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ABSTRACT  

Profile-QSAR (pQSAR) is a massively multi-task, 2-step machine learning method with unprecedented 

scope, accuracy and applicability domain. In step one, a “profile” of conventional single-assay random 

forest regression (RFR) models are trained on a very large number of biochemical and cellular pIC50 assays 

using Morgan 2 sub-structural fingerprints as compound descriptors. In step two, a panel of PLS models 

are built using the profile of pIC50 predictions from those RFR models as compound descriptors. Hence the 

name. Previously described for a panel of 728 biochemical and cellular kinase assays, we have now built 

an enormous pQSAR from 11,805 diverse Novartis IC50 and EC50 assays. This large number of assays, and 

hence of compound descriptors for PLS, dictated reducing the profile by only including RFR models whose 

predictions correlate with the assay being modeled. The RFR and pQSAR models were evaluated with our 

“realistically novel” held-out test set whose median average similarity to the nearest training set member 

across the 11,805 assays was only 0.34, thus testing a realistically large applicability domain. For the 11,805 

single-assay RFR models, the median correlation of prediction with experiment was only R2ext=0.05, 

virtually random, and only 8% of the models achieved our standard success threshold of R2ext=0.30. For 

pQSAR, the median correlation was R2ext=0.53, comparable to 4-concentration experimental IC50s, and 72% 

of the models met our R2ext>0.30 standard, totaling 8558 successful models. The successful models included 

assays from all of the 51 annotated target sub-classes, as well as 4196 phenotypic assays, indicating that 

pQSAR can be applied to virtually any disease area. Every month, all models are updated to include new 

measurements, and predictions are made for 5.5 million Novartis compounds, totaling 50 billion 

predictions. Common uses have included virtual screening, selectivity design, toxicity and promiscuity 

prediction, mechanism-of-action prediction, and others. 
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INTRODUCTION 

Developing accurate, predictive quantitative structure-activity relationship (QSAR) models with 

wide applicability domains, for most biological assays, has long been a goal of computational 

scientists. As computer power has increased, building QSAR models has become increasingly 

automated and robust.1 However, while conventional, single-task QSARs can give accurate 

predictions for compounds very like the training set, such as random held-out test sets, they 

generally fail on the far more novel compounds project teams actually order for testing from virtual 

screens. Massively multi-task QSAR models improve the accuracy and applicability domain.2 

Additionally, studies3, 4 have introduced in vitro biological assay information as descriptors in 

QSAR. Recent studies5-7 employing experimental in vivo or in vitro test results as descriptors filled 

missing biological values using either pure chemical information 6, 7 or a mixture of chemical and 

biological data 5. 

Profile-QSAR (pQSAR) is an automated, massively multi-task, QSAR method that employs 

predicted biological activities as descriptors. Originally developed over 10 years ago for kinases8, 

the 2-step pQSAR method was based on the hypothesis that the activity of a compound in a new 

kinase assay could be modeled as a linear combination of the compound's activities in all 

previously studied kinase assays. First, conventional single-assay (SA) random forest regression 

(RFR) models were trained on available pIC50 data for 728 biochemical or cellular kinase assays. 

The full profile (FP) of 728 RFR predicted pIC50s for each compound was then used as the 

compound descriptor vector for a second partial least squares (PLS) regression model of each 

assay. Hence the name "Profile-QSAR". Through this 2-step procedure, every compound and 

every experimental pIC50 from all 728 assays informs each new pIC50 prediction. This expanded 

the applicability domain of these PLS models to cover the entire Novartis (NVS) archive. The 
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transfer-learning among kinase assays also dramatically increased the accuracy over SA models. 

Evaluation with a "realistically novel" held-out test set showed the median correlation with 

experiment improved from the nearly random R2
ext = 0.12 for the original SA RFR models to R2

ext 

= 0.55 for pQSAR, comparable to experimental 4-concentration IC50s9. Likewise, the number of 

models exceeding R2
ext=0.30, our rule-of-thumb for successful virtual screening, increased from 

20% to 80%. An additional advantage of pQSAR is that it does not require combining different 

assays for a given target. The PLS models are trained only on the assay(s) the project team is 

currently using, but all other assays for that target still inform the model with optimal scaling 

(along with all other assays in the profile). Subsequently, pQSAR models were also built for 

several other large families: proteases10, GPCRs, CYP450s, and other ATP-binding protein 

targets11. 

Project teams are increasingly working on targets outside these large protein families. 

Furthermore, many cellular assays are purely phenotypic--not specific to any target or family. 

Thanks to improvements in the implementation, we were able to address this with a massive "all-

assay" (AA) pQSAR combining all NVS IC50 assays. The success of the AA pQSAR demonstrated 

the effectiveness of transfer learning between protein families as well as phenotypic assays. 

However, using the much larger AA FP of RFR predictions as descriptors to train PLS models on 

assays with few pIC50s could lead to overfitting, so a variable selection method was required. 

Overzealous variable selection from such a large descriptor pool also invites chance correlations 

12 which was proven to be minimal by Y-scrambling.  

This report describes building a massive multi-task AA pQSAR combining 11,805 diverse NVS 

dose-response assays crossing all protein families as well as phenotypic assays. To facilitate public 
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comparisons to other methods, a second massive AA pQSAR was built for 4276 diverse, publically 

available ChEMBL13 assays. 

