ~0.33, 

followed by GABA-Aa1 (0.22), mGluR1a (0.19), CR (0.18), and SOM (0.17).  

 

The trend for all of the data is that the number of neuron types that are negative for a particular 

marker (light or dark blue or light grey bars in Figure 3) is greater than those that are positive. 

CoupTF II and RLN have more balanced positive/negative ratios, 1.0 and 0.85, respectively; 

however, they have lower usefulness ratings (0.08 and 0.04, respectively) because their 

expression is known for fewer neuron types. If they maintain the same balanced ratios when data 

for more neuron types are published, these markers may become the most useful in 

distinguishing rodent hippocampal neuron types. 

 

Using molecular marker information to distinguish neuron types 

Pairwise comparisons 

With the amassed expression interpretations, each of the Hippocampome.org neuron types has a 

molecular marker expression profile. We analyzed these profiles to assess their uniqueness 

among the neuron types. Specifically, the profile of each neuron type was compared to those of 

all of the other neuron types (Figure 4A). The results of these pairwise comparisons are shown in 

Figure 4B. Using only their molecular marker profiles, there is insufficient information to 

conclude that the molecular profile of any neuron type is unique among the 122 types because 

some neuron types have expression interpretations for a single or very few markers; specifically, 

only 40.4% of the comparisons show different profiles (squares not grey or white in Figure 4B). 

 

In the strictest terms, however, each neuron type can be distinguished from most of the others on 

the basis of the location(s) of its soma (indicated by grey squares and asterisks in the non-grey 

squares in Figure 4B). To illustrate, a researcher looking in an intact tissue slice for CA1 O-LM 

neurons, which have their dendrites in stratum oriens and the bulk of their axons in stratum 

lacunosum-moleculare (Hippocampome.org neurite pattern 1002), would likely not confuse them 

with DG HIPP, which have the same neurite pattern but are located in a different subregion. 

However, this could be problematic when dissociated neurons are investigated. Taking into 

account soma location along with marker profiles, 94.4% of the neuron type pairs can be 

differentiated (non-white squares in Figure 4B). Based on the combined information of soma 
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location and marker profiles, 11 neuron types can be distinguished from all other types (red 

boxes around neuron type numbers in Figure 4B). Interestingly, CA1 O-LM 1002 and DG HIPP 

1002 neuron types can be distinguished not only by having somata in different subregions, but 

also by molecular profiles with data suggesting that they may differ in the expression of three 

markers (Figure 1), namely PV (Kosaka et al., 1987; Katona, Acsady, & Freund, 1999; Tukker et 

al., 2007), GABA-Aa1 (Gao & Fritschy, 1994; Viney et al., 2013), and AR-beta1 (Cox, Racca, & 

LeBeau, 2008).  

 

In the pairwise comparisons, only non-mixed interpretations were used. The overall average 

number of molecular markers considered in each analysis (Figure 4B, numbers in squares) was 

five (range 1-56) excluding identity comparisons (i.e. a neuron type compared to itself). This 

average rises to nine when only comparisons that returned distinguishable types are assessed. As 

the number of molecular markers compared increases, so does the percentage of distinguishable 

pairs (Figure 4C). When eight or more markers are compared, ≥95% of the pairwise comparisons 

return distinguishable neuron types; however, <30% of the comparisons reach that mark. 

 

Identifying neuron types in a hippocampal subregion and layer 

To test the power of the Hippocampome.org molecular marker dataset, we attempted to uniquely 

identify all of the neuron types in CA1 stratum oriens (SO) based on the Hippocampome.org 

collection of molecular markers. We chose a layer in CA1 because it has the most information 

both in terms of number of neuron types and marker information. In Hippocampome.org v.1.3, 

17 neuron types have somata in CA1 SO (Figure 5).  

 

We approached this exercise from two directions. One assessed expression of the markers in the 

neuron types in the order of their usefulness rating, starting with PV (Figure 3). This approach is 

analogous to what might be followed in an experimental setting when no marker expression data 

is known. The second approach took advantage of the known marker information presented in 

this work. Ultimately, both approaches lead to the same result; the difference is in the number of 

markers needed to reach the end. With the first approach, twelve markers were needed to resolve 

all but one branch of the identification tree for CA1 SO neuron types (data not shown). 

Resolving the CA1 Basket (B) neuron type from CA1 Horizontal Axo-axonic (HAA) requires 
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assessing mu opioid receptor (MOR: second to last branch in Figure 5), the 23
rd

 most useful 

marker according to our metric (Figure 3). 

