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Abstract 16 

Natural killer cell repertoires are functionally diversified as a result of differentiation, homeostatic 17 

receptor-ligand interactions and adaptive responses to viral infections. However, the regulatory 18 

gene-circuits that define the manifold cell states and drive NK cell differentiation have not been 19 

clearly resolved. Here, we performed single-cell RNA sequencing of 26,506 cells derived from 20 

sorted phenotypically-defined human NK cell subsets to delineate a tightly coordinated 21 

differentiation process from a small population of CD56bright precursors to adaptive NKG2C+ 22 

CD56dim NK cells. RNA velocity analysis identified a clear directionality in the transition from 23 

CD56bright to CD56dim NK cells, which was dominated by genes involved in transcription and 24 

translation as well as acquisition of NK cell effector function. Gene expression trends mapped to 25 

pseudotime, defined by increasing entropy, identified three distinct transcriptional checkpoints, 26 

reflecting important changes in regulatory gene-circuits. The CD56bright NK cell population 27 

dominated pseudotime with two distinct checkpoints separating precursors from intermediate states 28 

that gradually took on transcriptional signatures similar to CD56dim NK cells. The final checkpoint 29 

occurred during late terminal differentiation of CD56dim NK cells and was associated with unique 30 

divergent gene-expression trends. Furthermore, we utilized this single-cell RNA sequencing 31 

resource to decipher the regulation of genes involved in lysosomal biogenesis and found a 32 

coordinated gradual increase in the RAB4 and BLOC1S gene families with differentiation into 33 

CD56dim NK cells. These results identify important gene programs driving functional 34 

diversification and specialization during NK cell differentiation and hold potential to guide new 35 

strategies for NK cell-based cancer immunotherapy.36 
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Introduction 37 

Natural killer (NK) cells are innate lymphocytes that play a vital role in the immune response 38 

through their ability to directly kill transformed and virus infected cells, and by orchestrating the 39 

early phase of the adaptive immune response1. NK cells are commonly divided into two distinct 40 

subsets based on their level of CD56 expression, eg. CD56bright and CD56dim NK cells, with distinct 41 

functional properties. CD56bright NK cells, exhibiting an immunoregulatory role, are highly 42 

responsive to cytokine stimulation, primarily located within secondary lymphoid organs and have 43 

poor cytotoxic potential2–4. General consensus based on phenotypic profiling and functional and 44 

transcriptional studies identifies this NK cell population as an immature precursor to CD56dim NK 45 

cells5–9. CD56dim NK cells, making up ~90% of all circulating NK cells, express CD16 and exhibit 46 

higher cytotoxic potential coordinated through receptor-mediated input2,10. However, this is an 47 

oversimplified view of the NK cell repertoire. Mass cytometry profiling of NK cell repertoires at 48 

the single cell level has revealed an extensive phenotypic diversity comprising up to 100,000 49 

unique subsets in healthy individuals11. Much of this diversity is based on combinatorial expression 50 

of stochastically expressed germline encoded activating and inhibitory receptors that bind to MHC 51 

and tune NK cell function in a process termed NK cell education10,12. Another layer of diversity 52 

reflects the continuous differentiation through several well-defined intermediate phenotypes13 from 53 

the naïve CD56bright NK cells to the terminally differentiated, adaptive NKG2C+CD57+CD56dim 54 

NK cells, associated with past infection by cytomegalovirus (CMV)14. Given the increasing interest 55 

to harness the cytolytic potential of NK cells in cell therapy against cancer, it is of fundamental 56 

importance to understand the molecular programs and regulatory gene circuits that drive NK cell 57 

differentiation and underlie the functional diversification of the human NK cell repertoire. 58 

 Mouse studies identified important roles for T-bet and Eomes in the differentiation from 59 

immature CD27+CD11b- to mature CD27-CD11b+ NK cells, but did not delineate the exact 60 
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intracellular signaling pathways mediating these effects15,16. In an attempt to characterize NK cell 61 

heterogeneity within peripheral blood and organs using single-cell RNA sequencing (scRNA-seq), 62 

Crinier et al., identified organ-specific signatures with four populations of human spleen NK cells 63 

with gene signatures along a continuum confined by the traditional CD56bright and CD56dim NK cell 64 

subdivision17. Remarkably however, only two major transcriptional subsets were found in blood-65 

derived NK cells in both species. Through the use of bulk RNA and ChIP sequencing in human 66 

NK cells, a TCF1-LEF-MYC axis was identified in CD56bright NK cells compared to CD56dim NK 67 

cells where PRDM1 played a central role18. Furthermore, the CMV-driven adaptive NK cell 68 

responses are associated with epigenetic modifications, ultimately reflected in CD8 T cell like 69 

transcriptional profiles19–21. These gene regulatory programs underlying the CD56bright versus 70 

CD56dim NK cell phenotypic classification, provide a transcriptional basis for diverse functional 71 

roles and localization of these subsets. However, it remains to be resolved how these major NK 72 

cell subsets are related to other phenotypically defined stages of NK cell differentiation. 73 

Phenotypically, NK cells are defined using a limited number of markers, but the true heterogeneity 74 

of this population at the transcriptional level is unknown. Furthermore it remains to be examined 75 

if NK cell differentiation at the transcriptional level is a linear process and if so, what transcriptional 76 

checkpoints this may entail.  77 

 Here we used scRNA-seq and a combination of new bioinformatics tools to specifically 78 

address the developmental relationship between distinct NK cell subsets and to map the gene 79 

programs associated with transitions through discrete stages of differentiation. By sequencing 80 

equal number of cells derived from five phenotypically well-defined human NK cell subsets, our 81 

data unraveled a tightly coordinated differentiation process passing through a number of 82 

transcriptional checkpoints, associated with unique gene-expression trends and changes in 83 

functional modalities. By gaining a deeper understanding of the relationship between NK cell 84 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630657doi: bioRxiv preprint 

https://doi.org/10.1101/630657
http://creativecommons.org/licenses/by-nc/4.0/


 5 

subsets and changes in genetic programs as cells transition through phases of NK cell education it 85 

may be possible to develop new strategies to guide NK cell differentiation towards a desired 86 

functional phenotype for cell therapy. 87 

 88 
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Results 89 

NK cell differentiation defined through single cell RNA-seq 90 

To delineate the transcriptional landscape of human NK cell differentiation, we first performed 91 

conventional bulk RNA sequencing of four sorted subsets representing distinct stages of NK cell 92 

differentiation. PCA analysis identified a clear separation between CD56bright, conventional and 93 

adaptive CD56dim NK cells, whereas the two conventional CD56dim subsets (NKG2A+KIR- and 94 