METHODS  

Data sets 

Two, large, multi-family datasets were used: publically available, dose-response activity assays 

from ChEMBL version 24.1, downloaded from https://www.ebi.ac.uk/chembl, last accessed June 

22, 2018, and a larger internal dataset of proprietary NVS assays downloaded November 2018. In 

both cases, compound/activity pairs were retrieved for all assays reporting IC50, AC50, EC50, Ki, 

Kd, Amax, and other quantitative fields. All such values are referred to here as “IC50s”. Only the 

largest molecule was retained from multi-structure records. Compounds were neutralized, 

tautomers were standardized, counter-ions were stripped, and all structures were converted to 

canonical SMILES through RDkit (v2018.09.1.0). Duplicates were removed within each assay.  

"Qualified" values below or above the assay detection limits were offset by 1 log unit and treated 

as quantitative. Where concentration units were reported, they were converted to molar, and 

negative log transformed to give pIC50s. Occasionally no units were given in ChEMBL. The units 

were then guessed at from the range of values, converted to molar, and labeled as "uncertain units". 

While these assignments might be incorrect, correlations will not be affected, so it will not affect 

the contribution to the PLS models. Multiple pIC50s for a given compound were averaged, 

discarding qualified values if quantitative values were available. Only assays with at least 50 

pIC50s with a standard deviation of at least 0.5 were retained. In both data sets, some assays 

appeared to be almost entirely included within other assays. If the correlation between overlapping 

members of two or more assays exceeded 99%, the smaller assay(s) were excluded from the profile 

in the second step of PLS modeling. The final NVS data included 11805 assays, 1.8 million 
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compounds, and 18.3 million pIC50s. The final ChEMBL data included 4276 assays, 0.5 million 

compounds, and 1.4 million pIC50s. The distributions of assay size for NVS and ChEMBl are 

presented in Figure S1. The specific assay identifiers for 4276 ChEMBL assays with 

corresponding number of compounds, assay type, and target family are listed in Supplemental 

Table S1.  

Realistic training/test set splits 

The final production models for virtual screening are trained on all the data at every step. However, 

evaluating the quality of a model requires a held-out test set. The "realistic training/test set split" 

was previously shown to mirror the novelty of the compounds that project teams ordered from 

actual virtual screens.9 The previously described algorithm was ported from KNIME and ICM to 

python. The compounds are first clustered. For smaller assays, a hierarchical clustering is 

employed. For assays with more than 10,000 compounds, the Butina clustering algorithm 14 is used 

instead. The training set is collected starting with the largest cluster, and proceeding to 

successively smaller clusters until 75% of the compounds have been gathered. The remaining 

singletons and small clusters make up the "realistic" test set. The box plots in Figure S2 summarize 

histograms of the Tanimoto similarity (Tc) between the each test set member and the nearest 

training set member for realistic and random splitting of NVS and ChEMBL compounds.  

pQSAR workflow 

Figure 1 depicts the 2-step pQSAR 2.0 algorithm, as previously described for the kinase family.9 

First, conventional, SA RFR QSARs are trained for each assay on all available sparse historical 

activity data using scikit-learn 15 RandomForestRegressor (v0.20.2). No test-set data are withheld 

in this step (see below). Parameters were defaults except the number of trees was set to 200. 

Compound descriptors are RDkit (v2018.09.1.0) Morgan radius 2 substructure fingerprints with 
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1024 bits. These models are used to predict (or fit) a full pIC50 activity matrix of all compounds 

by all assays. In the second step of “FP pQSAR”, these FPs of RFR predicted pIC50s are used as 

compound descriptors to train a PLS model for each assay, individually, using scikit-learn 15 

PLSRegression (v0.20.2). For “reduced-profile” pQSAR, in order to reduce the compound’s 

descriptor vectors for the PLS models in the second step, the training set experimental pIC50s for 

the assay currently being modeled are compared to predictions from the RFR models for each of 

the other assays. An assay is excluded from the reduced profile if the correlation does not reach a 

threshold, indicated by the greyed out columns in Figure 1. Two models are built for each assay: 

with thresholds of R2>0.2 and R2>0.05. The higher threshold generally gives better models, but for 

some assays that leaves few or no assays in the profile. It is not clear how many assays in the 

profile are ideal, so for simplicity, the model with the better R2
ext on the test set is retained. We call 

this “max2”.  
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Figure 1. Reduced profile two-step pQSAR workflow focusing on training assay A1. (red = A1test, Green = 

A1train, Brown= A*test, Blue=A*train, Black = A*NA). The red X indicates that the assay being modeled is not 

included in the profile. Grey indicates columns excluded from the reduced profile because they do not 

correlate well with A1train. 

When evaluating pQSAR, just the training set compounds from the realistic training/test set split 

are used to train the PLS model. The assay being modeled, as well as RFR models that correlate 

with R2>0.99 with the assay being modeled, are excluded from the profile as indicated by the red 

"X". For predictions on new compounds, they are first run through the RFR models to generate 

the predicted pIC50 profile, which is then run through the final PLS model to predict the activity. 

Using models trained on each of the columns in the first RFR step, followed by a model based on 

the new row in the second PLS step, results in every experimental pIC50 from the reduced profile 

informing every prediction. A custom model for a new assay does not require training additional 

RFR models. It only requires making RFR predictions for any new training compounds to add new 
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rows to the existing profile matrix, then training a new PLS model. Of course, this new assay will 

not contribute to improving the models for other assays in the panel. The entire process including 

retraining of all SA RFR models is performed monthly, and at that time the new assay will 

contribute to the other models as well. 

