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Abstract

Chronic pain is often associated with changes in brain structure
and function, and also cognitive deficits. It has been noted that
these chronic pain-related alterations may resemble changes
found in healthy aging, and thus may represent accelerated or
pre-mature aging of the brain. Here we test the hypothesis that
patients with chronic non-cancer pain demonstrate accelerated
brain aging compared to healthy control subjects. The predicted
brain age of 59 patients with chronic pain (mean chronological
age + standard deviation: 53.0 & 9.0 years; 43 women) and 60
pain-free healthy controls (52.6 + 9.0 years; 44 women) was de-
termined using the software brainageR. This software segments
the individual T1-weighted structural MR images into gray and
white matter and compares gray and white matter images to
a large (n = 2001) training set of structural images, using ma-
chine learning. Finally, brain age delta, which is the predicted
brain age minus chronological age, was calculated and com-
pared across groups. This study provided no evidence for the
hypothesis that chronic pain is associated with accelerated brain
aging (Welch’s t-test, p = 0.74, Cohen’s d = 0.061). A Bayesian
independent samples t-test indicated moderate evidence in fa-
vor of the null hypothesis (BF01 = 4.875, i.e. group means were
equal). Our results provide indirect support for recent models of
pain related-changes of brain structure, brain function, and cog-
nitive functions. These models postulate network-specific mal-
adaptive plasticity, rather than wide-spread or global neural de-
generation, leading to synaptic, dendritic, and neuronal remo-
deling.
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Introduction

Chronic pain is conceptualized as pain lasting beyond regular
tissue healing time without the warning and protection func-
tion of physiological nociception (1). Chronic pain is a major
health care problem affecting approximately 20% of the adult
population (2) and is associated with changes in cognitive
and emotional processing (3), such as impairments of execu-
tive functions (4), difficulties with attention (5), and number
processing (6, 7), as well as an increased risk of depression
2).

While the neurophysiology of nociception is well known, the
pathophysiology of chronic pain is far from evident. Acute
nociceptive input has been shown to quickly reshape neu-
ral circuits on the level of the peripheral and central nervous
system, such as the C fiber (8), the spinal dorsal horn (9),
and the sensorimotor cortex (10, 11). Molecular, cellular, and

systems-level research suggests that maladaptive plasticity in
the peripheral and central nociceptive networks contribute to
the development of chronic pain (12).

In several types of chronic pain, structural alterations of the
brain have been demonstrated, starting with the observation
that prefrontal and thalamic gray matter was decreased in
chronic back pain patients (13). A decrease of gray matter
has also been found in patients with chronic tension type
headache (14), migraine (15, 16), episodic cluster headache
(17), irritable bowel syndrome (18, 19), osteoarthritis (20),
and chronic complex regional pain syndrome (21).

By contrast, other studies found increased gray matter in pa-
tients with chronic back pain (in the basal ganglia and tha-
lamus) (22), rtheumatoid arthritis (basal ganglia) (23), and
chronic vulvar pain (hippocampus, parahippocampal gyrus,
and basal ganglia) (24).

In coordinate-based quantitative meta-analyses across vari-
ous types of chronic pain, several cortical and subcortical ar-
eas of decreased and increased gray matter were identified
(25, 26). In a smaller number of studies, changes in cerebral
white matter have also been investigated (27). In patients with
chronic musculoskeletal pain, lower fractional anisotropy, in-
dicating the integrity of white fiber tracts, has been found in
the corpus callosum and the cingulum (28).

The functional significance of gray and white matter changes
in patients with chronic pain is still unresolved (25). Whether
these changes are cause or consequence (29) of chronic pain
and whether they represent predisposing factors or compen-
satory neuroplasticity (30) needs to be determined. More-
over, the neuropathological substrates of these changes are
not firmly established. Animal research suggests that rapid
changes in synaptic spines and glia cells, as well as neuronal
loss and, conversely, neurogenesis may contribute to macro-
scopic changes in chronic pain (12).

A decrease of total and regional gray matter is one of the hall-
marks of brain aging, even in the absence of brain disease
(31, 32). Previously, two publications suggested that patients
with chronic pain due to fibromyalgia and temporomandibu-
lar disorder might experience accelerated or premature brain
aging (33, 34). Very recently, a study on elderly (> 60 years)
adults concluded that the brains of participants with chronic
pain appeared older compared to participants without pain,
based on an established machine learning approach (35).
Here we test the hypothesis that patients with chronic non-
cancer pain demonstrate accelerated brain aging, when com-
pared to healthy participants, using individual T1-weighted
structural MR images and machine learning (36), in a sample
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of 119 participants between 30 and 68 years of age.