 

Using approach two, we examined each divided group of neuron types for the best marker to 

separate them. We began subdividing by NPY because evidence suggests that six of the 17 

neuron types are positive and eight are negative for this marker (Figure 1 and 

Hippocampome.org). For one of the remaining three neuron types, NPY expression is mixed, 

and for the last two, expression is unknown. These latter three that do not have unequivocal 

positive or negative expression are placed in both the NPY-positive and NPY-negative 

groupings.  

 

SOM was chosen as the second marker, and evidence suggests that only CA1 Ivy in the NPY-

positive group has mixed expression. The subgroups resulting from the interrogation of SOM 

expression could not be neatly divided by one marker in the third level of the flow chart (Figure 

5). Taking each group separately, PV, CR, and 5HT-3 demonstrated greatest effectiveness in 

discriminating the neuron types. Similarly in the final two levels, each group was considered 

independently, and different markers were used to split them. 

 

The final result suggests that the following ten molecular markers can distinguish most of the 17 

known neuron types in CA1 SO: NPY, SOM, PV, CR, 5HT-3, nNOS, CB, CB1, CoupTF II, and 

MOR. In the end, the CA1 Oriens-Alveus (OA) neuron type could not be distinguished from 

CA1 Oriens Bistratified Projecting (OBP), nor could CA1 Back-Projection (BP) from CA1 Ivy 

neurons that are SOM-positive. In addition, CA1 Horizontal Basket neurons that are PV-negative 

cannot be distinguished from CA1 Basket CCK-positive if CA1 Basket CCK-positive is NPY-

negative, which is currently unknown. 

 

Using molecular marker information to group neuron types 

In addition to distinguishing neuron types, biochemical profiles also can be useful in grouping 

neuron types according to their molecular similarities. To accomplish this, we performed two-

step cluster analysis on the molecular marker expression data. We analyzed results obtained from 

five to 20 clusters using from the top eight most useful markers (Figure 3, PV through NG) to the 
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top 20 (PV through substance P receptor), plus a series of analyses using all of the 97 markers in 

Hippocampome.org. Then, we evaluated the quality of the 224 clustering results by quantifying 

the tightness and separation of neuron types groups using the ratio of the average marker profile 

similarities between and across clusters (Calinski-Harabaz index). 

 

The best clustering was generated when 11 markers were used to produce eight clusters. This 

configuration produced a ratio of between-cluster/across-cluster similarities of 9.7; for 

comparison, the worst clustering had a value just above 2.0, which is considered the minimum 

threshold for acceptable quality). Interestingly, when all 20 top markers were used, the optimal 

number of cluster remained constant and only two neuron types “jumped” class, producing a 

between-cluster/across-cluster similarity ratio of 4.2. We ordered the clusters by the product of 

two averages: the pairwise comparison similarity and the number of markers compared. Figure 6 

shows the first seven of the eight clusters, accounting for 74 of the 122 neuron types. The eighth 

cluster is a catchall for neuron types with very limited marker expression information: the 

pairwise comparisons for the 48 neuron types in cluster 8 compared on average only two 

markers. 

 

The first cluster contained all and only glutamatergic principal neuron types in DG, CA1, CA2, 

CA3, and SUB. This group was substantially close molecularly as indicated by an average 

similarity of 87.3% in pairwise comparisons over an average of 36 markers. A key marker for 

cluster 1 is the presence of NG, whose expression in the hippocampal formation may be limited 

to these neuron types (Singec et al., 2004). The second cluster contains most of the O-LM-like 

neuron types and evidence suggests that all of the neuron types in this group express SOM. A 

few lesser-known variants of the O-LM morphological family (CA1 OR-LM, CA3 R-LM, and 

CA3 O-LM), for which SOM presence has yet to be established, are found in cluster 8. 

Conversely, Cluster 2 contains several SOM-positive types that display different morphological 

phenotypes, such as CA1 bistratified and trilaminar cells and CA3 spiny lucidum interneurons.  

 

The third category includes CCK-expressing basket cells from all hippocampal subregions in 

which they have been identified (DG, CA3, and CA1). Cluster 3 also contains CA1 Schaffer 
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Collateral Associated, CA1 Perforant Path Associated, and DG HICAP neuron types, all of 

which express CCK.  