NKG2A-KIR+) were closer together in transcriptional space (Figure 1A). The four subsets were 95 

ordered counter-clockwise in accordance with a model of NK cell differentiation laid out based on 96 

proliferative responses to cytokines, which postulated that CD56bright differentiate into 97 

NKG2A+KIR-CD56dim, NKG2A-KIR+CD56dim and finally to the most mature NKG2A-98 

KIR+NKG2C+CD56dim NK cells (the latter also termed adaptive). In order to address directionality 99 

in this differentiation process and resolve the transition between these phenotypically defined cell 100 

states, we performed single-cell RNA-sequencing (scRNA-seq) on bulk NK cells and five sorted 101 

NK cell subsets, ranging from CD56bright NK cells to distinct subsets of CD56dim NK cells, 102 

including CD57+NKG2C+ adaptive NK cells (Supplemental Figure 1A, 2, 3). In total, 26,506 103 

cells were sequenced. Single cell transcriptional data from an equal number of sequenced cells 104 

from each sample was pooled and merged in one single donor-specific t-SNE plot to examine the 105 

relationship between phenotypically defined NK cell subsets across distinct stages of 106 

differentiation (Supplemental Figure 1B). Because of the sorting strategy we were able to study 107 

the rare CD56bright NK cells and their relationship to CD56dim NK cells in greater detail. 108 

Importantly, despite the use of a limited set of markers to define the five sorted subsets, they 109 

provided a complete representation of the total bulk NK cell signature as no bulk-specific cell 110 

cluster was identified (Supplemental Figure 1B).  111 
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t-SNE analysis revealed two transcriptionally unique islands connected through a narrow 112 

bridge region (Figure 1B, Supplemental Figure 4A). Although the sorted NK cell subsets could 113 

be ordered from left to right along the previously defined maturation scheme22, their transcriptomes 114 

were highly overlapping with exception of the most naïve CD56bright and most mature adaptive 115 

CD56dim NK cell subsets. Unbiased clustering by PhenoGraph revealed two clusters in the 116 

CD56bright NK cell subset and two clusters in the conventional CD56dim NK cell subset (Figure 1B, 117 

Supplemental Figure 4A). In the first donor, adaptive NK cells represented a fifth cluster as 118 

defined by PhenoGraph that was not found in donor 2, lacking the adaptive NK cell subset. 119 

Validation of the PhenoGraph algorithm using k-means clustering yielded similar results 120 

(Supplemental Figure 1C). In agreement with previous data in bulk RNA-seq23, NK cells 121 

expressing self and non-self KIR exhibited a high degree of transcriptional overlap and together 122 

made up a significant portion of cluster 3 and 4 (Supplemental Figure 1D). Sorted 123 

NKG2A+CD56dim NK cells exhibited high transcriptional variation and could be identified in all 124 

PhenoGraph-defined clusters (Supplemental Figure 1D). Representation of the expression of 125 

canonical differentiation markers, including NCAM (CD56), KLRC2 (NKG2C), SELL (CD62L), 126 

CD7 and FCGR3A (CD16) across the t-SNE map corroborated the gradual transitioning from naïve 127 

to more mature NK cells with progression from cluster 1 through 5 (Figure 1C).  128 

To identify the gene signatures defining the five transcriptional clusters, we performed 129 

differential gene expression analysis between clusters defining unique steps of NK cell 130 

differentiation (Figure 1D-E). The most distal CD56bright cell population, confined within cluster 131 

1 were more transcriptionally diverse compared to cluster 2 cells and significantly increased genes 132 

in cluster 1 included IFNG, OAS1, FGR, CDK6, CCR5 and SLC37A1. Visual representation of key 133 

regulatory genes also revealed high expression of IL2RB, IL2RG and IL15RA as well as KLRD1, 134 

RUNX3 and IKZF2 in cluster 1 (Figure 1F). The biggest transcriptional difference was observed 135 
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between cluster 2 and 3, largely representing the CD56bright to CD56dim transition, with CD56dim 136 

NK cells being more transcriptionally diverse (Figure 1D-E). Genes with significantly increased 137 

expression in cluster 2 included XCL1, SELL, CCR1, LEF1, IL7R, GZMK, LTB, CD27, CCR7, 138 

MYC, CAPG, KIT, IL23A and BACH2. Conversely, cluster 3 was defined through higher expression 139 

of CCL3, CCL4, CCL5, RORA, GZMA, GZMB, GZMH, GZMM, FCGR3A, TIGIT, NFKBIA, 140 

CX3CR1, PRDM1, ZEB2, TFEB and MICB. Cluster 3 and 4, containing a mixture of conventional, 141 

phenotypically defined, CD56dim NK cell subsets, exhibited the fewest transcriptional differences 142 