Y-scrambling  

Y-scrambling 16 was used to estimate the number of apparently successful models that are actually 

due to chance correlations. Randomly reassigning the pIC50s among the structures for each assay 

were performed on both the NVS and ChEMBL data sets. SA RFR models were trained. As 

expected, few models had R2
ext>0.3. Y-scrambled AA FP and AA max2 PLS Models were trained 

on these meaningless SA RFR “profiles”, and the number of “successful” models (R2
ext>0.30) was 

counted and analyzed for comparison with models built on the unscrambled data. AA FP and AA 

max2 PLS models for the Y-scrambled assay data were also trained on the “real” SA RFR profiles.  

RESULTS AND DISCUSSION 

A total of 11,805 dose-response assays measured on at least 50 unique compounds and with pIC50 

standard deviation greater than 0.5 were found in the NVS database. The experimental data 

included 1.8 million unique compounds, and 18.3 million IC50 measurements. On average, each 

compound was measured on 10 assays and each assay was measured for 1550 compounds. The 

complete compound by assay matrix was only 0.1% complete. Timely pQSAR calculation on this 

large dataset required improvements in the implementation, including porting all KNIME, R and 

ICM code to python, although some infrastructure is still in C#. As seen from the bottom curve in 

Figure 2A, using the realistic training/test set split, 92% of these assays failed to produce successful 

(R2
ext>0.30) SA RFR models, and the median correlation for SA RFR models was only R2

ext=0.05, 

virtually random. The next curve up shows that applying the previously published pQSAR 2.0 
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algorithm using the FP dramatically improved the results, increasing the median correlation with 

experiment to R2
ext=0.38 and 58% of the assays achieving successful models. The median across 

the 11,805 assays of the average Tanimoto similarity between each member of the test set and the 

nearest member of the training was only 0.34. Thus, this evaluation of model prediction quality 

covers a huge applicability domain, virtually the entire NVS archive. This is essential for 

estimating virtual screening success where chemical novelty is highly valued, and for poly-

pharmacology prediction where the available training compounds for an off-target model would 

typically be unrelated to the current project. By contrast, the median average test set to training set 

similarity for the random held out tests sets was 0.62. Metrics based on this test set would be 

unreliable for estimating the accuracy of the models in most real drug discovery scenarios. The 

box plots in Figures S2A and S2B summarize, for the 11,805 NVS assays, histograms of test set 

to training set similarity for the realistic and random splits, respectively. We strongly recommend 

that the average test set similarity be reported whenever a performance metric is presented for a 

model, so the reader will understand the applicability domain for which the performance has been 

evaluated. This issue is well illustrated by the following ChEMBL performance summary. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 27, 2019. ; https://doi.org/10.1101/620864doi: bioRxiv preprint 

https://doi.org/10.1101/620864


A 

 

B

 
 

Figure 2. Correlations between prediction and experiment using the “realistic” training/test set split for SA 

RFR models and pQSAR models with full and reduced profiles: (A): NVS assays; (B): ChEMBL assays.  

 

In order to present a non-proprietary analysis with full scientific reproducibility, the same criteria 

were employed to retrieve assays from the public ChEMBL database. The 4276 such assays, 

covering 500,000 compounds, included 1.4 million pIC50s, for a 0.1% complete matrix. However, 

the average compound was measured on only 2.8 assays and the average assay had only 327 

compounds. Supplemental Table S2 lists ChEMBL (compound) ID, assay ID, observed pIC50s and 

max2 predicted pIC50s for the 1.4 million activity measurements. Supplemental Table S3 lists the 

RDkit canonical SMILES for the half million ChEMBL compounds. Figure 2B shows that 28% 

of these assays gave successful (R2
ext>0.30) SA RFR models with a median correlation of 

R2
ext=0.12, a much higher fraction than the NVS SA RFR models. This is partly due to more chance 

correlations (see below). However, this might mainly result from the much more homogeneous 

ChEMBL compound sets. The median across the 4276 assays of the average Tanimoto similarity 

between the realistic test and training sets was 0.63, much more similar than NVS. The median 

average random test set similarity is fully 0.77. This would seriously overestimate the performance 

for virtual screening where novelty is a compound selection criterion. The box plots in Figures 
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S2C and S2D summarize, for the ChEMBL assays, histograms of test set to training set similarity 

for the realistic and random splits.  

As Figure 2B shows, FP pQSAR also greatly improved the ChEMBL results, although not as 

dramatically as in the NVS case, increasing the median correlation with experiment to R2
ext=0.30 

and 50% of the assays achieving successful models.  

It is known that PLS models lose accuracy with increasing numbers of irrelevant descriptors.17 

With 11,805 NVS SA RFR models in the AA FP as compound descriptors, but an average of 1,162 

and sometimes as few as 37 training IC50s, the ratio of independent variables to observations 

reduces the performance even of a powerful latent-variable regression method like PLS. Methods 

to identify unhelpful RFR models and build reduced profile pQSARs were therefore explored. For 

simplicity, methods that would employ the same subset for all PLS models were tried first. 

Predictions were not improved by using only SA RFR models trained on assays exceeding a 

minimal number of IC50s, or setting a minimum SA RFR R2
ext.  

The earlier family-specific (FS) pQSARs can be thought of as an intermediate case of reducing 

the profile, where the FP of SA RFR predictions from just a specific family was used for all 

pQSAR models from that family. Overall, these FS-FP pQSARs were equal or better, sometimes 

much better, than AA FP pQSARs. Yet, only one third of the assays are members of large families. 

A more general method to reduce the profile was therefore sought that would also apply to the 

remaining two thirds of the assays from phenotypic screens or smaller families.  