 

Cluster 4, driven by VIP-positivity, has almost all the interneuron-specific (IS) interneuron types 

(the single missing cell, CA3 IS oriens, lacks molecular information altogether) as well as DG 

MOPP cells and CA1 Cajal-Retzius cells, though this latter neuron type, along with CA1 IS O-R, 

have unknown VIP expression.  

 

The arguably better known types of basket cells are located in the fifth cluster. Every neuron 

type in the fifth cluster expresses PV, including all known fast-spiking, perisomatic-targeting 

hippocampal interneurons (classic Basket and Axo-axonic cells) with the sole exception of SUB 

axo-axonic cells for which no molecular expression information is available.  

 

Cluster 6 is less molecularly homogeneous, with an average similarity of 66.8%. Eight of the 12 

neuron types in this cluster are NPY positive, but the others are NPY-negative. CoupTF II is also 

a driver of this cluster (six of 12 neuron types positive, one negative, one mixed, and four 

unknown). Notably, this cluster also includes CA1 horizontal basket cells because of their 

‘mixed’ expression of both PV and CCK; this is very likely due to the presence of distinct 

subtypes as in their more common morphological variants of perisomatic-targeting interneurons, 

which have dendrites in multiple layers.  

 

Lastly, Cluster 7 is driven by the lack of expression of two markers, SOM and mGluR1a. Despite 

an average similarity of 82.1%, it constitutes a weaker grouping because of the lower average of 

compared molecular markers (only four). Interestingly, it consists exclusively of dentate cells, 

including all non-projecting glutamatergic neurons: two types of mossy cells and minor variants 

of granule cells.  

 

The 8-marker and 20-marker clustering results only differed in the placement of DG 

Neurogliaform cells (this neuron type has axons that extend into SUB) and CA3 Ivy cells. The 8-

marker clustering grouped the former with CCK+ interneurons and the latter with VIP+ cells. 

Interestingly, adding the information on 12 additional markers was sufficient to shift these two 
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neuron types to the cluster of CA1 Neurogliaform, CA1 Neurogliaform Projecting, and CA1 Ivy 

cells. Although neither clustering completely matched biologically-intuitive expectations, the 

lack of sufficient expression data explains most deviations as noted above. The only apparent 

exception concern DG MOPP cells, which are often associated with the Neurogliaform/Ivy 

family (Armstrong et al., 2011), as both DG neurogliaform neurons and MOPP neurons have 

axons and dendrites localized to the outer portion of DG stratum moleculare. In contrast, our 

results placed DG MOPP in cluster 5, driven by VIP expression (Figure 6). 

 

Discussion 

Hippocampome.org classifies rodent hippocampal neurons based on their primary 

neurotransmitter and the presence or absence of their axons and dendrites in the respective layers 

of each sub-region in the hippocampal formation. Upon this foundation is layered information 

about the proteins or genes each type expresses. Thus, this resource is ideally positioned to help 

link neuronal morphology and gene/protein expression. An abundance of gene expression data 

for neurons is on the horizon with the advent of techniques including single-cell RNA 

sequencing (Poulin et al., 2016; Harborn, Chronister, & McConnell, 2016). Hippocampome.org 

provides provisional molecular profiles for its neuron types that can be useful to benchmark 

forthcoming single-neuron transcriptome data from ongoing large-scale studies. 

 

With the goal of maximizing currently available expression data for neurons, we used both 

neuron type-specific evidence and REIs to formulate interpretations about whether a gene is 

positive, negative, or exhibits mixed expression in a neuron type. REIs are products of all 

experiments that analyze expression of multiple genes in a population of cells; consequently, a 

wealth of them exists in published articles and laboratory records. As this work shows, there are 

benefits to systematically collecting them. In addition to augmenting the molecular profiles for 

the neuron types, REIs can bolster our confidence in particular interpretations and highlight weak 

interpretations based on neuron type-specific evidence, which often comes from very few 

neurons. Moreover, compiling REIs offers a perspective on co-localizing and mutually exclusive 

genes. Mechanisms and consequences of these strong expression relationships may point to 

master transcriptional regulators (Huang, 2014).  
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REIs hinge on two proportions: the fraction of cells within a neuron type for which the 

hypothesized relationship would hold; and the probability that the observed relationship is not 

due to chance. Here, we set the thresholds for use at 66% and 95%, respectively. These values 

represent a compromise between the number of applicable inferences and the demand that the 

inferences should apply to a clear majority of neurons within the scope of the REI. Still, with this 

approach neuron types or subsets of types with small numbers of neurons could be 

misinterpreted. Data from studies quantifying the number of neurons in each type will help refine 

these interpretations, not only by identifying types with smaller populations, but also by enabling 

the analysis of other sources such as in situ hybridization data in the Allen Institute Mouse Brain 

Atlas (Lien et al., 2007). 