(Figure 1D-E) with CD38, LAIR2, GNAQ, RETSAT, CCDC41, BTRC and NARS2 being 143 

upregulated in cluster 3 and only ALKBH2 in cluster 4. Overall, cluster 3 appears to represent a 144 

slightly more activated cell state within the conventional CD56dim NK cell compartment with 145 

higher expression of cytokine receptors, CD38, SIGLEC7, KLRB1, and TBX21, rather than being 146 

a unique differentiation stage (Figure 1F). The comparison between cluster 4 and 5 is 147 

representative of the transition from conventional to adaptive NK cells and was characterized by a 148 

general loss of gene expression (Figure 1D-E), in line with the previously reported epigenetic 149 

reprogramming during terminal NK cell differentiation18,19.  150 

Thus, analysis of scRNA-seq data from sorted NK cell subsets identified unique 151 

transcriptional clusters, which only partially overlapped with phenotypic subsets. Notably, we 152 

identified two transcriptionally-defined differentiation stages within the CD56bright population and 153 

a unique cluster within the conventional CD56dim population with a gene expression profile 154 

suggestive of an activated cell state.   155 

 156 

Continuous and coordinated transcriptional changes in pseudotime 157 

Bulk RNA-seq of the two main NK cell populations has identified unique and evolutionary 158 

conserved regulatory programs driven by TCF1-MYC (CD56bright) and PRDM1-ZEB2-MAF 159 
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(CD56dim)18. Plotting these regulatory genes on the transcriptional map, generated by merging 160 

single-cell transcriptional signatures of distinct NK cell subsets, suggested that the TCF-MYC axis 161 

is gradually replaced by the PRDM1-ZEB2-MAF-driven effector program (Figure 2A). Hence, we 162 

hypothesised that these genes may be used to probe directionality and temporal relationships in the 163 

differentiation process. Although sequencing of single cells only provides a snapshot in time, the 164 

ratio of spliced to unspliced mRNA content within individual cells provides the necessary data to 165 

calculate RNA velocity24. RNA velocity is a vector based on the time derivative of gene expression, 166 

which can predict the future state of the cell (in the range of hours) in terms of gene expression. 167 

Our dataset exhibited minimal differences in spliced and unspliced mRNA, with the exception of 168 

within the CD56bright island (Figure 2B, Supplemental Figure 4B). Vector length, indicating the 169 

speed at which the cells are changing gene expression, increased with proximity to the bridge 170 

region linking the two transcriptional islands. Importantly, the directionality of the vector indicated 171 

a transition from the CD56bright to the CD56dim transcriptional island. Genes that contributed highly 172 

to the RNA velocity vector, in terms of spliced versus unspliced mRNA, included genes associated 173 

with transcription and translation (MBNL1, TNRC6B, PARP8, FOXP1, NR3C1), the actin 174 

cytoskeleton (ARHGAP15, UTRN, TXK), intracellular signaling (PRS3, TNIK), and NK cell 175 

functionality (AOAH, CBLB, SKAP1, CD96, IL12RB2, CLEC2D, FYN, LYST) (Supplemental 176 

Table 1).  177 

Careful scrutiny of the subset origin of cells localized on both sides of the bridge suggests 178 

a non-dramatic transition from CD56bright to CD56dim NK cells. A significant fraction of sorted 179 

NKG2A+CD56dim NK cells were identified within the smaller predominantly CD56bright island 180 

(Figure 1A, Supplemental Figure 4A). To further characterize the cells defining the bridge 181 

region, we identified custom clusters (pre, post) consisting of the 100 most proximal cells on each 182 

side of the bridge (Figure 2C). Despite 40% of the pre-cluster consisting of sorted CD56bright NK 183 
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cells, the cluster also contained 50% sorted NKG2A+CD56dim NK cells and even a small population 184 

of KIR+ CD56dim NK cells (Figure 2D), suggesting that changes in these commonly used 185 

phenotypic markers may be partly dissociated from underlying global transcriptional changes.  186 

Thus, NK cell differentiation from CD56bright to CD56dim is associated with coordinated and 187 

yet gradual changes in phenotypic surface markers that are tightly linked to reciprocal regulatory 188 

gene circuits controlled by NK cell-specific transcription factors. 189 

 190 

Transcriptional checkpoints and gene-expression trends during early NK cell differentiation 191 

To establish a transcriptional timeline of NK cell differentiation, we implemented pseudotime 192 

(Palantir) analysis, providing an unbiased approach to model trajectories of differentiating cells25. 193 

Palantir treats cell-fate as a probabilistic process and uses entropy to measure the changing nature 194 

of cells along the differentiation trajectory. The starting cell (highest MYC expression) was chosen 195 

based on the CD56bright regulome (Figure 2A, 3A, Supplemental Figure 4C) identified by Collins 196 

et al18. Pseudotime analysis using BACH2 or LEF1 to define the starting cell yielded similar results. 197 

The Palantir algorithm identified one terminal cell, located at the tip of cluster 5 furthest from the 198 

bridge, belonging to the adaptive population (Figure 3A). In the conventional donor, the terminal 199 

cell was identified within cluster 4, belonging to the mature population (Supplemental Figure 200 

4C).  201 

Plotting the transcriptional signatures of the sorted samples against pseudotime revealed 202 

that 75% of pseudotime, reflecting gene diversity and decreasing entropy, was occurring within the 203 

CD56bright NK cell differentiation stage (Figure 3B). Distribution within the CD56bright sorted cells 204 

was centered around 65% of pseudotime, with the first 60% of pseudotime corresponding to the 205 

smaller population of sorted cells grouping as cluster 1 cells (Figure 3B). This further corroborate 206 

the notion that the immature CD56bright cells can be separated into two transcriptionally distinct 207 
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subsets occupying distinct stages of the differentiation timeline (Figure 1A). Individual stages of 208 

CD56dim differentiation were largely assigned to the final 20% of pseudotime with outliers in the 209 

NKG2A+CD56dim NK cells being part of the earlier phase in pseudotime (Figure 3B). NK cells 210 

expressing self and non-self KIR occupied the same location within pseudotime whereas adaptive 211 

NK cells were confined to the last 10% of pseudotime (Figure 3B).  212 

Having established a timeline for differentiation through the use of pseudotime, 213 

generalized-additive models (GAMs) were fitted on cells ordered by pseudotime to identify 214 

common gene expression. Three common global gene trends were identified, containing between 215 

713 to 1181 genes (Figure 3C). Distinct checkpoints (blue, green, red line) with low gene 216 

expression diversity were identified in all gene trends at the same timepoints, indicative of 217 

differentiation checkpoints (Figure 3C). In addition to low gene expression diversity, these 218 

transcriptional checkpoints identified the timepoints where the gene expression changed 219 

directionality. When mapped back to the t-SNE plot, the checkpoints were located at the tip of the 220 