Methods that employed a tailored, reduced profile for each assay were therefore explored. An 

attractive feature of pQSAR is simplicity. It is a turnkey method with virtually no architecture or 

hyper-parameter retraining. Furthermore, well-known variable selection methods would be 

frustrated by the unique "realistic" training/test set split. I.e. hyper-parameters such as variable 
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selections optimized against random subsets of the training set might not be optimal for the far 

more novel realistic test set. Finally, we wanted a simple method that ideally would decrease the 

compute resources of the second PLS step, by using smaller profiles, rather than increasing it with 

a laborious variable selection algorithm. An effective compromise was to test in advance of PLS, 

and only retain for each PLS model, the RFR models in the profile whose predicted pIC50s 

correlated with the experimental pIC50s in the dependent assay's training set. Higher thresholds 

generally gave better predictions, but some PLS models failed because there were few or no RFR 

models meeting the threshold. A simple compromise was to build PLS models using 2 thresholds: 

R2>0.2 and R2>0.05, and use whichever gave the better final R2
ext. We call this "max2". As Figure 

2A shows, the AA max2 pQSAR median R2
ext was 0.53 on the realistic test set, now again 

comparable to high-throughput 4-concentration IC50s. 72% of the assays now met our success 

criterion. For the ChEMBL data, the AA max2 pQSAR median R2
ext was lower at 0.43, with 63% 

of the assays meeting the success criterion as shown in Figure 2B. The predicted ChEMBL AA 

max2 pQSAR pIC50s are listed in Supplementary Table S2. 

For AA FP pQSAR, using the linear PLS regression method worked better than using the non-

linear RFR in the second step, as had been previously found for kinases. To further test this result, 

recursive random forest regression (RRFR) 18, a method that combines variable reduction with 

RFR, was compared to max2 PLS. Figure S3 shows that the median R2
ext for NVS RRFR pQSAR 

is 0.51 with 62% of models having R2
ext > 0.3, worse than max2 PLS despite the far more expensive 

variable reduction and non-linear regression calculation. ChEMBL RRFR pQSAR also lags max2 

PLS, with median R2
ext = 0.29 and 49% of models with R2

ext > 0.3. This is at variance with 

conclusions drawn by many other studies 19, 20. This unusual result might be due to the larger 

extrapolations required by the realistic test set compared to the more usual random test sets.  
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Table 1 compares the accuracy of the AA FP pQSAR models with the 3 methods for reducing 

profile size for the larger assay families: AA-max2, FS-FP, FS-max2. For ChEMBL, the order in 

almost every case is the same: AA-max2 ≥ FS-max2 >> FS-FP > AA-FP, both in the median R2
ext 

and in the number of models with R2
ext > 0.30. The only exception is ChEMBL ADME models 

(which may not even count as a family), where AA-FP is better than FS-FP. For NVS, AA-max2 

and FS-max2 are very close. AA-max2 produces more successful models in most cases, but FS-

max2 produces more for GPCRs and NHRs. We do not consider the differences large enough to 

justify maintaining separate family-specific models.  

Beyond the large target classes in Table 1, there were at least some successful models from every 

one of the 51 smaller target sub-classes annotated in the database, indicating that pQSAR models 

can be used on virtually every target type. About half the models, both from NVS and ChEMBL, 

were phenotypic screens with no assigned target. These are particularly challenging for SA RFR 

models, with median R2
ext=0.04 and only 5.0% success for NVS phenotypic assays and R2

ext=0.09 

and 24% success for ChEMBL, presumably because phenotypic assays can be modulated through 

a number of mechanisms. pQSAR does surprisingly well on phenotypic assays, with median 

R2
ext=0.60 and 76% success for the NVS data, and median R2

ext=0.57 and 75% success for 

ChEMBL. 
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Table 1. Model performance of full profile (FP) and best of reduced profile (max2) on all assays or family-specific ones.  

    Median R2ext   % R2ext>0.3  

 Family 
Assay 
count AA-max2ab FS-max2c FS-FPd AA-FP 

 AA-
max2 FS-max2 FS-FP AA-FP 

 Binding 2523 0.55 0.40 0.26 0.26 75% 58% 46% 46% 
 Phenotypic 2299 0.57 0.43 0.28 0.28 75% 62% 48% 48% 
 Functional 1689 0.59 0.49 0.35 0.32 78% 64% 54% 52% 

ChEMBL GPCR 685 0.54 0.41 0.28 0.26 76% 61% 48% 45% 
 Kinase 665 0.56 0.50 0.42 0.35 79% 69% 59% 56% 
 Proteinase 289 0.58 0.48 0.33 0.30 78% 67% 53% 50% 
 Ion channel 215 0.60 0.41 0.30 0.24 77% 63% 51% 47% 
 NHR 123 0.44 0.26 0.21 0.14 67% 46% 41% 35% 
 ADME 55 0.46 0.13 0.08 0.20 69% 31% 24% 42% 
 Functional 8070 0.57 0.56 0.42 0.41 74% 73% 61% 61% 
 Phenotypic 5506 0.60 0.59 0.47 0.44 76% 74% 65% 63% 
 Binding 3446 0.47 0.47 0.37 0.32 70% 69% 59% 52% 