 

Our analysis of the molecular expression profiles of the 122 neuron types in Hippocampome.org 

v.1.3 supports that examining eight or more markers is needed to distinguish the neuron types in 

the rodent hippocampal formation. Analyzing this number of markers in each cell is likely at or 

beyond the bounds of traditional techniques such as in situ hybridization and 

immunohistochemistry; consequently, techniques like single cell RT-PCR, RNA sequencing, and 

RNA and protein arrays may be more useful. The goal of obtaining a molecular identity for all 

neurons would be greatly assisted by consensus in the neuroscience community on ten molecular 

markers to be tested in each reconstructed neuron. The most efficient selection process should 

take into account the amount of information currently known for a marker and the corresponding 

overall ratio of positive- to negative-expressing neurons. Our analyses suggest that PV, GABA-

Aa1, mGluR1a, CR, and SOM are leading candidates. This work, however, is limited to rodent 

hippocampal neurons; therefore, data from additional brain regions and species are needed. 

Fortunately, with the advent of high-throughput techniques capable of providing gene expression 

data in addition to morphology and electrophysiology, such comprehensive information for 

numerous genes may soon be within reach (Macosko et al., 2015; Fuzik et al., 2016). 

 

Evidence suggests that hippocampal neuron types determined by morphology or 

electrophysiology overlap substantially (Hosp et al., 2014; Cossart et al., 2006). The extent to 

which this concordance will extend to molecularly-determined types is unknown, although 

genome-wide expression data also showed significant overlap (Subkhankulova et al., 2010; 
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Cadwell et al., 2016). Moreover, morphologically similar neurons can have different biochemical 

content (for example, PV-positive and CCK-positive Baskets in CA1). In Hippocampome.org, 

we treat molecularly differing neurons with the same axo-dendritic pattern as different types if 

they differ in their primary neurotransmitter (i.e. glutamate or GABA), or when they display 

multiple consistent differences in electrophysiology and/or molecular markers. It is possible that 

the currently most tested molecular markers relate to function rather than morphology, leaving 

genes responsible for morphological features in the yet-to-be known category. As a result, the 

molecular marker profiles may better align with the overall function of the neuron type, such as 

interneuron-specific inhibitor or perisomatic-targeting inhibitor (Kepecs & Fishell, 2014).  

 

A caveat of using molecular profiles to classify neurons is that some genes may be indicative of 

the state of a neuron rather than a stable marker. Current techniques mark a static moment and 

typically are lethal to the cells, thus eliminating the opportunity for follow-up data collection. In 

addition, cells can alter expression of genes in seconds and the amount of RNA and protein 

present in minutes. Molecularly, neurons even with similar morphological patterns of axons and 

dendrites may exist on a continuum (Battaglia et al., 2013; Harris et al., 2018). Any markers used 

to type neurons should be assessed for stable expression. 

 

Another issue that arises when using molecular profiles to type neurons is how many expression 

differences are necessary to create a new type. Is a single difference sufficient? In the pairwise 

comparisons presented here, 54 differed by one marker (e.g. CA1 Basket CCK-positive and CA1 

Schaffer Collateral Associated, which data to date suggest may differ only by expression of CB 

out of the 14 markers compared). Morphological characteristics like dendrites in all CA1 layers 

versus dendrites in two layers and synaptic subcellular targeting preference for the perisomatic 

region versus dendrites support making these neurons different types; however, without this 

additional knowledge, what should the decision be?  

 

Finding markers or marker profiles that specifically identify neurons is an important goal. 

Knowing molecular markers that a particular neuron type expresses will be beneficial in 

improving our understanding of disorders like epilepsy (Hunt et al., 2013), schizophrenia 

(Nakazawa et al., 2012; Fung et al., 2010; Brown et al., 2015), and autism (Tatsukawa et al., 
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2018; Rapanelli et al., 2017), which have been linked to aberrant function of inhibitory neurons. 