CD56bright island (blue), prior to the transition between cluster 1 and 2 (green) and at the transition 221 

into the adaptive population (red) (Figure 3D). Hence major transcriptional changes are occurring 222 

early after entering the NK cell lineage, during differentiation within the CD56bright NK population 223 

and upon transitioning into the adaptive stage. Importantly, the checkpoint within the bright 224 

population already occurs in the latter half of pseudotime, again highlighting that a dominating part 225 

of transcriptional changes occur within the CD56bright population (Figure 3C). 226 

Gene set enrichment analysis (GSEA) was utilized to characterize the main transcriptional 227 

programs associated with each global gene trend (Figure 3E). Trend 1 included genes whose 228 

expression negatively correlated with pseudotime and which belonged to processes involved in 229 

mitochondrial translational elongation, regulation of hematopoietic stem cell differentiation, TNF-230 

mediated signaling, and stimulatory C-type lectin receptor signaling. Genes included in trend 2 are 231 
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initially stable but steadily increase from the bright checkpoint to the terminal checkpoint. 232 

Transcriptional programs associated with this expression trend included intracellular signal 233 

transduction, TGFb receptor signaling, neutrophil degranulation, negative regulation of 234 

transcription (RNA polymerase II) and actin cytoskeleton organization. The final trend, global 235 

trend 3, contained genes whose expression decreased until the bright checkpoint and then remained 236 

relatively stable until the terminal checkpoint. GO terms associated with these genes include 237 

mRNA splicing (via spliceosome), apoptotic process, negative regulation of mitotic cell cycle 238 

phase transition, mitochondrion organization and endomembrane system organization (Figure 3E).  239 

 240 

Diversified gene-expression patterns during terminal NK cell differentiation  241 

As the global pseudotime analysis was dominated by CD56bright NK cells we next zoomed in on 242 

the later time-points (> 80% of pseudotime), where higher standard deviation highlighted a poorer 243 

fit of the identified global gene trends (Figure 3C). Hence, transcriptional programs within the 244 

CD56dim population were to a certain degree uncoupled from transcriptional programs defining NK 245 

cell differentiation within the CD56bright stage. To dissect which transcriptional programs accounted 246 

for this variation observed in the gene trends, we performed new clustering only taking pseudotime 247 

> 80% into account (Figure 4A). Three new CD56dim trends (dim trends) were identified, 248 

consisting of two down-trending and one up-trending trend, in line with the general decrease in 249 

gene expression observed in the transition from conventional CD56dim to adaptive cells19–21.  250 

Dim trend 1, the largest trend in terms of gene number (2575 genes), contained genes that 251 

steadily decreased within the later stages of pseudotime. Gene ontology terms associated with these 252 

genes include mitochondrial translation elongation, apoptotic process, positive regulation of 253 

telomere maintenance via telomerase, mitotic cell cycle process and regulation of hematopoietic 254 
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stem cell differentiation (Figure 4B). Although initially decreasing, genes included in dim trend 2 255 

were maintained at low expression from 90% of pseudotime onwards and associated with cellular 256 

response to cytokine stimulus, positive regulation of leukocyte cell-cell adhesion, cell chemotaxis, 257 

positive regulation of metabolic process and regulation of leukocyte differentiation. Lastly, dim 258 

trend 3 contained genes which steadily increased in the final stages of pseudotime, representing a 259 

clear minority. Gene ontology terms associated with these genes include leukocyte activation, 260 

negative regulation of cellular process and regulation of intracellular signal transduction.  261 

We recently identified a role for lysosomal remodelling in the functional tuning of human 262 

NK cells during education23. Self-KIR+ NK cells show a non-transcriptional accumulation of 263 

granzyme B stored in large dense-core secretory lysosomes, which are released upon target cell 264 

recognition23. However, such dynamic changes to the lysosomal compartment with consequences 265 

on the ability to store granzyme B and perforin, requires a continuous and transcriptionally-266 

regulated biogenesis of lysosomes and effector molecules as well as tight coordination of genes 267 

involved in synapse formation and degranulation. Indeed, whereas the dominating gene expression 268 

trends within the CD56dim stages of differentiation (> 80% of pseudotime) show a gradual decrease 269 

in gene expression, genes involved in lysosomal biogenesis and effector function largely followed 270 

dim trend 3, which increases with differentiation and thereby provide a template for further 271 

functional tuning during NK cell education. We performed factor analysis on genes involved in 272 

lysosomal biogenesis and projected these onto the temporal transcriptional map of human NK cell 273 

differentiation (Figure 4C). Factor analysis revealed lowest expression in cluster 1, whereas the 274 

CD56dim clusters (cluster 3-5) exhibited the highest expression. Next, we zoomed in on individual 275 

genes contained within the factor analysis which are important vesicular components and involved 276 

in their regulation and biogenesis (BLOC complex) (Figure 4D). The IL-15 inducible genes PRF1 277 

(perforin), GZMA (granzyme A), and GZMB (granzyme B) were highly expressed in cluster 3, in 278 
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line with higher IL15RA and IL2RG expression in this cluster (Figure 1E). GZMA, GZMB and 279 

GZMH (granzyme H) were also highly expressed within cluster 5. SRGN (serglycin) and GZMK 280 

(granzyme K) exhibited a reverse gene expression pattern, being highly expressed within cluster 1 281 

and 2. The Rab proteins (RAB4A, RAB4B, RAB27A) play a role in vesicular and protein trafficking 282 

as well as granule exocytosis, maturation and docking at the immune synapse. These genes 283 

exhibited higher expression within the CD56dim island, with some outliers within cluster 1 also 284 

exhibiting higher expression. VAMP7 and STX7 are important for cytotoxic granule exocytosis in 285 