Methods

Participants. This study analyzes structural T1-weighted
MR images obtained from 119 participants of the ChroPain|
(7) and ChroPain2 studies. The combined sample comprises
59 participants with chronic non-cancer pain and 60 par-
ticipants free of chronic pain. Patients for ChroPainl (n =
36) were recruited from the Pain Outpatient Clinic, Uni-
versity Clinic of Anesthesiology, Critical Care, Emergency
Medicine, and Pain Management, Klinikum Oldenburg, Old-
enburg, Germany. Additional patients were found through
advertisements in the local daily newspaper. Patients for
ChroPain2 (n = 23) were recruited at a specialized rheuma-
tology practice in Oldenburg, Germany (Dr. Markus Voglau')
and through the local ankylosing spondylitis support group.
For every patient with chronic pain, a sex- and age-matched
(£ 5 years) pain-free control participant was recruited. Con-
trol participants for ChroPainl (n = 37) and ChroPain2 (n
= 23) were identified with the help of the local newspaper,
the University of Oldenburg’s web page, flyers, and personal
communication.

Inclusion criterion for the pain group was chronic pain, de-
fined as persistent pain for > 12 months. Exclusion criteria
for the chronic pain and the healthy control groups were: neu-
rological disorders (such as dementia, Parkinson’s disease,
stroke, epilepsy, multiple sclerosis, traumatic brain injury,
migraine), psychiatric disorders (such as schizophrenia or
major depression), substance abuse, impaired kidney or liver
function, and cancer. Since some of the cognitive tests ap-
plied in the ChroPain studies depend on cultural background,
only participants born and raised in Germany were included.
All participants gave written informed consent for participa-
tion in one of the studies. A compensation of 10 € per hour
was provided. Both studies were approved by the Medical
Research Ethics Board, University of Oldenburg, Germany (#
25/2015; 2017-059). ChroPain2 has been pre-registered with
the German Clinical Trials Register (DRKS00012791)2.

Magnetic resonance imaging. All MR images were ac-
quired on a research-only Siemens MAGNETOM Prisma
(Siemens, Erlangen, Germany) whole-body scanner at 3
Tesla with a 64-channel head/neck coil. The scanner is lo-
cated at the Neuroimaging Unit, School of Medicine and
Health Sciences, University of Oldenburg, Germany. A 3-
dimensional T1-weighted MPRAGE sequence was used (37).
Imaging parameters for ChroPainl were: TR: 2000 ms, TE:
2.4 ms, voxel dimensions: 0.7 x 0.7 mm?, slice thickness:
0.9 mm, 208 axial slices. Imaging parameters for ChroPain2
were: TR: 2000 ms, TE: 2 ms, voxel dimensions: 0.75 x
0.75 mm?, slice thickness: 0.75 mm, 320 axial slices. Both
sequences utilized in-plane acceleration (GRAPPA) with a
PAD factor of 2 (38). Siemens’ pre-scan normalization fil-
ter was used in both sequences for on-line compensation of
regional signal inhomogeneities (39).

Lhttps://www.rheuma-oldenburg.de
2https://www.drks.de
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Fig. 1. Original T1-weighted MR images (A, D), preprocessed gray matter (B, E),
and preprocessed white matter images (C, F) of a 30-year-old (upper row) and a 66-
year-old pain-free control participant (lower row). Segmentation was performed with
SPM12’s Segment function. Original images are in individual space, preprocessed
images were normalized to a brain template. Normalization was done with SPM12’s
DARTEL toolbox. Preprocessed gray and white matter images were then vectorized
and concatenated for brain age prediction.

Brain age prediction. MR images were first converted from
Siemens DICOM format to uncompressed NIfTI (.nii) for-
mat using dem2niix’. Structural MR images were then ana-
lyzed with the software braina(gfeR4 (40, 41). For additional
methodological details, see the Supplementary Information
in Cole et al. 2017 (40) and 2018 (41).

brainageR employs SPM12 (University College London,
London, UK for image preprocessing. Using SPM12’s Seg-
ment function (42), images were bias field corrected and
segmented into gray matter, white matter, and cerebrospinal
fluid. Gray matter and white matter images were non-linearly
registered to a custom template, derived from the training
dataset (see below), using SPM12’s DARTEL toolbox (43).
Using FSL’s slicesdir script®, default slices in sagittal, coro-
nal, and axial directions were created for the segmented and
normalized brain images. With these images, visual quality
control was performed to ensure accurate image segmenta-
tion (Figure 1).

The individual segmented and normalized images were
loaded into R7(44) and vectorized. Gray and white mat-
ter vectors were combined. Brain age was then predicted
with a Gaussian processes regression (45) using R’s kernlab
(kernel-based machine learning lab) package® (version 0.9-
27) (46) and the previously learned regression model.