Moreover, it will allow the optogenetic and/or CRE-line targeting of very specific neurons for 

the purposes of investigation (Bernard, Sorensen, & Lein, 2009; Cardin et al., 2010) and 

treatment (Hunt et al., 2013; Ghosal, Hare, & Duman, 2017; Chohan & Moore, 2016). Precision 

is especially important in translational research, and understanding the role of particular neurons 

in normal and diseased functioning requires a cumulative knowledge incorporating morphology, 

electrophysiology, and molecular expression profiles (Seung & Sümbül, 2014; Cadwell et al., 

2016; Armananzas & Ascoli, 2015; PING, 2008). Hippocampome.org provides a framework to 

integrate these dimensions and is well positioned to link the forthcoming deluge of hippocampal 

transcriptome data to morphologically-defined neuron types. 
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Tables 

 

Table 1. Categories and numbers of REIs 

 

REI Category 

 

Example 

Data 

Mined 

 

Usable 

 

Applied 

Layer negative (LN) DG neuron types in SMo, 

SMi, and SG are inferred  

SOM- 
1
 

24 20 20 

Probability positive (PP) 

(marker 1 expressed 

marker 2 expressed) 

GABAergic VIP+ types in 

CA1 SR are inferred 

mGluR1a+ 
2
 

165 73 51 

Probability negative (PN) 

(marker 1 expressed   

marker 2 not expressed) 

CB+ neuron types in CA3 

are inferred PV- 
3
  553 411 301 

Subtotal  742 504 372 

Contrapositive of PP 

(marker 2 not expressed  

marker 1 not expressed) 

GABAergic mGluR1- 

types in CA1 SR are 

inferred VIP-  

165 73 48 

Contrapositive of PN  

(marker 2 expressed  

marker 1 not expressed) 

PV+ neuron types in CA3 

are inferred CB-  553 411 57 

Total  1460 988 477 

1
Jinno and Kosaka, 2004, Neurosci. 

2
Ferraguti, et al., 2004, Hippocampus 

3
Danos, et al., 1991, Brain Res. 
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Table 2. Molecular marker expression interpretations resulting from neuron type-specific evidence (NTS), 

REIs, and correlation-produced REIs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Interpretation NTS REI CP-REIs 

E
x

p
re

s
s
 Positive  273 27 2 

Negative  245 366 45 

S
u

p
p

o
rt

e
d

 

Positive 43 21 N/A 

Negative  201 341 N/A 

M
ix

e
d

 e
v

id
e

n
c
e
 

Subtypes 67 0 N/A 

Species/ 

protocol 
13 0 N/A 

Subcellular 

localization 
42 N/A N/A 

Unresolved 10 21 N/A 

 

 
Totals 894 776 47 
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Figure Legends 

 

Figure 1. Molecular marker and neuron types in Hippocampome.org v.1.3. This matrix 

illustrates a subset of the expression information available online (for symbol key, see Table 2). 

The 36 molecules that have REI-based interpretations and the 88 neuron types in DG, CA3, 

CA2, and CA1 with two or more REI interpretations are included (putative excitatory and 

inhibitory neuron types in black and grey fonts, respectively). The defined pattern of axons and 

dendrites across layers (superficial to deep) for each neuron type is coded numerically beside the 

name: 1, only axons present; 2, only dendrites present; 3, both axons and dendrites present; 0, 

neither axons nor dendrites present; red numbers indicate the somatic layers for that neuron type. 

Markers: 5HT-3 (serotonin receptor 3), a-act2 (alpha actinin 2), AR-beta1/2 (andrenergic beta 

1/2 receptor), CB (calbindin), CB1 (cannabinoid receptor type 1), CCK (cholecystokinin), 

Chrna2 (acetylcholine receptor alpha 2 subunit), CGRP (calcitonin gene related peptide), ChAT 

(choline acetyltransferase), CoupTF II (chicken ovalbumin upstream promoter transcription 

factor II), CR (calretinin), ENK (enkephalin), GABA-Aa1/6 (gamma aminobutyric acid A 

alpha1/6 subunit), mGluR1/1a/5 (metabotropic glutamate receptor 1/1a/5), MOR (mu-opioid 

receptor), NG (neurogranin), NKB (neurokinin B), nNOS (neuronal nitric oxide synthase), NPY 

(neuropeptide tyrosine), PPE (preproenkephalin), PV (parvalbumin), RLN (reelin), sub P rec 

(substance P receptor), SOM (somatostatin), TH (tyrosine hydroxylase), vGluT3/2 (vesicular 

glutamate transporter 2), VIP (vasoactive intestinal polypeptide). Other abbreviations: Enz 

(enzymes), IS (interneuron specific), Mat (matrix, as in extra- and intracellular matrix), MFA 

(mossy fiber-associated), PP (perforant path), Proj (projecting), Rec (receiving), SC (Schaffer 

collateral), Targ (Targeting), TFs (transcription factors). 