NK cells and were highly expressed within cluster 1 and 3, again in line with increased IL-15 286 

signaling in these cells. Lysosomal exocytosis is regulated through calcium signaling and at the 287 

transcriptional level by TFEB, which is further regulated through phosphorylation26. TFEB 288 

expression greatly increased after transitioning into the CD56dim island, with highest expression 289 

found in cluster 3. Lastly, the BLOC complex, consisting of BLOC1S1, BLOC1S2 and BLOC1S3, 290 

was also higher expressed within the CD56dim island. This complex is important for normal 291 

biogenesis of lysosome-related organelles, such as granules and for their intracellular trafficking.  292 

 293 
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Discussion 294 

We report a compact description of the transcriptional diversification at the single cell level during 295 

human NK cell differentiation. By enriching for less frequent, but phenotypically well-defined NK 296 

cell subsets, we could elucidate key regulatory gene programs within both the CD56bright and the 297 

CD56dim subset, as well as the developmental relationship of intermediate cell states. Pseudotime 298 

analysis highlighted the dominant role CD56bright NK cells play during NK cell differentiation, with 299 

two out of three transcriptional checkpoints occurring within this small population of cells. In line 300 

with previous reports on CMV-driven epigenetic reprogramming of terminally differentiated 301 

adaptive NK cells19–21, the transition to this stage represented a major transcriptional checkpoint 302 

during NK cell differentiation.  303 

The view that NK cells, like T cells, undergo a continuous process of NK cell differentiation 304 

is recent and mostly based on phenotypic and functional classification of discrete subsets5. Most 305 

evidence suggest that the CD56bright NK cell subset is the most naïve and gives rise to the more 306 

mature CD56dim NK cells which may then undergo further differentiation towards more terminal 307 

stages, a process that is accelerated by CMV infection27. Numerous studies have been performed 308 

in mice lacking NK specific transcription factors, using lineage tracing in macaques and in humans 309 

with immunodeficiencies, but the transcriptional identities and relationships between the manifold 310 

of putative intermediate cell states of NK cell differentiation remains elusive5–9.  311 

The CD56bright NK cell subset has a unique functional phenotype and tissue localization. 312 

Although infrequent in peripheral blood, they make up the large majority of NK cells within 313 

secondary lymphoid organs4. In line with previous reports, t-SNE analysis of a comprehensive 314 

scRNA-seq dataset from multiple sorted NK cell subsets identified two main transcriptional islands 315 

of NK cells17. Whereas all CD56bright NK cells were confined to the smaller island, a small but 316 

definite collection of sorted CD56dim NK cells, primarily NKG2A+KIR-CD57-, grouped 317 
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transcriptionally within the CD56bright population. While we cannot rule out the possibility of small 318 

numbers of CD56bright NK cells contaminating our sorted population, their low frequency within 319 

the total NK cell population cannot account for the near 20% of CD56dim NK cells observed within 320 

cluster 2. We have previously observed transcriptional reprogramming of educated NK cells to a 321 

more immature transcriptional signature in response to IL-15 induced proliferation which also 322 

correlated with NKG2A expression28. Hence, NKG2A+CD56dim NK cells exhibiting a CD56bright 323 

transcriptional signature could represent cells having undergone transcriptional reprogramming. 324 

Alternatively, these cells could represent CD56bright NK cells that have downregulated CD56 325 

expression at the surface level prior to further transcriptional changes occurring. CD56 is an 326 

adhesion molecule and has been associated with formation of a developmental synapse and distinct 327 

migratory behavior depending on the density of CD56 on the cell’s surface29. Hence, 328 

downregulation of CD56 surface expression could result in altered receptor input as a result of 329 

synapse formation, ultimately leading to the acquisition of a CD56dim transcriptional signature. 330 

Although the bridge between transcriptional islands marked a clear decrease in NCAM1 (CD56) 331 

expression, a gradual decreased was already observed prior to the bridge occurring within the late 332 

CD56bright NK cell population. FCERG3A (CD16) is normally expressed on CD56dim cells but can 333 

also be used to define a population of functional intermediate CD56bright cells30. Although CD16 334 

was not included in the sorting panel, FCERG3A is only significantly differentially expressed 335 

between cluster 2 and 3, despite a moderate decrease from cluster 1 to 2. Hence this functionally 336 

intermediate CD16+CD56bright NK cell population may contribute but does not solely define the 337 

two CD56bright clusters identified here.  338 

RNA velocity, a recently described approach to predict future cell states24, confirmed a 339 

transcriptional transition from CD56bright into CD56dim NK cells occurring via transition over the 340 

bridge separating the two transcriptional islands. Among the top genes contributing to the RNA 341 
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velocity vector were genes associated with NK cell receptor signaling and functionality (LYST, 342 

CBLB, CD96, CLEC2D, SKAP1, FYN). LYST is a regulator of lysosomal trafficking, and mutations 343 

in this gene leads to a lysosomal storage disorder, Chediak-Higashi syndrome, characterized by 344 

defects in NK cell degranulation leading to the accumulation of large granules within these 345 

patients31,32. CBLB, has been linked to inhibitory NK cell signaling through its modulation of LAT, 346 

a substrate of tyrosine phosphatase SHP-133. Hence, Cbl ubiquitin ligase encoded for by CBLB is 347 

important for mediating inhibitory receptor input which is essential for NK cell functionality. 348 

Another inhibitory receptor on NK cells is CD96, which along with TIGIT and DNAM-1 can bind 349 

PVR (CD155). CD96 is expressed at the protein level upon NK cell activation34 and competes with 350 

DNAM-1 (CD226) for binding to their common ligand, with CD96 exhibiting an inhibitory 351 

function leading to decreased cytokine release35. LLT1 (CLEC2D) is a C-type lectin that functions 352 

as the ligand for CD161 (KLRB1). CD161 expression on NK cells has been linked to cytokine-353 

responsiveness and blocking of LLT1 enhanced cytotoxicity against breast cancer cells36,37. In T 354 

cells, the adaptor protein SKAP-55 (SKAP1) links the T cell receptor to signaling via LFA-1 which 355 

is also expressed on NK cells. Furthermore, SKAP1 can also form homodimers and could play a 356 

similar role in NK cells, where LFA-1 signaling has been linked to education38,39. Lastly, FYN is a 357 

