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Abstract.	Target	 identification	remains	a	crucial	challenge	in	drug	development.	To	enable	24	

unbiased	detection	of	proteins	and	pathways	that	have	a	causal	role	in	disease	pathogenesis	25	

or	 progression,	we	 propose	 proteome-by-phenome	Mendelian	 Randomisation	 (P2MR).	We	26	

first	 detected	 genetic	 variants	 associated	with	 plasma	 concentration	 of	 249	 proteins.	We	27	

then	 used	 64	 replicated	 variants	 in	 two-sample	 Mendelian	 Randomisation	 to	 quantify	28	

evidence	 of	 a	 causal	 role	 for	each	protein	across	 846	phenotypes:	 this	 yielded	509	 robust	29	

protein-outcome	links.	P2MR	provides	substantial	promise	for	drug	target	prioritisation.	We	30	

provide	 confirmatory	 evidence	 for	 a	 causal	 role	 for	 the	 proteins	 encoded	 at	 multiple	31	

cardiovascular	disease	risk	 loci	 (FGF5,	 IL6R,	LPL,	LTA),	and	discovered	 that	 intestinal	 fatty	32	

acid	binding	protein	(FABP2)	contributes	to	disease	pathogenesis.	Additionally,	we	find	and	33	

replicate	 evidence	 for	 a	 causal	 role	 of	 tyrosine-protein	 phosphatase	 non-receptor	 type	34	

substrate	1	 (SHPS1;	SIRPA)	 in	 schizophrenia.	Our	 results	provide	specific	prediction	of	 the	35	

effects	of	changes	of	plasma	protein	concentration	on	complex	phenotypes	in	humans.	36	
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.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/631747doi: bioRxiv preprint 

https://doi.org/10.1101/631747
http://creativecommons.org/licenses/by/4.0/


An	initial	goal	of	drug	development	is	the	identification	of	targets	–	in	most	cases,	proteins	–	38	

whose	 interaction	with	a	 drug	ameliorates	 the	 development,	 progression,	 or	 symptoms	 of	39	

disease.		After	some	success,	the	rate	of	discovery	of	new	targets	has	not	accelerated	despite	40	

substantially	increased	investment	(Munos,	2009).	A	large	proportion	of	drugs	fail	at	the	last	41	

stages	of	development	–	clinical	 trials	–	because	 their	 targets	do	not	alter	whole-organism	42	

phenotypes	as	expected	from	pre-clinical	research	(Arrowsmith,	2011).	43	

	44	

Preclinical	science	is	engaging	with	increasingly	complex	systems	in	which	prediction	of	the	45	

effects	 of	 an	 intervention	 is	 ever	more	 difficult	 (Civelek	&	 Lusis,	 2014).	 The	 ability	 to	 cut	46	

through	 complexity	 to	 distinguish	 factors	 that	modulate	whole-organism	 phenotypes	 is	 a	47	

major	 advantage	 of	 genetic	 (Baillie,	 2014)	 and	 functional	 genomic	 (Baillie	 et	 al.,	 2018)	48	

approaches	 to	 drug	 development.	 Nevertheless,	 genetic	 associations	 with	 disease	 are	 not	49	

immediately	interpretable	(MacArthur	et	al.,	2017):	most	disease-associated	variants	fail	to	50	

alter	protein-coding	sequence,	but	 instead	alter	protein	 levels	via	often	poorly	understood	51	

molecular	mechanisms.	52	

	53	

A	 subset	 of	 disease	 states	 have	 been	 studied	 with	 adequately-powered	 genome-wide	54	

association	 (GWA)	 studies	 (Finan	 et	 al.,	 2017).	 From	 these,	 persuasive	 evidence	 already	55	

exists	for	the	utility	of	using	genetic	and	genomic	techniques	to	inform	drug	development:	56	

the	 presence	 of	 genetic	 evidence	 in	 support	 of	 a	 protein	 could	 double	 the	 probability	 of	57	

success	 in	clinical	 trials	 for	 drugs	 targeting	 that	 protein	 (M.	R.	Nelson	 et	 al.,	 2015).	 	 In	 	 a	58	

recent	study,	12%	of	all	targets	for	licenced	drugs	could	be	rediscovered	using	GWA	studies	59	

(Finan	et	al.,	2017).	However,	 these	GWA	study	approaches	generally	 rely	on	measures	of	60	

proximity	 of	 a	 disease-associated	 genetic	 variant	 to	 a	 protein-coding	 gene,	 and	 proximity	61	

alone	does	not	imply	causality.	62	

	63	

Mendelian	Randomisation	(MR)	uses	genetic	variants	to	provide	an	estimate	of	the	effect	of	64	

an	exposure	on	an	outcome,	using	the	randomness	of	assignment	of	genotype	to	remove	the	65	

effects	of	unmeasured	confounding	(Smith	&	Ebrahim,	2003).		The	approach	is	analogous	to	66	
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a	 naturally-occurring	 randomised	 control	 trial.	 When	 a	 genetic	 variant	 predicts	 the	67	

abundance	of	a	mediator,	MR	tests	the	hypothesis	that	this	mediator	plays	a	causal	role	in	68	

disease	risk.	This	is	possible	because	the	patient	or	participant	was	effectively	randomised	at	69	

conception	to	a	genetically-determined	level	of	that	mediator.	Under	this	model,	it	is	possible	70	

to	use	population	level	genetic	information	to	draw	causal	inference	from	observational	data.	71	

However,	 there	 are,	as	with	any	 study,	 unverifiable	assumptions	with	 this	 study	design:	a	72	

major	concern	is	that	alternative	causal	pathways	may	link	the	instrumental	variable	(here,	73	

the	DNA	variant)	 to	 the	 phenotype	 (the	 disease	 outcome).	 In	a	 clinical	 trial	 this	would	 be	74	

analogous	to	a	drug	influencing	a	disease	through	a	different	pathway	than	via	its	reported	75	

target.	 In	 MR,	 addressing	 the	 risk	 of	 alternative	 causal	 pathways	 is	 of	 great	 practical	76	

importance	in	order	to	avoid	pursuing	drugs	that	target	an	irrelevant	molecular	entity,	and	77	

hence	that	have	no	beneficial	effect.	In	order	to	address	this,	we	limited	ourselves	to	using	78	

locally-acting	pQTLs	as	instrumental	variables.	We	believe	this	approach	provides	stronger	79	

supporting	evidence	for	causation	than	relying	on	proximity	of	a	disease-associated	genetic	80	

variant	to	a	gene,	or	using	mRNA	abundance	as	a	proxy	for	protein	abundance	(Mirauta	et	al.,	81	

2018).	82	

	83	

Due	 to	 recent	 advances	 in	 proteomic	 technologies,	 the	 availability	 of	 pQTL	 data	 has	84	

increased	dramatically	 in	recent	years	(Folkersen	et	al.,	2017;	Suhre	et	al.,	2017;	Sun	et	al.,	85	

2018;	Yao	et	al.,	2018).	A	number	of	these	studies	attempt	to	infer	causality	using	MR	and	86	

similar	 techniques.	 In	 our	 approach,	we	 applied	 pQTL	based	MR	 in	 a	 data-driven	manner	87	

across	 the	 full	 range	 of	 phenotypes	 available	 in	 GeneAtlas	 (UK	 Biobank	 (Canela-Xandri,	88	

Rawlik,	&	Tenesa,	 2017)),	 as	well	 as	 supplementing	 this	with	additional	 studies	 identified	89	

through	 Phenoscanner	 (Staley	 et	 al.,	 2016).	 We	 performed	 GWA	 for	 249	 proteins	 in	 two	90	

European	 cohorts,	 and	 then	 adopted	 a	 proteome-by-phenome	 Mendelian	 randomisation	91	