NVS Kinase 2407 0.62 0.63 0.55 0.50 85% 85% 78% 73% 
 Enzyme 1085 0.39 0.38 0.32 0.24 61% 60% 53% 42% 
 GPCR 815 0.34 0.37 0.29 0.20 55% 57% 49% 36% 
 Protease 698 0.46 0.48 0.43 0.32 68% 68% 61% 52% 
 Toxicity 289 0.44 0.39 0.36 0.30 69% 60% 55% 51% 
 Ion channel 249 0.23 0.20 0.16 0.13 41% 37% 36% 24% 
 NHR 236 0.36 0.39 0.34 0.19 56% 63% 58% 35% 

a max2 means reducing profile to only include RFR models that correlate with assay of interest at R2>0.2 or R2>0.05, whichever is better  
b AA means a starting profile of all assays           
c FS means a family specific starting profile           
d FP means using the full profile of either the family-specific or all-assays starting profile        
Note: color scale for median R2ext and %R2ext>0.3 are separate. 
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Transfer learning between NVS and ChEMBL profiles was tested by using the ChEMBL RFR 

profile to build PLS models for NVS assays (Figure S4A) and vice versa (Figure S4B). As was 

previously reported for kinases, pQSAR models for NVS assays trained using the ChEMBL AA 

FP profile and pQSAR models for ChEMBL assays trained using the AA FP NVS profile 

performed little better than simple SA RFR models. Cross-dataset predictions using max2 reduced 

profiles are only slightly better. Combined FPs perform almost as well as native FPs. Combined max2 

profiles were no better or worse than native NVS or ChEMBL max2 profiles alone. Thus, 

combining RFR profiles is useful for expanding the applicability domains to cover both data sets, 

but does not improve the accuracy over the native models. 

With so many compound descriptors, chance correlations were a concern. Several Y-scrambling 

protocols were performed to estimate chance correlations. Y-scrambling the entire AA max2 

pQSAR procedure, including building the SA RFR models on Y-scrambled IC50 data for each of 

the 11,805 assays, gave only 52 SA RFR and 47 AA max2 PLS models with R2
ext>0.3. This is only 

0.4% of the 11,805 assays. Not surprisingly, the largest of these assays contained only 81 pIC50s, 

so successful models built on larger assays are very unlikely by chance. Furthermore, 34 of those 

47 “successful” AA max2 pQSAR models gave good models on real data. Given the tiny Y-

scrambling rate, these are undoubtedly actual good models. One could, therefore, anticipate that 

only 13 out of the 8558 successful models trained on real data, i.e. about 0.15%, are actually chance 

correlations, a remarkably low false positive rate.  

However, the above test is possibly too conservative, because the SA RFR matrix built on Y-

scrambled data should have almost no multicollinearity. i.e. the rank of the SA RFR predicted IC50 

profile matrix from Y-scrambled data is higher than that built from real data, and so has greater 

opportunity for chance correlations. The SA RFR profiles from the real data will still be 
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independent of Y-scrambled training and test data in the PLS step. Three rounds of training Y-

scrambled FP PLS models using the real SA RFR profiles gave only 32 to 36 models with 

R2
ext>0.3. One assay was shared between each pair of repetitions, and no assays were shared among 

all 3, indicating that these really were chance events. Training Y-scrambled max2 PLS models 

using the real SA RFR profiles gave 35 models with R2
ext>0.3. Twenty-two of the assays that gave 

chance correlations with scrambled data gave good correlations with real data, so this test also 

suggests that about 13 of the 8558 successful models, or 0.15%, are chance correlations. 

Y-scrambling the entire max2 pQSAR procedure for ChEMBL gave 97 SA RFR models and 175 

max2 PLS models with R2
ext>0.3 with 112 compounds in the largest assay. 121 of those 175 

“successful” models gave good models on real data, indicating 54 of the 4276 models, or 1.3% are 

likely due to chance. Three repetitions of the FP PLS step on Y-scrambled ChEMBL assays using 

the SA RFR profiles from real data gave from 84 to 92 models with R2
ext>0.3. No assay appeared 

in all 3 repetitions, although from 1 to 6 were shared by pairs. Y-scrambling just the max2 PLS 

step of ChEMBL gave 133 models with R2
ext>0.3. Sixty-seven of those 133 “successful” models 

gave good models using real data, suggesting that 66 of the 2682 are false positives. The higher 

2.5% ChEMBL max2 pQSAR false positive rate, despite having half as many descriptors (i.e. 

assays), may reflect preponderance of small assays.  

So far, only predictions on compounds with experimental data, that are in the SA RFR predicted 

IC50 profile table, have been presented. To make predictions on new compounds, they are first run 

through the SA RFR models to obtain their predicted activity profiles. The new profiles are then 

used in one or more PLS equations to yield the max2 pQSAR activity predictions. While the 

chemical space covered by the archive drifts over time, the procedure is highly automated. Every 

month, all assay data are downloaded from the NVS database, the data are filtered and processed, 
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and all of the nearly 12,000 pQSAR models are rebuilt from scratch as described above. Nearly 50 

billion pIC50s are then predicted for the 5.5 million compounds in the NVS database against the 

8558 successful models. These are loaded into a Databricks database for virtual screening and 

general data mining. Z-scaled pIC50 predictions are also stored to facilitate comparison across 

assays, e.g. for predicting mechanism-of-action in phenotypic screens or potential off-target 

activities. The predictions are also stored in a specialized "descriptor store" database for use as 

continuous-valued fingerprints in clustering or other data analyses.  

Prospective application examples 

Over the last 15 years pQSAR, in its several incarnations, has been applied to well over 100 

projects--initially for kinases and more recently for diverse targeted and phenotypic projects. 

Applications have spanned drug discovery: virtual screening for tool compounds and medicinal 

chemistry starting points, selectivity calculation including isoform selectivity, hit list triaging, 

fragment hit expansion, toxicity and promiscuity prediction, mechanism-of-action prediction, 

virtual orthosteric counter-screens to identify allosteric inhibitors from experimental high-

throughput screens, etc. A few examples below illustrate typical applications both from the original 

kinase pQSAR and AA FP pQSAR. Results from AA max2 projects are not yet available.  