Src kinase involved in signaling through PI3K and ERK1/2, leading to increased cytotoxicity via 358 

polarization of perforin in NK cells40. Transitioning across the bridge region was a gradual 359 

transition phenotypically, with defining transcriptional changes, as identified by RNA velocity 360 

occurring just prior to this region. In particular, these transcriptional changes occurred in genes 361 

having major functional implications for NK cell cytotoxicity.  362 

A surprising finding was the dominance of the CD56bright population in pseudotime and the 363 

two transcriptionally unique clusters. The first 60% of pseudotime consisted of cluster 1 cells and 364 

two of the three major transcriptional changes (checkpoints) occurred within this population and 365 
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as it transitioned into cluster 2 cells. This highlights the transcriptional diversity within the 366 

CD56bright population and identifies the group of cells at the beginning of pseudotime as 367 

transcriptionally unique. This small population was characterized by high KLRB1 (CD161) KLRD1 368 

(CD94), NCAM1 (CD56), CD7, IL15RA (CD215), IL2RB (CD122), IL2RG (CD132), RUNX3 and 369 

IKZF2 (Ikaros) expression. IKZF2 has been shown to be important for NK cell precursors within 370 

the liver41. Rather surprising, cells in cluster 1 at the beginning of pseudotime exhibited relatively 371 

high levels of GZMB comparable to those in CD56dim NK cells. In mice, Granzyme B mRNA is 372 

abundant in NK cells, but only translated upon cytokine stimulation42. In humans, CD56dim NK 373 

cells express high amounts of Granzyme B compared to CD56bright cells, but both can increase their 374 

expression levels in response to cytokine stimulation43,44. High GZMB expression in this early 375 

CD56bright precursor state could be due to high cytokine responsiveness, as these cells also 376 

expressed high amounts of IL2RB and IL2RG. NK cell development is also dependent on cytokine 377 

priming, whereby IL2RB and IL15RA knockout mice were deficient of NK cells45,46. To be able to 378 

eliminate false-negatives (drop-outs) in our dataset, a result of technical limitations of scRNA-seq 379 

combined with low RNA content in resting NK cells, we implemented MAGIC to help visualize 380 

gene expression across the t-SNE map. Notably, MAGIC was not used for any other downstream 381 

analysis, effectively avoiding the generation of false positives which can be introduced by such 382 

imputation tools47.  383 

The second transcriptional checkpoint was less defined in terms of standard deviation but 384 

coincided with a change in gene expression within the trends analyzed. This correlated with 385 

transitioning between cluster 1 and 2 within the CD56bright NK cell population and was 386 

characterized by a decrease in KLRB1 (CD161), KLRD1 (CD94), IL15RA (CD215), IL2RB 387 

(CD122), IL2RG (CD132), RUNX3, IKZF2 (Ikaros), MYC and LEF1. The decrease in cytokine 388 

receptors combined with RUNX3 indicates reduced sensitivity to cytokine signaling, which is 389 
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further reduced upon the CD56dim transition48. This is in line with CISH (CIS), a negative regulator 390 

of IL-15 signaling, having the lowest expression in cluster 249. Expression of effector molecule 391 

genes, including PRF1 (perforin), GZMA (granzyme A), GZMB (granzyme B), GZMH (granzyme 392 

H) were also reduced in cluster 2. Overall, transitioning from cluster 1 to 2 was accompanied by a 393 

decrease in transcriptional heterogeneity, resulting in a narrower transcriptional profile in these 394 

later stages CD56bright cells.   395 

Although the conventional CD56dim population exhibits a high degree of heterogeneity, 396 

both phenotypically and functionally, it only consisted of two transcriptionally defined clusters, 397 

clusters 3 and 4. These two clusters had a similar distribution, mainly containing KIR+ and a small 398 

proportion of NKG2A+CD56dim NK cells. Both clusters exhibited higher expression of IKZF3 399 

(Aiolos) and TBX21 (T-bet) compared to CD56bright clusters, important transcription factors for 400 

maturation of NK cells in the periphery15,50,51. When compared to cluster 4, cluster 3 exhibited 401 

increased gene expression which was indicative of an activated genotype, characterized by high 402 

SIGLEC7, CD38, IL15RA (CD215), IL2RB (CD122) and PRF1 (Perforin) expression, rather than 403 

a separate stage of differentiation52. NK cells express IL-15RA at detectable levels on the surface 404 

after IL-15 stimulation53. Similarly, CD38 and Perforin are both upregulated upon IL-15 405 

stimulation. Cluster 3 cells therefore appears to represent activated cells, which are responsive to 406 

cytokine stimulation, in line with them occupying a slightly earlier pseudotime compared to cluster 407 

4. In agreement with bulk RNA-seq in both mouse and human NK cells23,54, we observed no unique 408 

transcriptional signatures between self KIR (educated) and non-self KIR (uneducated) NK cells 409 

and both sorted populations occupied the same space in pseudotime23. Remodelling of the 410 

lysosomal compartment has been shown to be important for the increased functionality observed 411 

in educated NK cells23. Here, we observed an increase in lysosomal biogenesis in the later stages 412 

of pseudotime, in line with increased functionality within the CD56dim NK cells. Thus, NK cell 413 
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differentiation establishes a functional template through a tightly controlled and transcriptionally 414 

regulated increase in the expression of genes involved in lysosomal biogenesis and exocytosis 415 

alongside increased expression of effector molecules such as granzyme B and perforin. Acquisition 416 

of self or non-self KIRs during later stages of differentiation sets the cells on different functional 417 

trajectories during education, which involves a non-transcriptional remodelling of the lysosomal 418 

compartment that ultimately changes the cytotoxic payload of the cell23.  419 

Adaptive NK cells clustered independently and uniquely identified within the last 10% of 420 

pseudotime. Transitioning into cluster 5 was accompanied by the third and final checkpoint, 421 

highlighting the important transcriptional changes occurring at this stage of differentiation. 422 