(P2MR)	 approach	 to	 assess	 the	 potential	 causal	 role	 of	 64	 proteins	 in	 846	 outcomes	 (e.g.	92	

diseases,	 anthropomorphic	 measures,	 etc.).	 GeneAtlas	 results	 were	 further	 stratified	93	

according	 to	 their	 consistency	 with	 a	 single	 underlying	 causal	 variant	 (affecting	 both	94	

variation	in	protein	concentration	and	outcome	phenotype)	or	otherwise.	Ultimately,	of	the	95	
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249	 proteins,	 38	 were	 identified	 as	 causally	 contributing	 to	 human	 disease	 or	 other	96	

quantitative	trait.	97	

	98	

Results	99	

The	abundance	of	an	individual	protein	may	be	associated	with	DNA	variants	both	local	and	100	

distant	 to	 its	 gene	 (termed	 local-	 and	 distal-pQTLs,	 respectively).	We	 assayed	 the	 plasma	101	

levels	of	249	proteins	using	high-throughput,	multiplex	immunoassays	and	then	performed	102	

genome-wide	 association	 of	 these	 levels	 in	 two	 independent	 cohorts	 (discovery	 and	103	

replication)	 of	 909	 and	998	European	 individuals.	 P2MR	was	applied	 to	 54,144	 exposure-104	

outcome	 pairs	 obtained	 from	 64	 significantly	 (p-value	 <5x10-8)	 associated,	 replicated	105	

(Bonferroni	correction	for	multiple	testing),	local-pQTLs,	and	778	phenotypes	obtained	from	106	

GeneAtlas	(UK	Biobank	(Canela-Xandri	et	al.,	2017))	and	68	phenotypes	from	20	additional	107	

genome-wide	association	(meta-analysis)	studies	(The	CARDIoGRAMplusC4D	Consortium	et	108	

al.,	 2015;	 R.	 A.	 Scott	 et	 al.,	 2017;	 C.	 P.	Nelson	 et	 al.,	 2017;	 Liu	 et	 al.,	 2015;	 Schizophrenia	109	

Working	Group	 of	 the	 Psychiatric	Genomics	Consortium	 et	 al.,	 2014;	Bronson	 et	al.,	 2016;	110	

Okada	et	al.,	2014;	van	Rheenen	et	al.,	2016;	Hammerschlag	et	al.,	2017;	Sniekers	et	al.,	2017;	111	

Okbay	et	al.,	2016;	Hou	et	al.,	2016;	Beaumont	et	al.,	2018;	Phelan	et	al.,	2017;	van	der	Harst	112	

&	Verweij,	2018;	Berg	et	al.,	2016;	de	Moor	et	al.,	2015;	The	EArly	Genetics	and	Lifecourse	113	

Epidemiology	(EAGLE)	Eczema	Consortium	et	al.,	2015;	M.	A.	Ferreira	et	al.,	2017;	Astle	et	al.,	114	

2016)	identified	through	Phenoscanner	(Staley	et	al.,	2016)	(Figure	1;	Supplementary	Table	115	

S1;	Methods).	116	

	117	

In	total,	we	identified	509	protein-outcome	links	for	which	there	is	evidence	of	a	causal	role	118	

of	the	exposure	(protein)	on	the	outcome	phenotype	(trait).	119	

	120	

pQTLs.	pQTLs	were	highly	concordant	between	the	two	cohorts	(Supplementary	Table	S2).	121	

Of	the	209	independent	pQTLs	identified	in	the	discovery	cohort	(p-value	<5x10-8),	154	were	122	

successfully	 replicated	 (Bonferroni	 correction	 for	multiple	 testing;	 consistent	 direction	 of	123	
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effect).	These	represented	pQTLs	for	82	proteins,	all	but	two	encoded	by	autosomal	genes.	124	

Lead	variants	(smallest	p-value	within	the	locus;	Methods)	were	identified	at	each	locus,	the	125	

majority	(64/80;	80%)	of	these	proteins	had	the	lead	variant	of	one	or	more	pQTLs	located	126	

close	 to	 the	 gene	 encoding	 the	 protein	 (±150kb;	 Figure	 1)	 and	 hence	 were	 used	 as	127	

instrumental	 variables	 suitable	 for	 MR.	 In	 many	 respects,	 locally-acting	 pQTLs	 are	 ideal	128	

instrumental	 variables:	 they	 have	 large	 effect	 sizes,	 have	 highly	 plausible	 biological	129	

relationships	with	protein	level,	and	provide	quantitative	information	about	(often)	directly	130	

druggable	 protein	 targets.	 This	 is	 in	 contrast	 to	 distal	 pQTLs:	 the	 pathway	 through	which	131	

they	exert	their	effects	is	generally	unknown,	with	no	a	priori	expectation	of	a	direct	effect	on	132	

a	single	target	gene.	133	

	134	

Outcome	GWA	Studies.	Results	linking	the	genetic	variants	and	outcome	traits	and	diseases	135	

were	obtained	from	secondary	cohorts.	UK	Biobank	has	captured	a	wealth	of	information	on	136	

a	 large	 –	 approximately	 500,000	 individuals	 –	 population	 cohort	 that	 includes	137	

anthropometry,	 haematological	 traits,	 and	 disease	 outcomes.	 Genome-wide	 association	 of	138	

778	phenotypes	from	UK	Biobank	has	been	performed	and	published	as	GeneAtlas	(Canela-139	

Xandri	 et	 al.,	 2017).	 Although	 the	 cohort	 is	 large,	 for	 many	 diseases	 the	 number	 of	 UK	140	

Biobank	 individuals	 affected	 is	 small,	 resulting	 in	 low	 statistical	 power.	 Consequently,	we	141	

augmented	these	results	with	additional	studies	identified	using	Phenoscanner	(Staley	et	al.,	142	

2016)	(Methods).	143	

	144	

Mendelian	Randomisation.	MR	depends	upon	an	assumption	that	the	DNA	variant	used	as	145	

an	 instrumental	variable	 is	 robustly	associated	with	 the	exposure.	 In	our	case	we	ensured	146	

this	by	using	stringent	discovery	and	replication	criteria	for	instrument	selection.	By	limiting	147	

ourselves	 to	 using	 locally-acting	 pQTLs	 as	 instruments,	 we	 sought	 to	 leverage	 a	 priori	148	

biological	 knowledge	 regarding	 cellular	 protein	 production	 to	 substantially	 increase	149	

confidence	in	the	existence	of	a	direct	path	from	DNA	variant	to	protein,	and	from	protein	to	150	

outcome.	P2MR	yielded	271	protein-outcome	pairs	that	were	significant	(false	discovery	rate	151	

(FDR)	 <0.05)	 in	 UK	 Biobank,	 and	 238	 significant	 (FDR	 <0.05)	 pairs	 using	 data	 from	152	
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Phenoscanner.	 Thirty-two	 of	 the	 64	 proteins	 were	 causally	 implicated	 for	 one	 or	 more	153	

outcomes	 in	 UK	 Biobank,	 and	 36	 of	 64	 in	 the	 outcomes	 identified	 through	 Phenoscanner	154	

studies.	 The	 outcomes	 from	GeneAtlas	 and	 Phenoscanner	 are	 not	mutually	 exclusive,	 and	155	

some	of	the	studies	included	from	Phenoscanner	included	data	from	UK	Biobank,	however,	156	

overall,	38	of	the	64	proteins	(60%)	were	implicated	in	at	least	one	outcome	(Supplementary	157	

Tables	S3	and	S4).	158	

	159	

Proteins	were	implicated	in	diseases	ranging	from	schizophrenia	to	cardiovascular	disease	160	

(Figure	2,	Supplementary	Tables	S3	and	S4).	We	applied	a	method,	HEIDI	(Zhu	et	al.,	2016),	161	

which	explicitly	accounts	for	the	linkage	disequilibrium	(LD)	structure	of	the	locus	to	assess	162	

the	heterogeneity	of	MR	effect	estimates	between	the	lead	variant	(the	primary	instrument)	163	

and	 those	 of	 linked	 variants.	HEIDI	 tests	 the	 hypothesis	 that	 the	 observed	MR	 results	 are	164	

caused	by	two	distinct	causal	variants.	Of	the	UK	Biobank	causal	inferences,	77	survived	the	165	

HEIDI	heterogeneity	test	(p-value	>0.05).		Therefore,	these	77	proteins	have	(a)	high-quality	166	

evidence	 of	 association	 to	 a	 DNA	 variant	 which	 provides	 congruent	 predictions	 for	 both	167	

plasma	protein	levels	and	disease	risk	/	outcome	phenotype,	and	(b)	because	of	the	physical	168	

proximity	to	the	SNP	to	the	coding-sequence	of	the	gene	for	the	protein,	and	non-significant	169	