Raf kinase virtual screening 

B-Raf provides an early kinase virtual screening example. The goal was to identify potential 

backup scaffolds from 600K compounds added to the corporate archive since an earlier full-deck 

high throughput screening (HTS). Being an advanced project, over 35,000 biochemical IC50s and 

cellular EC50s were available divided among 5 assays: the target kinase, a mutant variant prevalent 

in tumors, an isoform, a cell proliferation assay and a cellular target modulation assay measuring 

phosphorylation of downstream kinase ERK. Compounds with predicted pIC50 or pEC50 ≥ 6 by all 
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5 models were initially selected. Molecular weight and rotatable bond filters were applied, and 

compounds containing known Raf scaffolds were removed. The remaining compounds were 

clustered into 47 clusters and all cluster centers, as well as analogues with Tanimoto similarity 

coefficient (Tc) ≥ 0.8 to the cluster centers, were kept. Seventy-three compounds were sent for 

biochemical evaluation. Fifty-three had IC50 ≤ 10 µM, an overall 80% hit rate. The hit-count line 

in the novelty/hit-rate histogram (Figure 3) for this project shows that, per usual, none of the 

selected compounds were from within Tc>0.8 of the training compounds. The majority of hits had 

similarities less than 0.6, and shared no scaffolds with the nearest known active compounds. Hit 

rates were 60%-80% even for compounds with novel scaffolds and similarity Tc < 0.4 to any of 

the 35K known actives, 2 logs above the HTS background rate.  
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Figure 3. A novelty/hit-rate histogram for bRaf with similarity bins on the X-axis, hit rate on the primary Y-

axis and hit count on the secondary Y-axis. The blue bars represent hit rates from the virtual screen, 

while the red bars plot the percentage of hits in each bin that share a Bemis & Murcko framework with a 

framework in the training set. The green circles show the hit counts for each similarity bin. Green bars 

show hit rate from an earlier 10 µM HTS binned by similarity. No compounds were selected from the bins 

most similar to the training set. 

 

Understanding RAF cellular assays 

The Raf project also supplies an example for cellular assays. While interpreting them can 

potentially be misleading due to multi-collinearities, pQSAR PLS coefficients can carry useful 

information about mechanisms-of-action. The target modulation (TM) and cell proliferation (CP) 

assays differed for A375 cells with bRAFV599E, a mutant isoform over expressed in melanoma 

cell lines. While biochemical bRAFV999E IC50s trended with the TM EC50s, with R2 = 0.44 for 

2302 compounds, the correlation with the CP EC50s in the same A375 cell line was lower, with R2 
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= 0.24 for 1657 compounds. The target modulation assay measured inhibition of a phosphorylation 

endpoint in the RAF/MEK/ERK pathway, believed to be specific to that signaling cascade. 

Although the cell line was described as “driven” by mutant bRAF, cell proliferation can be 

modulated by multiple mechanisms. To look for other interfering kinases, pQSAR models were 

built for both the A375 TM and A375 CP assays using only a profile of 92 kinase biochemical 

models, without including cellular assays. The PLS coefficients for the TM and CP pQSAR models 

are plotted on the Sugen kinome dendrograms in Figure S5. The diameters of the circles indicate 

the magnitudes of the PLS coefficients, blue indicating a positive contribution and red negative. 

For the bRAF TM model, the 2 largest positive coefficients were bRAF (relative value = 1) and 

cRAF (relative value = 0.54), consistent with target modulation being driven primarily by RAF 

inhibition. In the cell proliferation assay, bRAF is still most important (relative value = 0.86), but 

some other tyrosine kinases (TK) also had large positive coefficients. PDGFRb (relative value = 

0.71) was selected for further analysis. For many of the compounds inactive at the highest tested 

concentration of 10 µM (pIC50 < 5) in the CP assay, bRAFV599E biochemical pIC50 was high, but 

in these cases PDGFRb pIC50 < 6.5. Conversely, when A375 CP pEC50 > 5.5, both bRAFV599E 

and PDGFRb were above pIC50 ~ 7. Thus, the CP assay was most sensitive to bRAF/PDGFRb 

dual inhibitors. PDGFRs were reported to activate Ras via SHP2, making this interactions 

plausible 21.  

This analysis was done in 2009. In 2010, a publication by Murphy et al. 22 reporting a selective 

dual PDGFRb/RAF inhibitor efficacious in murine models of pancreatic and kidney tumors 

supported the interplay between these two kinases. A publication in December of 2010 by Nazarian 

et al.23 and a follow-up publication by Solit et al.24 in January of 2011 described PLX-4032, a RAF 

inhibitor then in clinical trials for melanoma, showing resistance and tumor regrowth in patients 
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six months into treatment. Analysis showed that PDGFRb was up-regulated in a number of the 

clinical tumor samples. They hypothesized that the tumors developed resistance to RAF inhibitor 

treatment and shutdown of the MAPK pathway by up-regulating the PDGFRb driven pathway. 

The follow-up publication suggested co-treatment with RAF and PDGFRb inhibitors as a possible 

way of overcoming this resistance. Analyzing the pQSAR coefficients and data had anticipated 

these results later reported from the clinic. This suggests that pQSAR coefficients capture 

underlying biochemical mechanisms, not mere meaningless curve fitting, and can be used to 

identify mechanisms-of-action. 