 

Figure 2. Iterative application protocol for probability REIs. In the first iteration, all usable REIs 

were assessed against the neuron type-specific information. In subsequent iterations, they were 

assessed against REI-based interpretations. In this example, a probability negative REI (i.e. if 

marker m1 is positive, m2 is inferred negative) is assessed against all of the m1 data. The REI is 

applicable to any neuron type that is positive for m1, but is not applicable to negative or mixed 

interpretations. If m1 is positive and m2 is unknown, a black flag facing left will be placed in 

m2, indicating inferred negative expression. If m2 already has an interpretation and the REI 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/633883doi: bioRxiv preprint 

https://doi.org/10.1101/633883
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

supports it, a white dot is placed in the existing flag. If the REI interpretation conflicts with an 

existing interpretation, no flag is added. In the next iteration, any new black flags are assessed. 

The iterations continue until no more information is added to the molecular marker matrix.  

 

Figure 3. REIs increase expression information for 36 markers and enhance the usefulness in 

distinguishing neuron types. For 15 of these 36 markers, the REI- and correlation-produced (CP) 

REI-based interpretations more than double the number of neuron types with interpretations from 

neuron types-specific (NTS) evidence alone. Moreover, REIs are the only source of 

interpretations for some markers. In evaluating the usefulness of each marker in distinguishing 

rodent hippocampal neuron types, we considered the number of positive- and negative-

expressing neuron types in comparison to a hypothetical optimal marker. Although the number 

of neuron types that are negative for PV expression exceeds the number that are positive, PV is 

first in usefulness because its expression is known for the most neuron types. 

 

Figure 4. Finding unique molecular marker profiles in the 122 neuron types. A. Each pairwise 

comparison includes any marker that has evidence for both neuron types considered indicating 

either positive or negative, but not mixed, expression. The number of included markers is placed 

in the appropriate square of the profiling matrix (panel B) while the count of differently 

expressed markers is indicated by the color of the square. B. Profiling matrix for the 88 neuron 

types shown in Fig. 1, but the entire matrix has 122 types (yielding 7,381 possible pairwise 

comparisons). Of the 5,885 pairs with at least one marker in common in addition to universally 

negative GABA-Aa6 (squares with ≥2), 50% show different profiles (non-white/grey squares). 

When soma location is factored in, the proportion of distinguishable pairs rises to 94.4%, and 11 

neuron types have unique profiles (red boxes around type numbers). C. The number of 

distinguishable neuron type pairs increases with the number of markers with known expression 

for both types: when 8 or more markers can be compared, ≥95% of pairs can be distinguished; 

however, less than 30% of the pairs meet or exceed this threshold. 

 

Figure 5. Most of the 17 neuron types with soma in CA1 SO have unique molecular marker 

profiles. Neuron types are divided into positive or negative expression for each marker queried. 

Types with unknown (italics fonts) or mixed (no italics) expression were placed in both the 
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positive and negative groups (with superscripted numbers indicating the level in the flow chart 

where their expression was undetermined). Expression data for 10 markers can distinguish most 

of the neuron types (red outlined boxes); however, three groups could not be distinguished (red 

boxes): Ivy that are SOM-positive and BP, OA and OBP, and B-CCK (if they are NPY-negative, 

which is presently unknown) and HB that are PV-negative.  

 

Figure 6. Molecular clustering of Hippocampome.org neuron types. Seven of the eight clusters 

account for 78 of 122 neuron types. For each cluster, the marker expression interpretation that 

strongly influences the formation of the cluster is shown in the center along with the average 

proportion of markers in common and the average number of markers compared across all 

pairwise comparisons within the cluster. Spokes with the same color as the cluster correspond to 

“expected” neuron types based on existing biological knowledge. The single spoke of discordant 

color (e.g., DG MOPP) indicates expected grouping with a different cluster. The two spokes with 

alternating colors indicate the alternative clustering obtained when using 8 markers instead of 20. 
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