HEIDI	result,	a	 low	risk	of	pleiotropy	(Supplementary	Tables	S3).	These	pairs	thus	provide	170	

the	most	robust	evidence	that	the	level	of	the	protein	directly	alters	disease	risk	/	outcome	171	

phenotype.	172	

	173	

However,	all	509	causal	inferences	(271	from	GeneAtlas	(Canela-Xandri	et	al.,	2017)	and	238	174	

from	studies	identified	through	Phenoscanner	(Staley	et	al.,	2016);	Figures	2,	S1,	S2,	S3,	S4,	175	

and	 Tables	 S3	 and	 S4),	 even	 those	 consistent	 with	 heterogeneity,	 remain	 potential	 high	176	

quality	drug	targets.	This	is	because	the	HEIDI	heterogeneity	test	(Figure	1)	is	susceptible	to	177	

type	I	errors	in	this	context,	as	it	does	not	account	for	multiple	causal	variants	in	a	locus.	In	178	

addition,	 we	 apply	 HEIDI	 in	 a	 conservative	 manner:	 as	 a	 significant	 HEIDI	 test	 implies	179	

heterogeneity,	we	did	not	apply	a	multiple	testing	correction.	If	a	Bonferroni	correction	(271	180	
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tests)	were	 to	 be	 applied	 to	 the	 HEIDI	 p-value,	 180	 of	 the	 protein-outcome	 pairs	 are	 not	181	

significantly	heterogeneous.	182	

	183	

For	 some	 of	 these	 inferences,	 genetic	 evidence	 of	 an	 association	 between	 a	 protein	 and	184	

phenotype	has	been	proposed	based	on	physical	proximity	of	 the	genes	 to	GWA	 intervals.	185	

For	 nearly	 two-thirds	 (62%;	 318/509)	 however,	 significant	 (FDR	 <0.05)	 MR	 association	186	

between	protein	and	outcome	was	not	matched	by	significant	(p-value	<5x10-8)	association	187	

of	 the	 DNA	 variant	 to	 outcome.	 This	 suggests	 that	 P2MR	 has	 a	 greater	 potential	 to	 link	188	

protein	product	and	phenotype	than	naïve	genome-wide	association.	189	

	190	

Our	results	draw	causal	 inference	between	protein	concentration	and	disease,	for	example,	191	

IL4R	and	asthma,	IL2RA	and	thyroid	dysfunction,	and	IL12B	and	psoriasis	(Figure	2).	Taking	192	

IL6R	 as	 an	 example,	 we	 found	 evidence	 for	 a	 causal	 association	 between	 plasma	 IL6R	193	

abundance	 and	 coronary	 artery	 disease	 (CAD),	 atopy,	 and	 rheumatoid	 arthritis	 (Figure	 2,	194	

and	Tables	S3	and	S4).	We	note	that:	1)	tocilizumab	(an	IL6	receptor	antagonist)	is	in	clinical	195	

use	for	treating	rheumatoid	arthritis	(L.	 J.	Scott,	2017),	2)	there	is	prior	evidence	from	MR	196	

demonstrating	 elevated	 levels	 of	 soluble	 IL6R	 and	 reduced	 cardiovascular	 disease	 (IL6R	197	

Genetics	 Consortium	 Emerging	 Risk	 Factors	 Collaboration,	 2012;	 Interleukin-6	 Receptor	198	

Mendelian	Randomisation	Analysis	(IL6R	MR)	Consortium	et	al.,	2012),	and	3)	the	evidence	199	

of	 a	 causal	 link	 between	 IL6R	 and	 atopy	 was	 not	 well	 established	 previously.	 Notably	200	

however,	tocilizumab	has	been	used	to	treat	three	atopic	dermatitis	patients,	and	all	patients	201	

experienced	 >50%	 improvement	 in	 disease	 (Navarini,	 French,	 &	 Hofbauer,	 2011).	 In	202	

addition,	Ullah	et	al.	(2014)	demonstrated	that	tocilizumab	caused	a	reduction	in	Th2/Th17	203	

response	and	associated	airway	inflammatory	infiltration	in	a	mouse	model	of	experimental	204	

allergic	asthma.		205	

	206	

As	further	illustration,	we	take	two	clinically	important	phenotypes	as	case-studies:	CAD	risk	207	

and	schizophrenia.	208	

		209	
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CAD	and	FABP2:	P2MR	identified	5	proteins	as	contributing	 to	CAD	pathogenesis:	FABP2,	210	

FGF5,	 IL6R,	 LPL,	 and	 LTA.	 Of	 these,	 4	 (FGF5,	 LPL,	 IL6R,	 and	 LTA)	 had	 been	 implicated	211	

previously	(Klarin	et	al.,	2017;	C.	P.	Nelson	et	al.,	2017;	Ozaki	et	al.,	2002),	whereas	FABP2	212	

had	more	limited	evidence	for	its	involvement.	213	

	214	

FABP2	(intestinal	fatty	acid-binding	protein)	is	causally	linked	by	P2MR	to	CAD	(Figure	2).	A	215	

FABP2	non-synonymous	mutation	 (Ala54Thr)	 had	 been	proposed	 as	a	 risk	 factor	 for	 CAD	216	

(Yuan,	 Yu,	 &	 Zeng,	 2015),	 consistent	 with	 its	 P2MR	 candidature.	 However,	 of	 critical	217	

importance	to	its	potential	utility	as	a	therapeutic	target,	our	study	validates	and	extends	this	218	

association	 beyond	 the	 non-synonymous	 variant	 to	 protein	 abundance.	 pQTL	 analysis	219	

identified	two	lead	DNA	variants	in	close	proximity	(<150kb)	to	the	FABP2	gene.	Using	the	220	

SNP	 rs17009129,	 P2MR	 finds	 a	 causal	 link	 between	 FABP2	 concentration	 and	 CAD	 (p	 =	221	

1.1x10−4;	FDR	<0.05;	βMR	-0.11;	seMR	0.028;	βMR	and	seMR	units:	log(OR)/standard	deviation	of	222	

residualised	 protein	 concentration)	 without	 significant	 heterogeneity	 (p	 =	 0.24)	 which	223	

suggests	 shared	 causal	 genetic	 control.	 Furthermore,	 a	 second	 independent	 SNP	 (r2	 <0.2;	224	

rs6857105)	 replicates	 this	 observation	 (MR	 p	 =	 5.0x10−4;	 HEIDI	 p	 =	 0.34;	 βMR	 -0.17;	 seMR	225	

0.047).	 Both	 SNPs	 (rs17009129,	 and	 rs6857105)	 fell	 below	 genome-wide	 significance	226	

(p<5x10−8)	 in	 the	 full	meta-analysis	 of	 van	der	Harst	 (van	der	Harst	&	Verweij,	 2018)	 on	227	

CAD;	however,	FABP2	was	 flagged	as	potentially	 relevant	by	DEPICT,	a	prioritization	 tool.	228	

Consequently,	 this	 is	 the	 first	 time,	 to	 our	 knowledge,	 that	 variants	 associate	with	 FABP2	229	

concentration	have	been	shown	robustly	to	causally	contribute	to	CAD	pathogenesis.	230	

	231	

Schizophrenia:	By	applying	P2MR,	we	identified	3	proteins	that	were	causally	implicated	in	232	

the	 pathogenesis	 of	 schizophrenia:	 (i)	 Tyrosine-protein	 phosphatase	 non-receptor	 type	233	

substrate	 1	 (SHPS1;	 SIRPA),	 (ii)	 Tumour	 necrosis	 factor	 receptor	 superfamily	 member	 5	234	

(CD40),	and	(iii)	Low	affinity	immunoglobulin	gamma	Fc	region	receptor	II-b	(FCGR2B).	The	235	

link	between	SHPS1	(rs4813319)	and	schizophrenia	risk	was	subsequently	replicated	in	the	236	