Compared to conventional CD56dim NK cells, the global transcriptome of adaptive NK cells was 423 

highly reduced. This is in line with epigenetic silencing that has been described for this population 424 

of terminally mature NK cells19–21. Gene expression of SYK, CD38 and KLRB1 (CD161) was 425 

reduced while ZEB2, KLF2, PRDM1 (BLIMP-1), KLRC2 (NKG2C), GZMH (Granzyme H) were 426 

highly expressed.  427 

Here we have applied new bioinformatic tools to a unique single-cell RNA sequencing 428 

dataset in order to identify a temporal transcriptional map of human NK cell differentiation. 429 

Mapping gene expression trends to pseudotime allowed for the identification of distinct 430 

transcriptional checkpoints highlighting important transcriptional changes during NK cell 431 

differentiation. Two previously undescribed transcriptional populations within the CD56bright 432 

subset were identified and dominated the differentiation timeline. This dataset provides a valuable 433 

tool to identify important gene programs that drive functional diversification and specialisation 434 

during NK cell differentiation. Such knowledge hold potential to guide the development of new 435 

strategies for NK cell-based cancer immunotherapy.  436 
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Materials & Methods 437 

Cell processing 438 

Peripheral mononuclear cells (PBMC) were isolated using density gradient centrifugation from 439 

anonymized healthy blood donors (Oslo University Hospital) with informed consent as approved 440 

by the regional ethics committee in Norway (scRNA-seq) and Sweden (bulk RNA-seq) 441 

(2015/2095, 2016/1415-32, 2018/2485). Donor-derived PBMCs were screened for KIR education 442 

and adaptive status using flow cytometry. NK cells were purified using an AutoMACS (DepleteS 443 

program, Miltenyi Biotec) and prior to overnight resting in complete RPMI (10% Fetal calf serum, 444 

2mM L-glutamine) at 37°C/5% CO2.  445 

 446 

Flow cytometry screening 447 

PBMC were stained for surface antigens and viability in a 96 V-bottom plate, followed by 448 

fixation/permeabilization and intracellular staining at 4°C. The following antibodies were used in 449 

the screening panel: CD3-V500 (UCHT1), CD14-V500 (MφP9), CD19-V500 (HIB19), Granzyme 450 

B-AF700 (GB11) from Beckton Dickinson; CD57-FITC (HNK-1), CD38-BV650 (HB-7), 451 

KIR3DL1-BV421 (DX9) from BioLegend; KIR2DL1-APC-Cy7 (REA284), CD158a,h-PE-Cy7 452 

(11PB6), from Miltenyi Biotec; CD158b1/b2,j-PE-Cy5.5 (GL183), NKG2A-APC (Z199), CD56-453 

ECD (N901) from Beckman Coulter. LIVE/DEAD Fixable Aqua Dead Stain kit for 405 nM 454 

excitation (Life Technologies) was used to determine viability. Samples were acquired on an LSR-455 

Fortessa equipped with a blue, red and violet laser and analyzed in FlowJo version 9 (TreeStar, 456 

Inc.). 457 

 458 
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FACS sorting 459 

Cells were harvested and surface stained with the following antibodies: CD57-FITC (HNK-1) from 460 

BioLegend; KIR3DL1S1-APC (Z27.3.7), CD56-ECD (N901), CD158b1/b2,j-PE-Cy5.5 (GL183), 461 

from Beckman Coulter; KIR2DL1-APC-Cy7 (REA284), NKG2C-PE (REA205), NKG2A-PE 462 

Vio770 (REA110) from Miltenyi Biotec. 12,000 cells were directly sorted into Eppendorf tubes at 463 

4°C for each sample (Supplemental Figure 1A) using a FACSAriaII (Beckton Dickinson).  464 

 465 

Bulk RNA sequencing  466 

Four populations (CD56bright, NKG2A-KIR-CD56dim, NKG2A-KIR+CD56dim, and NKG2A-467 

KIR+NKG2C+CD56dim) were sorted from six individual healthy blood donors. Sequencing was 468 

performed using single-cell tagged reverse transcription (STRT)55. Principle component analysis 469 

(PCA) was used to generate a biplot of the four sequenced subsets.  470 

 471 

Single-cell RNA sequencing  472 

Following sorting, cells were kept on ice during the washing (PBS + 0.05% BSA) and counting 473 

step. 10,000 cells were resuspended in 35 µL (PBS + 0.05% BSA) and immediately processed at 474 

the Genomics Core Facility (Oslo University Hospital) using the Chromium Single Cell 3’ Library 475 

& Gel Bead Kit v2 (Chromium Controller System, 10X Genomics). The recommended 10x 476 

Genomics protocol was used to generate the sequencing libraries, which was performed on a 477 

NextSeq500 (Illumina) with 5~ % PhiX as spike-inn. Sequencing raw data were converted into 478 

fastq files by running the Illumina`s bcl2fastq v2.  479 

 480 
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Quality control and normalization of scRNA-seq data 481 

Data cleaning steps were first carried out whereby cells not expressing a minimum of 1000 482 

molecules and genes expressed by less than 10 cells were filtered out. The data was normalized 483 

using log transformation based on the total expression of the gene in the sample, the default 484 

normalization method implemented in the Palantir library. Feature selection was carried out to 485 

select high cell-to-cell variance, implementing a cutoff of log2-fold change > 2, whereby only 486 

significantly differentially expressed genes were selected.  487 

 488 

Dimensionality reduction of scRNA-seq data 489 

A number of dimensionality reduction methods were implemented, including principle component 490 

analysis (PCA) for initial noise reduction and non-linear diffusion maps to estimate a lower 491 

dimensional manifold that could be implemented for further downstream analysis. For 492 

visualization purposes, t-SNE and UMAP were utilized56,57. 493 

 494 

Gene expression imputation of scRNA-seq data 495 

Markov affinity-based graph imputation of cells (MAGIC) was utilized to de-noise the data in order 496 

to optimize the gene expression analysis for visualization on the t-SNE maps58. The imputed data 497 

matrix was not used for further downstream analysis and was not used for computation of the 498 

differentially expressed genes (DEG).  499 

 500 

Differentiation trajectories and gene trend analysis of scRNA-seq data 501 
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Palantir was used to carry out the trajectory analysis and pseudotime calculations25. The starting 502 

cells was identified as having the highest MYC expression, for which the imputed data matrix was 503 

used to eliminate selection of outlier cells. The Palantir algorithm calculates the probability of each 504 

individual cell to end up in each of the inferred terminal states, whereby only one terminal state 505 

was identified in both donors. Generalized-additive models (GAMs) fitted on cells ordered by 506 

pseudotime were used to calculate gene trends, where the contribution of cells was weighted by 507 

their probability to end up in the given terminal state as calculated by Palantir. The gene trends 508 

indicate how gene expression levels develop over the differentiation timeline. Local gene trends 509 

were calculated by zooming in on a particular range of pseudotime (> 0.8).  510 

 511 

Clustering, differential gene expression and gene set enrichment analysis scRNA-seq data 512 