The brainageR model was trained on 2001 healthy individ-
uals from several publicly-available datasets. The follow-
ing studies contributed more than 200 T1-weighted images
each: the Information Extracted from Medical Images (IXI)

3https://github.com/rordenlab/dcm2niix
4https://github.com/james-cole/brainageR
Shttps://www.filion.ucl.ac.uk/spm/software/spm12/
Shttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Miscvis
https://www.r-project.org
8https://cran.r-project.org/web/packages/kernlab/index.html
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Fig. 2. A | Relationship between chrono-
logical age and brain age predicted by
brainageR. Blue circles represent pain-free
control participants (n = 60), red circles rep-
resent patients with chronic non-cancer pain
. (n =59). B | Brain age delta (predicted brain
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controls (blue) and patients with chronic pain
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database’, the International Consortium for Brain Mapping
(ICBM) study10 (47), and the Open Access Series of Imag-
ing Studies (OASIS-1)'! (48). For details about all studies
used for the training dataset, see Supplementary Information
in Cole et al. 2017 (40) and 2018 (41). For further statistical
analysis, brain age delta was calculated (predicted brain age
minus chronological age).

Statistical analysis. To check for normality, a Shapiro-
Wilk test was performed. To check for equality of variances,
Levene’s test was done. To compare the means of brain
age delta in both groups, a traditional independent samples
Welch’s t-test was performed (49); statistical significance was
set at p < 0.05. We also performed a subgroup analysis with
patients and controls > 60 years of age using Welch’s t-test.

In addition, a Bayesian independent samples t-test was cal-
culated using the default Cauchy prior centered on zero and
with r = 0.707 (50). For statistical testing, JASP'? version
0.92 was used (51). Individual brain age delta data'® and
the results of statistical analysis'* have been published at the
Open Science Framework.

Results

Demographics and clinical characteristics. Mean
chronological age of patients with chronic pain was 53.0 +
9.0 years (n = 59; 43 women). Mean age of the control group
was 52.6 £ 9.0 years (n = 60; 44 women). In the group of
chronic pain patients, mean pain duration was 15.9 + 11.0
years (minimum: 1 year, maximum: 50 years).

In the ChroPainl study, the primary pain diagnoses were
degenerative spinal disease (n = 22), degenerative joint
disease (n = 5), abdominal pain (n = 2), and fibromyalgia
(n = 7). In the ChroPain2 study, the primary pain diagnoses
were rheumatoid arthritis (n = 11), ankylosing spondylitis (n

https://brain-development.org/ixi-dataset
10https://ida.loni.usc.edu

M http://www.oasis-brains.org
12https://jasp-stats.org
L3https://osf.io/2xd7h/

M https://osf.io/dqpb5/
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(red). The error bars symbolize mean +
standard deviation.
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= 9), psoriasis arthritis (n = 2), and CREST syndrome (n =
D).

Relationship between chronological age and brain
age. Figure 2 illustrates the relationship between the chro-
nological age of each participant and the brain age predicted
by brainageR (blue: pain-free controls, red: chronic pain pa-
tients).

Comparison of brain age delta between groups. Mean
brain age delta + standard deviation was -4.8 £ 6.9 years
(minimum: -19.3, maximum: 14.7 years) for the control
group and -5.2 £ 5.4 years (minimum: -18.7, maximum: 8.1
years) for the chronic pain group. The results of the Shapiro-
Wilk test did not suggest deviation from normality in nei-
ther group (W = 0.983, p = 0.543 for the control group; W
= 0.967, p = 0.104 for the chronic pain group). Levene’s
test suggested equality of variances (F = 2.227, p = 0.138).
Group means of brain age delta were not significantly differ-
ent (Welch’s independent samples t-test; t(111.1) = 0.333, p
=0.74, Cohen’s d = 0.061). A Bayesian independent samples
t-test indicated moderate evidence in favor of the null hypoth-
esis (BFO1 = 4.875; Figure 3).

In a separate analysis with participants > 60 years of age
only, mean brain age delta was -6.2 £ 7.9 years in pain-free
participants (n = 16) and -8.7 & 5.7 years in chronic pain pa-
tients (n = 14; Welch’s t-test, p = 0.327, Cohen’s d = 0.362).

Discussion

The present study of 59 chronic non-cancer pain patients and
60 healthy, age- and sex-matched controls with a mean age of
53 years provided no evidence for the hypothesis that chronic
pain is associated with accelerated brain aging. In fact, a
Bayesian independent samples t-test provided moderate ev-
idence for the null hypothesis (i.e., group means are equal).