UK	Biobank	data	(Methods;	Table	1).	The	observed	effect	of	SHSP1	on	schizophrenia	was	not	237	

significantly	 heterogeneous	 in	 the	 results	 of	 the	 Schizophrenia	 Working	 Group	 of	 the	238	
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Psychiatric	Genomics	Consortium	(2014)	 (p	=	0.53).	Here	we	investigate	SHPS1	 (approved	239	

symbol	 SIRPA),	 which	 encodes	 SHPS1,	 tyrosine-protein	 phosphatase	 non-receptor	 type	240	

substrate	1	and	use	SHPS1	henceforth.	241	

	242	

Interestingly,	SHPS1	is	highly	expressed	in	the	brain,	especially	in	the	neuropil	(a	dense	243	

network	of	axons,	dendrites,	and	microglial	cell	processes)	in	the	cerebral	cortex	(“SIRPA	244	

available	from	v18.proteinatlas.org,”	2018;	“The	Human	Protein	Atlas,”	n.d.;	Thul	et	al.,	245	

2017;	Uhlén	et	al.,	2015;	Uhlen	et	al.,	2017),	and	co-localises	with	CD47	at	dendrite-axon	246	

contacts	(Ohnishi	et	al.,	2005).	Mouse	models	in	which	the	SHPS1	gene	is	disrupted	exhibit	247	

many	nervous	system	abnormalities,	such	as	reduced	long	term	potentiation,	abnormal	248	

synapse	morphology	and	abnormal	excitatory	postsynaptic	potential	(MGI:	5558020	249	

(“Mouse	Genome	Informatics	(v6.13),”	2019;	Toth	et	al.,	2013)).	Other	mouse	and	rat	models	250	

link	CD47	to	sensorimotor	gating	and	social	behaviour	phenotypes	(H.	P.	Chang,	Lindberg,	251	

Wang,	Huang,	&	Lee,	1999;	Huang,	Wang,	Tang,	&	Lee,	1998;	Koshimizu,	Takao,	Matozaki,	252	

Ohnishi,	&	Miyakawa,	2014;	Ma,	Kulesskaya,	Võikar,	&	Tian,	2015;	Ohnishi	et	al.,	2010).	In	253	

addition,	SHPS1	has	been	shown	to	mediate	activity-dependent	synapse	maturation	(Toth	et	254	

al.,	2013)	and	may	also	have	a	role	as	a	“don’t	eat	me”	signal	to	microglia	(Brown	&	Neher,	255	

2014).	Finally,	SHPS1	levels	tend	to	be	lower	in	the	dorsolateral	prefrontal	cortex	of	256	

schizophrenia	patients	(Martins-de-Souza	et	al.,	2009).	257	

	 	258	
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Table	1:	Replication	of	significant	Mendelian	Randomisation	(FDR	<0.05)	protein-to-259	

schizophrenia	links	in	UK	Biobank.	260	

Discovery:	 Mendelian	 randomisation	 p-value	 of	 protein	 level	 on	 schizophrenia	 risk,	 as	261	

estimated	 using	 data	 from	 the	 Psychiatric	 Genomics	 Consortium	 –	 PGC	 (Schizophrenia	262	

Working	 Group	 of	 the	 Psychiatric	 Genomics	 Consortium	 et	 al.,	 2014)	 obtained	 via	263	

Phenoscanner	(Staley	et	al.,	2016).	264	

Replication:	 The	 Mendelian	 Randomisation	 p-value	 of	 protein	 level	 on	 schizophrenia	265	

(combined	 risk	 of	 ‘F20-F29	 Schizophrenia,	 schizotypal	 and	 delusional	 disorders’	 and	 self-266	

reported	‘schizophrenia’)	in	UK	Biobank	(Methods).		267	

MR	p-values	are	significant	(FDR	<0.05)	in	the	Discovery	sample.	268	

†	 indicates	 significance	 of	 the	 replication	 study	 following	 multiple	 testing	 correction	269	

(Bonferroni).	270	

	271	

Gene	 SNP	 Discovery	 Replication	

SHPS1	 rs4813319	 1.1	x	10-3	 5.3	x	10-3†	

FCGR2B	 rs4657041	 1.0	x	10-3	 6.1	x	10-1	

CD40	 rs4810485	 1.5	x	10-3	 8.7	x	10-1	

	 	272	
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Discussion	273	

Proteome-by-phenome	 Mendelian	 Randomisation	 (P2MR)	 is	 an	 efficient	 method	 of	274	

identifying	potential	drug	targets	through	integrating	pQTL	with	myriad	phenotypes.	P2MR	275	

offers	a	data-driven	approach	to	drug-discovery	from	population-level	data.	It	quantifies	the	276	

strength	 of	 evidence	 for	 causation,	 together	 with	 magnitude	 and	 direction	 of	 effect,	 for	277	

particular	 proteins	 in	 specific	 disease	 phenotypes.	 	 In	 addition,	 because	MR	using	 locally-278	

acting	pQTLs	is	more	focussed	than	a	genome-wide	study,	the	burden	of	multiple	testing	is	279	

reduced	dramatically,	effectively	reducing	the	sample-size	required	to	declare	a	given	effect	280	

significant.	281	

	282	

P2MR	has	some	 inherent	 limitations	 that	need	 to	be	considered	when	 interpreting	results.	283	

First,	a	true	positive	MR	association	in	our	analysis	implies	that	any	intervention	to	replicate	284	

the	 effect	 of	 a	 given	 genotype	 would	 alter	 the	 relevant	 phenotype.	 Nevertheless,	 this	285	

association	is	informative	neither	of	the	time	interval,	during	development	for	example,	nor	286	

the	 anatomical	 location	 in	 which	 an	 intervention	 would	 need	 to	 be	 delivered.	 Second,	287	

pleiotropic	 effects	 cannot	 be	 excluded	 entirely	 without	 (unachievable)	 quantification	 of	288	

every	mediator.	Third,	the	concentration	of	a	protein	in	plasma	could	be	an	imperfect	proxy	289	

for	the	effect	of	a	drug	targeting	that	protein	at	the	level	of	a	whole	organism.	Finally,	plasma	290	

concentration	 does	 not	 necessarily	 reflect	 activity.	 For	 example,	 a	 variant	 may	 cause	291	

expression	 of	 high	 levels	 of	 an	 inactive	 form	 of	 a	 protein.	 Or,	 for	 proteins	 with	 both	292	

membrane-bound	and	unbound	forms,	the	MR	direction	of	effect	observed	from	quantifying	293	

soluble	 protein	 abundance	 may	 not	 reflect	 that	 of	 membrane-bound	 protein.	 For	 many	294	

membrane-bound	 proteins,	 a	 soluble	 (often	 antagonistic)	 form	 exists	 that	 is	 commonly	295	

produced	through	alternative	splicing	or	proteolytic	cleavage	of	the	membrane-bound	form.	296	

For	example,	tocilizumab,	an	IL6	receptor	antagonist,	 is	used	as	a	treatment	of	rheumatoid	297	

arthritis	 (L.	 J.	Scott,	2017).	The	variant	we	use	 to	 instrument	 IL6R	 level,	 rs61812598,	 is	 in	298	

complete	 LD	with	 the	missense	 variant	 rs2228145	 in	 the	 British	 sub-population	 of	 1,000	299	

Genomes	(Sudmant	et	al.,	2015;	The	1000	Genomes	Project	Consortium,	2015)	whose	effects	300	

on	 proteolytic	 cleavage	 of	 the	 membrane-bound	 form	 and	 alternative	 splicing	 have	 been	301	
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examined	 in	 detail	 (R.	C.	Ferreira	 et	al.,	 2013).	 Carriers	 of	 the	 358Ala	allele	at	 rs2228145	302	

tend	 to	 have	 increased	 soluble	 IL6R	 but	 reduced	 membrane-bound	 IL6R	 in	 a	 number	 of	303	

immune	cell	types.	Differences	between	the	effects	of	soluble	and	membrane-bound	forms	of	304	

a	protein	may	be	wide-spread.	For	example,	Dupilumab	is	a	monoclonal	antibody	that	targets	305	

IL4R,	a	key	component	of	both	IL4	and	IL13	signalling.	It	is	currently	under	investigation	for	306	

the	 treatment	 of	 asthma	 and	 has	 shown	 promising	 results	 in	 both	 eosinophilic	 and	 non-307	

eosinophilic	 asthma	 (Wenzel	 et	 al.,	 2016,	 2013).	 Based	 on	 our	 results,	 we	 would	 have	308	

predicted	that	increased	levels	of	IL4R	result	in	a	lower	risk	of	asthma	(Supplementary	Table	309	