The gene trends were clustered using the PhenoGraph algorithm and confirmed using k-means 513 

clustering, whereby the number of clusters identified by PhenoGraph was utilized as the k input 514 

parameter59. For differential gene expression (DEG) analysis, the SCDE package implementing the 515 

Bayesian approach, was utilized60. SCDE is optimized to deal with the single cell specific challenge 516 

of dropouts. A log-fold change of > 2 and adjusted p-value > 0.05 were deemed significant. Gene 517 

over-expression analysis (Gene Ontology, PANTHER) was used downstream of the gene trend 518 

clustering and DEG analysis to identify significant differences in biological pathways. 519 

  520 

RNA velocity of scRNA-seq data 521 

RNA velocity was run directly on the output created by Cell Ranger, containing the count matrix 522 

and the abundance of spliced and unspliced versions of each transcript24. Using the velocyto Python 523 
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library, the velocity vectors and locally average vector fields were calculated, which were the 524 

projected onto the same t-SNE or UMAP embedding that was used for visualizing other analysis.  525 

 526 

Factor analysis of scRNA-seq data 527 

Factor analysis was utilized to obtain a single metric for a set of genes. The gene lists for specific 528 

biological functions were obtained from Gene Ontology terms and the f-scLVM method in the 529 

Python package slalom was then used for the factor analysis61.  530 

 531 

Data sharing statement 532 

All sequencing data (bulk and sc) will be deposited at NCBI GEO depository and will be 533 

accessible with an accession number GEO: X or using the link 534 

https://www.ncbi.nlm.nih.gov/geo/query/X. 535 
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Code availability 545 

Custom code utilized for analysis is available on the GitHub repository, 546 

https://github.com/hernet/SingleFlow. 547 
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 689 

 690 

Figure 1: NK cell differentiation defined through bulk and single cell RNA-seq 691 

(A) PCA plot of bulk RNA seq data of four discrete NK cell differentiation stages. (B) t-SNE plot 692 

of scRNA-seq data of five sorted NK cell subsets (CD56bright, NKG2A+ KIR- CD57- CD56dim, 693 

NKG2A- self KIR+ CD57- CD56dim, NKG2A- non-self KIR+ CD57- CD56dim, NKG2A+ self KIR+ 694 

CD57+ NKG2C+ CD56dim) showing transcriptional location of sorted subsets (top row) and 695 

PhenoGraph defined transcriptional clusters (bottom row). (C) Gene expression of selected genes 696 

displayed as a heatmap on the t-SNE plot. (D) Volcano plots and (E) summary of the number of 697 
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differentially expressed genes of four comparisons between individual PhenoGraph clusters. (F) 698 

Gene expression of selected genes displayed as a heatmap on the t-SNE plot.  699 
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 701 

 702 

 703 

Figure 2: Transitioning from CD56bright to CD56dim NK cells 704 

(A) Gene expression of selected genes displayed as a heatmap on the t-SNE plot. (B) t-SNE 705 

showing sample ID of sorted subsets with the RNA velocity vector overlaid and magnification of 706 

the bridge region exhibiting high RNA velocity. (C) Pre (green) and post (blue) bridge region 707 

clusters consisting of 100 cells each and defined based on their proximity to the bridge. (D) 708 

Frequency of how much each sorted subset contributes to the custom defined bridge clusters.  709 
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 711 

Figure 3: Differentiation checkpoints at distinct stages of pseudotime 712 

(A) Starting cell (highest MYC expression), terminal cell and pseudotime as calculated using the 713 

Palantir algorithm. (B) Distribution of each sorted subset in pseudotime with colors denoting the 714 

PhenoGraph clusters each cell identifies with (box limits, upper and lower quartiles; center line, 715 

median; whiskers, quartile 1 - 1.5 * inter quartile range to quartile 3 + 1.5 * inter quartile range; 716 

points, outliers). (C) Global gene trends mapped onto pseudotime with colored lines denoting 717 

transcriptional checkpoints defined by low standard deviation (blue = progenitor, green = bright, 718 

red = terminal). (D) Visualization of cells corresponding to each checkpoint identified in 719 

pseudotime. (E) Gene set enrichment analysis of selected significant gene ontology (GO) terms 720 

associated with each gene trend. Significance was calculated using Fisher’s exact test followed by 721 

false discovery rate correction of the p-value. A negative log10 value of the false discovery rate 722 

adjusted p-value > 1.3 is deemed significant.  723 
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 725 

 726 

 727 

Figure 4: Establishment of a functional template during CD56dim NK cell differentiation  728 

(A) Dim gene trends mapped onto pseudotime, only taking pseudotime > 80% into account.  729 

 (B) Gene set enrichment analysis of selected significant gene ontology (GO) terms associated with 730 

each gene trend. (C) Factor analysis of genes associated with lysosomal biogenesis. (D) Gene 731 

expression of selected genes displayed as a heatmap on the t-SNE plot. Significance was calculated 732 

using Fisher’s exact test followed by false discovery rate correction of the p-value. A negative log10 733 

value of the false discovery rate adjusted p-value > 1.3 is deemed significant. Numbers in the plot 734 

represent number of genes identified within each GO term based on the DEGs analyzed. 735 
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