Physiological aging is characterized by an inevitable — but
also highly variable — decline in cognitive, motor, and sen-
sory functions and also by changes of gray and white mat-
ter structure (53). In cross-sectional studies of healthy aging,
voxel-based (54) and surface-based morphometry (55) have
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Fig. 3. A | Bayesian independent samples
t-test for the effect size 3. The dashed
line illustrates the prior distribution (default
Cauchy prior centered on zero, r = 0.707),
the solid line shows the posterior distribution.
The two gray dots indicate the prior and pos-
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demonstrated a decrease of cortical gray matter density (56)
and thickness (57), predominantly in prefrontal and tempo-
ral areas. Additionally, changes of white matter fiber tracts,
as assessed by diffusion tensor imaging, have been investi-
gated across the age span. In a longitudinal study on partic-
ipants aged between 50-90 at baseline and with a follow-up
after two years, a decline of white matter integrity was seen
throughout the brain (58).

In recent years, several approaches have been developed to
determine the degree of physiological or pathological ag-
ing of individual adults by predicting individual brain age
(40, 41, 59-63). These studies have used individual struc-
tural MR images of the brain, large MRI training datasets of
healthy individuals, and machine learning methods to com-
pare individual brains with the training data (36). The results
of these predictions have been shown to be accurate and reli-
able (36). Accelerated brain aging has been demonstrated in
patients with Alzheimer’s disease (64), after traumatic brain
injury (59), in HIV-positive individuals (65), and in psychi-
atric disease, such as schizophrenia, major depression, and
borderline personality disorder (66). These methods are able
to successfully predict conversion from mild cognitive im-
pairment to Alzheimer’s disease (67). Moreover, in a group
of 669 elderly participants with a mean age of 73 years (the
Lothian Birth Cohort 1936 (68)) increased brain age delta
was associated with decreased physical fitness (weaker grip
strength, poorer lung function, slower walking speed), lower
fluid intelligence, and increased mortality risk (41).

Of note, brain age delta results determined by these methods,
including the software used in the present study, brainageR,
are age-dependent; brain age of younger participants is over-
estimated and brain age of older participants under-estimated
(61). This inherent bias is driven by a regression toward the
age mean of the training data set, as the error in the regres-
sion model is not orthogonal to age (61, 69). This explains
why mean brain age delta was approximately -5 years in both
groups of our study, where most participants were older than
40 years. Since we recruited a thoroughly age-matched con-
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results follows van Doorn et al. (52).

trol group for our chronic pain patients, this under-estimation
of individual brain age does not weaken our conclusion that
individual brain age is similar in chronic pain patients and in
pain-free controls.

Very recently, Cruz-Almeida and co-workers published a
comparison of brain age delta between 33 elderly individ-
uals with chronic pain (mean age: 70.6 + 5.5 years) and
14 individuals without chronic pain (mean age: 71.5 £+ 7.3
years). While the mean predicted brain age was smaller than
the chronological brain age in both groups (p = 0.592), par-
ticipants with chronic pain had a larger brain age delta af-
ter adjustment for chronological age, sex, and exercise levels
(ANCOVA, F [1,41] = 4.9; p = 0.033) (35). There are ma-
jor differences between Cruz-Almeida et al.’s study and our
study. Importantly, our study is characterized by a consider-
ably larger sample size (119 vs. 47 participants), a younger
age (the majority of participants is between 30 and 60 years
of age), and a longer pain duration (15.9 £ 11 vs. 6.3 + 8.8
years). Comparing only participants 60 years or older in our
sample did not result in a significant difference of brain age
delta between groups, neither, and thus did not provide evi-
dence for the notion that chronic pain accelerates brain aging
in seniors only.

Our results have important implications for the pathogene-
sis of structural alterations and, ultimately, cognitive deficits
in patients with chronic pain. Our results suggest chronic
pain does not induce wide-spread neural and glial degener-
ation, presumably the leading cause of age-related structural
brain changes (70). Indirectly, our results support recent al-
ternative models, mainly derived from animal research, of re-
gional structural and functional brain alterations in chronic
pain. These models imply network-specific (26, 71) neuronal
loss triggered by excessive excitotoxic stimulation of NMDA
receptors (72) and ongoning neuroinflammation associated
with e.g. release of pro-inflammatory cytokines, such as inter-
leukin 1beta (73, 74). In addition, synaptic plasticity, mainly
in the primary somatosensory cortex (75) and the anterior
cingulate cortex (76), as well as changes in the dendritic
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structure (77) are supposed to contribute to chronic pain-
related structural remodeling. These models also suggest that
the frequently observed cognitive deficits in chronic pain are
the direct consequence of persistent nociceptive input, me-
diated by the aforementioned network-specific structural and
functional changes, rather than the result of generalized ac-
celerated aging of the brain.
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