S3).	This	is	in	contrast	to	the	direction-of-effect	due	to	dupilumab	administration.	However,	310	

as	with	IL6R,	IL4R	has	both	a	soluble	and	a	membrane-bound	form.	Encouragingly,	despite	311	

this,	a	relationship	between	dupilumab	and	asthma	remains	plausible	–	as	evidenced	by	the	312	

14	recently	completed	or	ongoing	clinical	trials	to	assess	the	efficacy	and	safety	of	dupilumab	313	

in	asthma	(As	of	26	Mar	2019,	ClinicalTrials.gov	Identifiers:	NCT01312961,	NCT01854047,	314	

NCT02134028,	 NCT02414854,	 NCT02528214,	 NCT02573233,	 NCT02948959,	315	

NCT03112577,	 NCT03387852,	 NCT03560466,	 NCT03620747,	 NCT03694158,	316	

NCT03782532,	and	NCT03884842).	317	

	318	

P2MR	 provides	 an	 opportunity	 for	 studying	 the	 probable	 effects	 of	 specific	 proteins	 upon	319	

human	diseases,	 such	as	 schizophrenia,	 for	which	only	 imperfect	model	 systems	currently	320	

exist.	 Without	 a	 robust	 disease	 model,	 one	 must	 undertake	 studies	 in	 humans.	 However,	321	

there	is	little	justification	to	undertake	an	adequately	powered	randomised	control	trial	of	a	322	

drug	targeting	a	protein	for	which	there	is	minimal	evidence	of	a	link	between	that	protein	323	

and	disease.	P2MR	does	not	suffer	from	such	limitations.	324	

	325	

P2MR	highlights	FABP2	as	contributory	to	the	pathogenesis	of	CAD	and	there	are	orthogonal	326	

lines	of	evidence	to	support	this;	notably:	the	non-synonymous	mutation	Ala54Thr	(Yuan	et	327	

al.,	2015).	In	addition,	given	its	interaction	with	PPAR-α	and	fenofibrate	(Hughes	et	al.,	2015)	328	

and	 strong	 expression	 in	 the	 gastrointestinal	 tract	 (“FABP2	 available	 from	329	
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v18.proteinatlas.org,”	2018;	“The	Human	Protein	Atlas,”	n.d.;	Thul	et	al.,	2017;	Uhlén	et	al.,	330	

2015;	Uhlen	et	al.,	2017),	FABP2	represents	a	potential	drug-target	of	the	future.	331	

	332	

Finally,	as	well	as	its	utility	in	identifying	potential	therapeutic	targets	for	drug	development,	333	

P2MR	 allows	 for	 an	 assessment	 of	 potential	 off-target	 effects	 of	 existing	 pharmacological	334	

targets.	 For	 example,	 we	 predict	 an	 effect	 of	 IL4R	 modulation	 on	 eosinophil	 count	 and	335	

percentage.	 This	 is	 an	 association	 already	 realised	 in	 one	 of	 the	 phase	 II	 clinical	 trials	336	

investigating	 dupilumab	 in	 asthma:	 a	 rise	 in	 eosinophil	 count	 was	 observed	 for	 some	337	

patients,	even	leading	to	the	withdrawal	of	one	patient	from	the	study	(Wenzel	et	al.,	2016,	338	

2013).	339	

	340	

Conclusions	341	

In	summary,	we	have	identified	dozens	of	plausible	causal	links	by	conducting	GWA	of	249	342	

proteins,	 followed	 by	 phenome-wide	 MR	 using	 replicated	 locally-acting	 pQTLs	 of	 64	343	

proteins:	P2MR.	344	

Using	 this	approach,	54,144	protein-outcome	 links	have	been	assessed	and	509	significant	345	

(FDR	 <0.05)	 links	 identified:	 including	 anthropometric	 measures,	 haematological	346	

parameters,	as	well	as	diseases.	Opportunities	to	discover	larger	sets	of	plausible	causal	links	347	

will	 increase	 as	 study	 sizes	 and	 pQTL	 numbers	 grow.	 Indeed,	 whole-proteome	 versus	348	

Biobank	GWA	Atlas	 studies	will	 likely	become	 feasible	as	pQTL	measurement	 technologies	349	

mature.			350	

Methods	351	

Cohort	description.	From	the	 islands	of	Orkney	(Scotland)	and	Vis	(Croatia)	 respectively,	352	

the	ORCADES	(McQuillan	et	al.,	2008)	and	CROATIA-Vis	(Campbell	et	al.,	2007;	Rudan	et	al.,	353	

2009)	 studies	 are	 of	 two	 isolated	 population	 cohorts	 that	 are	 both	 genotyped	 and	 richly	354	

phenotyped.	355	
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The	Orkney	Complex	Disease	Study	(ORCADES)	is	a	family-based,	cross-sectional	study	that	356	

seeks	 to	 identify	 genetic	 factors	 influencing	 cardiovascular	 and	 other	 disease	 risk	 in	 the	357	

isolated	archipelago	of	the	Orkney	Isles	in	northern	Scotland	(McQuillan	et	al.,	2008).	Genetic	358	

diversity	in	this	population	is	decreased	compared	to	Mainland	Scotland,	consistent	with	the	359	

high	 levels	 of	endogamy	historically.	 2,078	participants	 aged	16-100	 years	were	 recruited	360	

between	 2005	 and	 2011,	 most	 having	 three	 or	 four	 grandparents	 from	 Orkney,	 the	361	

remainder	with	two	Orcadian	grandparents.	Fasting	blood	samples	were	collected	and	many	362	

health-related	phenotypes	and	environmental	exposures	were	measured	in	each	individual.	363	

All	 participants	 gave	written	 informed	 consent	 and	 the	 study	was	 approved	 by	 Research	364	

Ethics	Committees	in	Orkney	and	Aberdeen	(North	of	Scotland	REC).	365	

The	 CROATIA-Vis	 study	 includes	 1,008	 Croatians,	 aged	 18-93	 years,	 who	 were	 recruited	366	

from	the	villages	of	Vis	and	Komiza	on	the	Dalmatian	island	of	Vis	during	spring	of	2003	and	367	

2004.	 All	 participants	 were	 volunteers	 and	 gave	 informed	 consent.	 They	 underwent	 a	368	

medical	 examination	 and	 interview,	 led	 by	 research	 teams	 from	 the	 Institute	 for	369	

Anthropological	Research	and	the	Andrija	Stampar	School	of	Public	Health,	(Zagreb,	Croatia).	370	

All	subjects	visited	the	clinical	research	centre	in	the	region,	where	they	were	examined	in	371	

person	and	where	fasting	blood	was	drawn	and	stored	for	future	analyses.	Many	biochemical	372	

and	physiological	measurements	were	performed,	and	questionnaires	of	medical	history	as	373	

well	as	 lifestyle	and	environmental	exposures	were	collected.	The	study	received	approval	374	

from	the	relevant	ethics	committees	in	Scotland	and	Croatia	 (REC	reference:	11/AL/0222)	375	

and	complied	with	the	tenets	of	the	Declaration	of	Helsinki.	376	

	377	

Genotyping.	 Chromosomes	 and	 positions	 reported	 in	 this	 paper	 are	 from	 GRCh37	378	

throughout.	Genotyping	of	the	ORCADES	cohort	was	performed	on	the	Illumina	Human	Hap	379	

300v2,	Illumina	Omni	Express,	and	Illumina	Omni	1	arrays;	that	of	the	CROATIA-Vis	cohort	380	

used	the	Illumina	HumanHap300v1	array.	381	

	382	

The	genotyping	array	data	were	subject	to	the	following	quality	control	thresholds:	genotype	383	

call-rate	0.98,	per-individual	call-rate	0.97,	failed	Hardy-Weinberg	test	at	p-value	<	1	×	10−6,	384	
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and	 minor	 allele	 frequency	 0.01;	 genomic	 relationship	 matrix	 and	 principal	 components	385	

were	 calculated	 using	GenABEL	 (1.8-0)	 (Aulchenko,	Ripke,	 Isaacs,	&	 van	Duijn,	 2007)	 and	386	

PLINK	v1.90	(C.	C.	Chang	et	al.,	2015;	Purcell,	2017).	387	

	388	

Assessment	for	ancestry	outliers	was	performed	by	anchored	PCA	analysis	when	compared	389	

to	all	non-European	populations	from	the	1,000	Genomes	project	(Sudmant	et	al.,	2015;	The	390	