Kinase host off-target prediction from malaria phenotypic screening hits 

Attempting to predict potential human anti-targets for a series of malaria inhibitors, a pQSAR 

model was trained on malaria phenotypic EC50s using a profile of 192 human kinase biochemical 

assays. 3 months later, inhibition of human haspin (GSG2), the kinase with the second largest PLS 

coefficient, was experimentally confirmed in profiling by DiscoverX, again indicating that the 

coefficients of pQSAR models capture real biochemical mechanisms. 

SGK3 kinase virtual selectivity screen 

An SGK3 example illustrates the use of kinase pQSAR in predicting off-target activity. A tool 

compound to help validate SGK3 as a drug target required broad kinase selectivity, as AGC, TK 

and PI3K kinases were expected to interfere with the target modulation cellular assay. 100,000 

compounds from a “kinase focused” deck were screened experimentally at a single 10 µM 

concentration. About 4,000 inhibited SGK3 at greater than 30%. Median predicted TK IC50 greater 

than 1 µM, and AGC IC50 greater than 10 µM from 28 TK kinase and 10 AGC kinase pQSAR 

models were used as selectivity filters. Cellular exposure was estimated from the median ratio of 

predicted cellular EC50 and biochemical IC50 (B/TM) < 0.3 for 13 pairs of kinase target modulation 
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pQSAR models. Using these filters and standard drug-like requirements, 750 compounds were 

selected for confirmation in an 8-concentration SGK3 IC50 assay. Sixty compounds had IC50 < 1 

µM while 330 had IC50 < 10 µM.  

An SGK3 pQSAR model built from the 750 IC50s, with a modest R2
ext = 0.32, was used to select 

and screen an additional 567 compounds from the archive. A total of 327 had IC50 < 10 µM, a 58% 

hit rate. The novelty/hit-rate histogram in Figure S6 shows hit rates of 40% - 60% even for 

compounds with Tc < 0.5 to the training set models. With so many novel medchem starting points 

at hand, a conventional HTS was canceled, and the team instead began developing a more relevant 

but complex cascade assay. 

A second round of off-target filtering selected 30 compounds with experimental SGK3 IC50 < 5 

µM, and that were selective based on the pQSAR predictions and available experimental IC50s, 

including at least 2 experiments from AGC, TK or PI3K kinases. Twenty of these 30 compounds, 

hand selected by experienced medicinal chemists, were sent for biochemical profiling against a 

panel of 70 kinases. The best of these had SGK3 IC50 = 150 nM, and IC50 > 1 µM against the 

panel. This compound had excellent physical properties: CaCO-2 A-B=3, B-A=2, solubility = 10 

M, and ClogD at pH 7.4 = 0.44. Thus, the kinase-family pQSAR models had rapidly identified a 

selective, cell permeable compound from the experimental MTS that met the SGK3 team’s criteria 

for a tool compound.  

An epigenetic target 

The NVS archive was virtually screened with AA FP pQSAR models trained on 3 assays of slightly 

different formats for an epigenetic target. About 9000 compounds predicted to be active in any of 

the 3 models were selected. Compounds with Tc>0.8 to any known sub-µM compounds or with 

undesired functionality were removed. The remaining ~5500 compounds were binned for 
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predicted high potency, high ligand efficiency or high lipid efficiency. AA FP pQSAR predicted 

selectivity over 2 other epigenetic targets were combined with predicted on-target activity into one 

score. Compounds from each bin were clustered and representative compounds of each cluster 

with good scores were selected. The final collection of 1003 unique compounds was 

experimentally tested in a single-dose, percentage inhibition, biochemical assay. A total of 109 

compounds showing at least 30% inhibition were considered as hits and sent to the next validation 

step. The novelty/hit-rate histogram in Figure S7 shows that about 70% of the hits were highly 

novel, coming from bins of Tc=0.2 and 0.3 to the known inhibitors.  

Malaria phenotypic virtual screen 

An AA FP pQSAR model was trained on 9,822 IC50s from an experimental phenotypic malaria 

screen. 22,546 predicted actives were selected based on novelty, potency, ligand efficiency and 

drug-like properties. An additional complement diversity selection of 34,419 was designed to 

sample the remainder of the archive. 94% of the 5,636 hits with confirmed IC50<10uM, and 98% 

of the 880 hits with IC50<100nM came from the pQSAR arm. Figure S8 shows that 75% of the 

confirmed pQSAR hits had novel scaffolds and nearly 2,000 had Tc<0.6 to the known inhibitors. 

Practical considerations 

While pQSAR is not the only multi-task method, it does have some practical strong points. It is 

simple, embarrassingly parallel and scales well over a conventional cluster. There are no hyper-

parameters to retrain even when scaling from a dozen to 10,000 assays. Unlike conventional multi-

task deep neural networks (MT-DNN), it allows for a separate training/test set split for each assay, 

important for realistic model evaluation. Unlike MT-DNNs or matrix imputation methods, 

including the recently published Alchemite method25, it allows a separate subset of tasks for each 

assay, e.g. max2, reducing unwanted noise. Our current implementation uses simple SA RFR on 
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Morgan fingerprints, followed by PLS regression. However, one can easily replace or augment 

these 2D RFR models by additional 2D or 3D QSAR models, pharmacophore models or docking 

models in the first step, for a richer description of the chemistry. Similarly, additional column 

types such as physicochemical properties or genomics data can be added beside the assays for a 

richer description in the experimental dimension. Thus, there are myriad opportunities to extend 

the scope of pQSAR beyond this basic beginning. 