1000	 Genomes	 Project	 Consortium,	 2015).	 Individuals	 with	 a	 mean-squared	 distance	 of	391	

>10%	 in	 the	 first	 two	principal	 components	were	removed.	Genotypes	were	phased	using	392	

Shapeit	v2.r873	and	duoHMM	(O’Connell	et	al.,	2014)	and	imputed	to	the	HRC.r1-1	reference	393	

panel	 (The	Haplotype	Reference	Consortium	et	al.,	 2016).	 278,618	markers	 (Hap300)	 and	394	

599,638	markers	 (Omni)	were	used	 for	 the	 imputation	in	ORCADES,	and	272,930	markers	395	

for	CROATIA-Vis.	396	

	397	

Proteomics.	 Plasma	 abundance	 of	 249	 proteins	was	measured	 in	 two	 European	 cohorts	398	

using	Olink	Proseek	Multiplex	 CVD2,	 CVD3,	and	 INF	panels.	 All	 proteomics	measurements	399	

were	obtained	from	fasting	EDTA	plasma	samples.	Following	quality	control,	there	were	971	400	

individuals	 in	 ORCADES,	 and	 887	 individuals	 in	 CROATIA-Vis,	 who	 had	 genotype	 and	401	

proteomic	data	from	Olink	CVD2,	993	and	899	from	Olink	CVD3,	and	982	and	894	from	Olink	402	

INF.	The	Olink	Proseek	Multiplex	method	uses	a	matched	pair	of	antibodies	for	each	protein,	403	

linked	 to	 paired	 oligonucleotides.	 Binding	 of	 the	 antibodies	 to	 the	 protein	 brings	 the	404	

oligonucleotides	 into	 close	 proximity	 and	 permits	 hybridization.	 Following	 binding	 and	405	

extension,	 these	oligonucleotides	form	the	basis	of	a	quantitative	PCR	reaction	 that	allows	406	

relative	 quantification	 of	 the	 initial	 protein	 concentration	 (Assarsson	 et	 al.,	 2014).	 Olink	407	

panels	include	internal	and	external	controls	on	each	plate:	two	controls	of	the	immunoassay	408	

(two	non-human	proteins),	one	control	of	oligonucleotide	extension	(an	antibody	linked	to	409	

two	matched	oligonucleotides	for	immediate	proximity,	independent	of	antigen	binding)	and	410	

one	control	of	hybridized	oligonucleotide	detection	(a	pre-made	synthetic	double	stranded	411	

template),	as	well	as	an	external,	between-plate,	control	(“Olink,”	n.d.).	412	

	413	
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Prior	 to	 analysis,	we	 excluded	proteins	with	 fewer	 than	200	 samples	with	measurements	414	

above	the	limit	of	detection	of	the	assay.	Of	the	268	unique	proteins	reported	by	Olink,	253	415	

passed	 this	 threshold	 in	 ORCADES,	 and	 252	 in	 CROATIA-Vis,	 with	 an	 intersect	 of	 251	416	

proteins.	 Protein	 values	 were	 inverse-normal	 rank-transformed	 prior	 to	 subsequent	417	

analysis.	418	

	419	

The	 subunits	 of	 IL27	 are	 not	 distinguished	 in	 Olink’s	 annotation	 (Q14213,	 EBI3;	 and	420	

Q8NEV9,	 IL27).	 However,	 it	 has	 only	 one	 significant	 locus,	 local	 to	 the	 EBI3	 gene	 (lead	421	

variant,	 rs60160662,	 is	 within	 16kb).	 Therefore,	 EBI3	 (Q14213)	 was	 selected	 as	422	

representative	 for	 this	protein	when	discussing	pQTL	 location	 (local/distal)	 so	as	 to	avoid	423	

double	counting.		424	

	425	

Two	proteins,	CCL20	and	BDNF,	have	been	removed	at	the	request	of	Olink.	426	

	427	

Genome-wide	 association	 of	 protein	 levels.	 Genome-wide	 association	 of	 these	 proteins	428	

was	performed	using	autosomes	only.	Analyses	were	performed	in	three-stages.	(1)	a	linear	429	

regression	model	was	used	to	account	for	participant	age,	sex,	genotyping	array	(ORCADES	430	

only),	 proteomics	 plate,	 proteomics	 plate	 row,	 proteomics	 plate	 column,	 length	 of	 sample	431	

storage,	season	of	venepuncture	(ORCADES	only),	and	the	first	10	principal	components	of	432	

the	genomic	relationship	matrix.	Genotyping	array	and	season	of	venepuncture	are	invariant	433	

in	CROATIA-Vis	and	therefore	were	not	included	in	the	model.	(2)	Residuals	from	this	model	434	

were	corrected	for	relatedness,	using	GenABELs	(Aulchenko	et	al.,	2007)	polygenic	function	435	

and	 the	 genomic	 relationship	 matrix,	 to	 produce	 GRAMMAR+	 residuals.	 Outlying	436	

GRAMMAR+	 residuals	 (absolute	 z-score	 >4)	were	 removed	 and	 the	 remainder	 rank-based	437	

inverse-normal	 transformed.	 (3)	 Genome-wide	 association	 testing	 was	 performed	 using	438	

REGSCAN	v0.5	(Haller,	Kals,	Esko,	Magi,	&	Fischer,	2013).	439	

	440	

Reported	pQTLs.	Genome-wide	association	results	were	clumped	by	linkage	disequilibrium	441	

using	PLINK	v1.90	(C.	C.	Chang	et	al.,	2015;	Purcell,	2017).	Biallelic	variants	within	±5Mb	and	442	
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r2	 >0.2	 to	 the	 lead	 variant	 (smallest	 p-value	at	 the	 locus)	were	clumped	 together,	 and	 the	443	

lead	variant	 is	presented.	r2	was	derived	 from	all	European	populations	 in	1,000	Genomes	444	

(Sudmant	et	al.,	2015;	The	1000	Genomes	Project	Consortium,	2015).		445	

	446	

Mendelian	 Randomisation.	 In	 the	 context	 of	 P2MR,	 a	 DNA	 variant	 (a	 single	 nucleotide	447	

polymorphism	 in	 this	 case)	 that	 influences	 plasma	 protein	 level	 is	 described	 as	 an	448	

‘instrumental	variable’,	the	protein	as	the	‘exposure	variable’,	and	the	outcome	phenotype	as	449	

the	‘outcome	variable’.	450	

A	DNA	variant	was	considered	 to	be	a	potentially	valid	 instrumental	variable	 if	 it	met	 the	451	

following	criteria:	452	

(1) Minor	allele	frequency	>1%	in	both	ORCADES	and	CROATIA-Vis	cohorts.	453	

(2) An	imputation	info	score	(SNPTEST	v2)	of	>0.95	in	both	ORCADES	and	CROATIA-Vis.	454	

(3) Located	within	±150kb	of	the	gene	coding	for	the	protein	(start	and	end	coordinates	455	

of	the	gene	as	defined	by	Ensembl	GRCh37	(Zerbino	et	al.,	2018)).	456	

	457	

DNA	variant	selection	was	performed	using	the	discovery	(CROATIA-Vis)	cohort.	Replication	458	

was	 defined	based	 on	 a	Bonferroni	 correction	 for	 the	 number	 of	 genome-wide	 significant	459	

lead	variants	selected	in	the	discovery	cohort	(CROATIA-Vis).	 In	order	to	avoid	a	 ‘winner’s	460	

curse’,	 replicated	 genome-wide	 association	 effect	 sizes	 and	 standard	 errors	 from	 the	461	

replication	cohort	(ORCADES)	were	used	for	MR.	462	

	463	

We	perform	MR	as	a	ratio	of	expectations,	using	up	to	second-order	partial	derivatives	of	the	464	

Taylor	 series	 expansion	 for	effect	 size	estimates,	and	up	 to	 first-order	 for	 standard	 errors	465	

(Delta	method)	(Lynch	&	Walsh,	1998):	466	

	467	

	468	

	469	
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(1)	470	

(2)	471	

(3)	472	

	473	

where	βij	is	the	causal	effect	of	j	on	i,	seij	is	the	standard	error	of	the	causal	effect	estimate	of	j	474	

on	i;	subscript	X	is	the	exposure,	Y	the	outcome	trait,	and	Z	the	instrumental	variable.	Φ	is	the	475	

cumulative	density	function	of	the	standard	normal	distribution.	476	

DNA	variant	to	trait	association:	GeneAtlas.	All	outcome	GWA	(778	traits)	from	GeneAtlas	477	

(Canela-Xandri	et	al.,	2017)	were	included.	For	each	protein,	the	lead	(lowest	DNA	variant-478	

protein	 association	 p-value	 in	 the	 discovery	 cohort)	 biallelic	 (Phase	 3,	 1,000	 Genomes	479	

(Sudmant	et	al.,	2015;	The	1000	Genomes	Project	Consortium,	2015))	variant	meeting	 the	480	

criteria	 above	 and	 an	 imputation	 info	 score	 >0.95	 in	 UK	 Biobank,	 was	 selected	 for	 each	481	

protein,	and	MR	performed.	An	FDR	of	<0.05	was	considered	to	be	significant.	482	

DNA	 variant	 to	 trait	 association:	 Phenoscanner.	 Phenoscanner	 (“PhenoScanner,”	 2018;	483	

Staley	et	al.,	2016)	was	used	to	highlight	existing	GWA	studies	for	inclusion.	For	each	protein,	484	

the	 lead	 (lowest	DNA	 variant-protein	association	 p-value	 in	 the	 discovery	 cohort)	 biallelic	485	

(1,000	 Genomes	 (Sudmant	 et	 al.,	 2015;	 The	 1000	 Genomes	 Project	 Consortium,	 2015))	486	

meeting	 the	 criteria	 above	 was	 selected.	 rs545634	 was	 not	 found	 in	 the	 Phenoscanner	487	

database	and	was	 therefore	 replaced	with	 the	second	most	 significant	variant	meeting	 the	488	

above	criteria:	chr1:15849003.	Phenoscanner	was	run	with	the	following	options:	Catalogue:	489	

‘Diseases	&	Traits’,	p-value	cut-off:	‘1’,	Proxies:	‘None’,	Build	‘37’.	Results	from	20	additional	490	

studies	were	obtained,	 corresponding	 to	68	outcomes.	The	results	 from	those	studies	 that	491	

returned	a	value	for	all	 input	variants	were	kept	and	MR	performed.	An	FDR	of	<0.05	was	492	

considered	to	be	significant.	493	

HEIDI.	 heterogeneity	 in	 dependent	 instruments	 (HEIDI)	 analysis	 (Zhu	 et	 al.,	 2016),	 is	 a	494	

method	 of	 testing	 whether	 the	 MR	 estimates	 obtained	 using	 variants	 in	 linkage	495	

disequilibrium	with	the	lead	variant	are	consistent	with	a	single	causal	variant	or	multiple	496	
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causal	variant	at	a	given	 locus	 (Figure	1D).	 	HEIDI	analysis	was	performed	using	software	497	

provided	 at	 https://cnsgenomics.com/software/smr/	 [accessed	 28/08/2018;	 v0.710].	We	498	

created	a	bespoke	BESD	format	file	containing	the	pQTL	data	from	ORCADES	for	assessment	499	

as	the	exposure.	Biallelic	variants	from	the	1,000	Genomes	(Sudmant	et	al.,	2015;	The	1000	500	

Genomes	Project	 Consortium,	 2015)	 (European	 populations:	 CEU,	 FIN,	 GBR,	 IBS,	 and	 TSI)	501	

were	 used	 as	 the	 linkage	 disequilibrium	 reference.	 We	 used	 the	 default	 ‘cis-window’	 of	502	

2000kb,	and	a	maximum	number	of	variants	of	20	(as	this	 is	now	the	default	value	for	the	503	

software:	based	on	unpublished	power	calculations	by	 the	authors	of	HEIDI	and	noted	on	504	

their	website).	505	

	506	

We	performed	HEIDI	analysis	of	all	exposure-outcome	links	that	were	found	to	be	significant	507	

(FDR	<0.05)	using	outcomes	from	UK	Biobank	(n=271),	as	well	as	those	links	found	to	be	MR	508	

significant	(FDR	<0.05)	with	CAD	from	the	meta-analysis	of	van	der	Harst	(van	der	Harst	&	509	

Verweij,	 2018),	 and	 for	 SHPS1	 and	 schizophrenia	 (Schizophrenia	 Working	 Group	 of	 the	510	

Psychiatric	Genomics	Consortium	et	al.,	2014).	511	

	512	

We	 applied	 the	 following	 filters	 for	 variants	 to	 be	 included	 in	 the	 analysis:	 minor	 allele	513	

frequency	MAF	>	0.01	and,	in	the	GeneAtlas	and	ORCADES	data,	an	imputation	info	score	of	514	

>0.95.	515	

	516	

Schizophrenia	GWA	study	replication.	In	the	initial	analysis	of	Canela-Xandri	et	al.	(2017),	517	

schizophrenia	was	 included	as	 ‘F20	 Schizophrenia',	 and	nested	 in	 ‘F20-F29	 Schizophrenia,	518	

schizotypal	 and	 delusional	 disorders’.	 There	 were	 920	 cases	 in	 ‘F20-F29	 Schizophrenia,	519	

schizotypal	 and	 delusional	 disorders’	 and	 509	 in	 ‘F20	 Schizophrenia'.	 Due	 to	 the	 near	520	

doubling	 of	 the	 sample	 size,	 replication	 was	 attempted	 in	 the	 parent	 category:	 ‘F20-F29	521	

Schizophrenia,	schizotypal	and	delusional	disorders’.	Using	a	Bonferroni	correction,	none	of	522	

these	links	replicated.	However,	due	to	the	severe	contraction	of	the	number	of	cases	present	523	

in	the	sample	–	35,476	cases	and	46,839	controls	to	920	cases	and	407,535	controls	–	there	524	

was	a	significant	risk	of	false	negative	results.	In	order	to	address	this,	we	re-analysed	the	UK	525	
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Biobank	data	 including	 ‘F20-F29	 Schizophrenia,	 schizotypal	 and	delusional	 disorders'	 and	526	

self-reported	 ‘schizophrenia'	 as	 a	 single	 outcome	 in	 a	more	 permissive	 set	 of	 individuals:	527	

individuals	 self-reporting	 their	ethnicity	as	 ‘White’	and	clustering	as	a	group	based	on	 the	528	

first	 two	 genomic	 principal	 components	 (Canela-Xandri,	 Rawlik,	 &	 Tenesa,	 2018).	 This	529	

increased	the	number	of	cases	and	controls	to	1,241	cases	and	451,023	controls.		530	

	531	

	532	

	533	
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Figure	1.	Proteome-by-phenome	Mendelian	Randomisation	(P2MR).	902	

A)	 Genome-wide	 associations	 of	 the	 plasma	 concentrations	 of	 249	 proteins	 from	 two	903	

independent	 European	 cohorts	 (discovery	 and	 replication)	 were	 calculated.	 The	 plot	904	

shows	pQTL	position	against	chromosomal	 location	of	 the	gene	 that	encodes	 the	protein	905	

under	 study	 for	 all	 replicated	 pQTLs.	 The	 area	 of	 a	 filled	 circle	 is	 proportional	 to	 its	 -906	

log10(p-value)	 in	 the	 replication	 cohort.	Blue	circles	 indicate	 pQTLs	 ±150kb	 of	 the	gene	907	

(‘local-pQTLs’);	 red	 circles	 indicate	 pQTLs	more	 than	 150kb	 from	 the	 gene.	 B,	 C)	 Local-908	

pQTLs	of	64	proteins	were	taken	forward	for	P2MR	analysis.	These	were	assessed	against	909	

778	 outcome	 phenotypes	 from	 GeneAtlas	 (Canela-Xandri	 et	 al.,	 2017)	 (panel	 B;	 UK	910	

Biobank)	and	68	phenotypes	identified	using	Phenoscanner	(Staley	et	al.,	2016)	(panel	C).	911	

In	 each	 set	 of	 results	 an	 FDR	 of	 <0.05	 was	 considered	 significant.	 D)	 Heterogeneity	 in	912	

dependent	 instruments	 (HEIDI	 (Zhu	 et	 al.,	 2016))	 testing	 was	 undertaken	 for	 MR	913	

significant	results	from	UK	Biobank	(n	=	271).	This	test	seeks	to	distinguish	a	single	causal	914	

variant	at	a	locus	effecting	both	exposure	and	outcome	directly	(as	in	i)	or	in	a	causal	chain	915	