CONCLUSIONS 
 

pQSAR for single protein families was previously shown to far exceed single-assay QSAR models. 

All assay pQSAR is a unified platform that included all of the 51 annotated target sub-classes, as 

well as 5506 phenotypic assays, which expands the applicability domain for idiosyncratic targets 

or phenotypic screens. AA max2 profile reduction further removes noise and enhances model 

performance. AA max2 also saves computation. The number of PLS descriptors was reduced by 

about 80% and 96% at the thresholds of R2=0.05 and R2=0.20, respectively, while achieving 

improved performance. This is a substantial computational resource saving when training 11,805 

PLS models and predicting 5.5 million compounds on each. The negligible chance correlations 

indicate the reliability of AA max2 pQSAR models.  

Nearly 50 billion pIC50s are predicted for the 5.5 million compounds in the NVS database against 

the 8558 successful models. The pQSAR models are updated monthly. As newly tested dose-

response pIC50s are continuously adding to NVS database, the number of successful models as 

well as the predicted pIC50s are expected to grow rapidly.  

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 27, 2019. ; https://doi.org/10.1101/620864doi: bioRxiv preprint 

https://doi.org/10.1101/620864


SUPPORTING INFORMATION 

The curated pIC50s of 0.5 million compounds measured on 4276 ChEMBL assays as well as their 

prediction can be found in the supplementary materials. 

Table S1. General information of 4276 ChEMBL assays. The specific assay identifiers, the 

number of tested compounds, corresponding assay type and target family. (TXT) 

Table S2. The ChEMBL ID, associated assay, observed pIC50s and predicted pIC50s by max2 PLS 

models for 1.4 million activity values. (TXT) 

Table S3. The ChEMBL ID and SMILES of half million unique ChEMBL compounds. (CSV) 

Figure S1. Histogram of the number of tested compounds in each of 11,805 NVS assays (A) and 

4,276 ChEMBL assays (B). (PDF) 

Figure S2. Box plots summarizing historgrams of Tanimoto similarity between test set 

compounds and their nearest neighbors in the training sets. A: “realistic” split and B: random 

split for NVS data. C: “realistic” split and D: random split for ChEMBL data. (PDF) 

Figure S3. Comparison of variable selection between recursive random forest regression 

(RRFR) and PLS-based pQSAR. A: The median R2
ext for NVS RRFR models is 0.51 and 7317 of 

them with R2
ext > 0.3. This is slightly better than (PLS) FP pQSAR, but worse than (PLS) max2 

pQSAR. B: the median R2
ext for ChEMBL RRFR models is 0.29 and 2114 of them with R2

ext > 

0.3.  (PDF) 

Figure S4. Cross prediction performance for pQSAR models for all NVS assays trained on the 

ChEMBL RFR profile (A) and all ChEMBL assays trained on the NVS profile (B) perform little 

better than SA RFR models. Both NVS and ChEMBL assays are only slightly better predicted by 

each other’s max2 profiles. Combined FPs perform almost as well as native FPs. Combined 
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max2 profiles showed no advantage or disadvantage over native ChEMBL max2 or NVS max2 

profiles alone. All evaluations are for the realistic test sets. FP: full profile; NVS&ChEMBL: 

combined NVS and ChEMBL profiles; max2: The maximum R2
ext using thresholds of R2>0.05 

and R2>0.2. (PDF) 

Figure S5. Sugen kinome trees showing kinase pQSAR PLS coefficients of biochemical kinase 

assays for the (a) target modulation and (b) cell proliferation cellular RAF assays. The size 

represents the magnitude of the coefficient, blue being positive and red being negative. (PDF) 

Figure S6. A novelty/hit-rate histogram for SGK3 with similarity bins on the X-axis, hit rate on 

the primary Y-axis and hit count on the secondary Y-axis. The blue bars represent hit rates from 

the virtual screen, while the orange bars plot the percentage of hits in each bin which share a Bemis 

& Murcko framework with a framework in the training set. The grey circles show the hit counts 

for each similarity bin.. (PDF) 

Figure S7. A novelty/hit-rate histogram for an epigenetic target with similarity bins on the X-axis, 

hit rate on the primary Y-axis and hit count on the secondary Y-axis. The blue bars represent hit 

rates from the virtual screen, while the red bars plot the percentage of hits in each bin which share 

a Bemis & Murcko framework with a framework in the training set. The green circles show the hit 

counts for each similarity bin. 

Figure S8. A novelty/hit-rate histogram for malaria phenotypic virtual screen. Red bars are total 

confirmed pQSAR hits, and blue bars are the number of those with novel scaffolds. Yellow and 

green bars are total and novel hits from a compliment diversity selection. (PDF) 
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ABBREVIATIONS 

AA: all assay 

CP: cell proliferation 

FP: full profile 

FS: family-specific 

GPCR: G-protein coupled receptor 

HTS: high throughput screening 

max2: reducing profile to only include RFR models that correlate with assay of interest at R2>0.2  

 or R2>0.05, whichever is better.  

MT-DNN: multi-task deep neural networks 
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NHR: nuclear hormone receptor 

NVS: Novartis 

pIC50s : the negative logarithm of IC50s 

PLS: partial least squares 

pQSAR: profile-QSAR 

QSAR: quantitative structure-activity relationship 

R2
ext: the coefficient of determination of external realistic test set. 

RFR: random forest regression 

RP: reduced profile 

RRFR: recursive random forest regression 

SA: single assay 

Tc: Tanimoto similarity coefficient 

TK: tyrosine kinases 

TM: target modulation  
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