(as	 in	 ii),	 from	two	causal	variants	 in	 linkage	disequilibrium	(as	 in	 iii),	one	effecting	 the	916	

exposure	and	the	other	effecting	the	outcome.	917	
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Figure	1.	919	
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Figure	2.	Significant	(FDR	<0.05)	P2MR	protein-outcome	causal	inferences:	disease	subset.	921	

	922	

a)	 Phenoscanner	 (Staley	 et	 al.,	 2016):	 P2MR	 significant	 protein-disease	 outcome	 causal	923	

inferences	 for	 20	 Phenoscanner	 studies.	 b)	 GeneAtlas	 (Canela-Xandri	 et	 al.,	 2017):	 MR	924	

significant	 protein-disease	 outcome	 causal	 inferences	 for	 UK	 Biobank	 data.	 Asterisks	925	

indicate	P2MR	estimates	that	are	not	significantly	heterogeneous	(HEIDI,	Main	Text	(Zhu	et	926	

al.,	2016)).	Graphical	key:	Reading	from	the	outside	in:	protein	(exposure;	HGNC	symbol);	927	

disease	outcome;	key	colour;	bar	chart	of	 the	signed	 (beta/standard	error)2	value	of	 the	928	

MR	estimate	(using	pQTL	data	from	the	discovery	cohort;	Methods);	and	bar	chart	of	the	929	

signed	 (beta/standard	 error)2	 value	 of	 the	 MR	 estimate	 (using	 pQTL	 data	 from	 the	930	

replication	cohort;	Methods).	Central	chords	join	identical	outcomes.	Identically	coloured	931	

chords	indicate	similar	outcome	groups,	e.g.	thyroid	disease.	932	
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Figure	2	934	
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Figure	3:	Co-localisation	of	SHPS1	(encoded	by	SHPS1:	synonym	SIRPA)	and	936	

schizophrenia	DNA	associations.	Upper	panel,	locuszoom	(Pruim	et	al.,	2010)	of	the	region	937	

surrounding		SHPS1	and	the	associations	with	schizophrenia	(Schizophrenia	Working	Group	938	

of	the	Psychiatric	Genomics	Consortium	et	al.,	2014);	lower	panel,	associations	with	SHPS1.	939	

Lower	panel	inset,	the	relative	concentration	of	SHPS1	across	the	3	genotypes	of	rs4813319	940	

–	the	DNA	variant	used	as	the	instrumental	variable	(IV)	in	the	MR	analysis:	CC,	CT,	and	TT.	941	
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Figure	3.	943	
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Supplementary	Figure	S1.	Significant	(FDR	<0.05)	P2MR	protein-outcome	causal	945	

inferences:	haematology	count	subset.	946	

a)	Phenoscanner	(Staley	et	al.,	2016):	P2MR	significant	protein-haematology	count	outcome	947	

causal	inferences	for	20	Phenoscanner	studies.	b)	GeneAtlas	(Canela-Xandri	et	al.,	2017):	MR	948	

significant	protein-haematology	count	outcome	causal	inferences	for	UK	Biobank	data.	949	

Asterisks	indicate	P2MR	estimates	that	are	not	significantly	heterogeneous	(HEIDI,	Main	950	

Text	(Zhu	et	al.,	2016)).	Key	as	for	Figure	2:	Reading	from	the	outside	in:	protein	(exposure;	951	

HGNC	symbol);	haematology	count	outcome;	key	colour;	bar	chart	of	the	signed	952	

(beta/standard	error)2	value	of	the	MR	estimate	(using	pQTL	data	from	the	discovery	953	

cohort;	Methods);	and	bar	chart	of	the	signed	(beta/standard	error)2	value	of	the	MR	954	

estimate	(using	pQTL	data	from	the	replication	cohort;	Methods).	Central	chords	join	955	

identical	outcomes.	Identically	coloured	chords	indicate	similar	outcome	groups.	956	
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Supplementary	Figure	S1.	958	
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Supplementary	Figure	S2.	Significant	(FDR	<0.05)	P2MR	protein-outcome	causal	960	

inferences:	haematology	percentage	subset.	961	

a)	Phenoscanner	(Staley	et	al.,	2016):	P2MR	significant	protein-haematology	percentage	962	

outcome	causal	inferences	for	20	Phenoscanner	studies.	b)	GeneAtlas	(Canela-Xandri	et	al.,	963	

2017):	MR	significant	protein-haematology	percentage	outcome	causal	inferences	for	UK	964	

Biobank	data.	Asterisks	indicate	P2MR	estimates	that	are	not	significantly	heterogeneous	965	

(HEIDI,	Main	Text	(Zhu	et	al.,	2016)).	Key	as	for	Figure	2:	Reading	from	the	outside	in:	966	

protein	(exposure;	HGNC	symbol);	haematology	percentage	outcome;	key	colour;	bar	chart	967	

of	the	signed	(beta/standard	error)2	value	of	the	MR	estimate	(using	pQTL	data	from	the	968	

discovery	cohort;	Methods);	and	bar	chart	of	the	signed	(beta/standard	error)2	value	of	the	969	

MR	estimate	(using	pQTL	data	from	the	replication	cohort;	Methods).	Central	chords	join	970	

identical	outcomes.	Identically	coloured	chords	indicate	similar	outcome	groups.	971	
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Supplementary	Figure	S2.	 	973	

a) Phenoscanner

b) UKBB
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Supplementary	Figure	S3.	Significant	(FDR	<0.05)	P2MR	protein-outcome	causal	974	

inferences:	haematology	(non-count,	non-percentage)	subset.	975	

a)	Phenoscanner	(Staley	et	al.,	2016):	P2MR	significant	protein-haematology	outcome	causal	976	

inferences	for	20	Phenoscanner	studies.	b)	GeneAtlas	(Canela-Xandri	et	al.,	2017):	MR	977	

significant	protein-haematology	outcome	causal	inferences	for	UK	Biobank	data.	Asterisks	978	

indicate	P2MR	estimates	that	are	not	significantly	heterogeneous	(HEIDI,	Main	Text	(Zhu	et	979	

al.,	2016)).	Key	as	for	Figure	2:	Reading	from	the	outside	in:	protein	(exposure;	HGNC	980	

symbol);	haematology	outcome;	key	colour;	bar	chart	of	the	signed	(beta/standard	error)2	981	

value	of	the	MR	estimate	(using	pQTL	data	from	the	discovery	cohort;	Methods);	and	bar	982	

chart	of	the	signed	(beta/standard	error)2	value	of	the	MR	estimate	(using	pQTL	data	from	983	

the	replication	cohort;	Methods).	Central	chords	join	identical	outcomes.	Identically	984	

coloured	chords	indicate	similar	outcome	groups.	985	
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Supplementary	Figure	S3.	987	
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a) Phenoscanner

b) UKBB
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Supplementary	Figure	S4.	Significant	(FDR	<0.05)	P2MR	protein-outcome	causal	989	

inferences:	anthropometric	measurements	subset.	990	

GeneAtlas	(Canela-Xandri	et	al.,	2017):	MR	significant	protein-anthropometric	991	

measurements	outcome	causal	inferences	for	UK	Biobank	data.	Asterisks	indicate	P2MR	992	

estimates	that	are	not	significantly	heterogeneous	(HEIDI,	Main	Text	(Zhu	et	al.,	2016)).	Key	993	

as	for	Figure	2:	Reading	from	the	outside	in:	protein	(exposure;	HGNC	symbol);	994	

anthropometric	measurements	outcome;	key	colour;	bar	chart	of	the	signed	(beta/standard	995	

error)2	value	of	the	MR	estimate	(using	pQTL	data	from	the	discovery	cohort;	Methods);	and	996	

bar	chart	of	the	signed	(beta/standard	error)2	value	of	the	MR	estimate	(using	pQTL	data	997	

from	the	replication	cohort;	Methods).	Central	chords	join	identical	outcomes.	Identically	998	

coloured	chords	indicate	similar	outcome	groups.	999	
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Supplementary	Figure	S4.	1001	
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