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Abstract

In this paper, a simple yet interpretable, probabilistic model is proposed for the
prediction of reported case counts of infectious diseases. A spatio-temporal kernel is
derived from training data to capture the typical interaction effects of reported
infections across time and space, which provides insight into the dynamics of the spread
of infectious diseases. Testing the model on a one-week-ahead prediction task for
campylobacteriosis and rotavirus infections across Germany, as well as Lyme borreliosis
across the federal state of Bavaria, shows that the proposed model performs on-par with
the state-of-the-art hhh4 model. However, it provides a full posterior distribution over
parameters in addition to model predictions, which aides in the assessment of the model.
The employed Bayesian Monte Carlo regression framework is easily extensible and
allows for incorporating prior domain knowledge, which makes it suitable for use on
limited, yet complex datasets as often encountered in epidemiology.

Author summary

Why was this study done?

• Statistical modeling is invaluable to public-health policy as it helps understand
and anticipate the dynamics of the spread of infectious diseases. The available
training data is often limited and reported with a low spatial and temporal
resolution. This poses a challenge and makes it particularly important to
incorporate domain knowledge and prior assumptions to guide the modeling
process.

• In order to evaluate the trustworthiness and reliability of a model’s predictions, it
is crucial to be able to interpret the model and quantify the model uncertainty.

• To address this, we develop an interpretable model that uses Bayesian inference
(rather than commonly used maximum likelihood estimation) and provides a
probability distribution over inferred parameters.
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What did the researchers do and find?

• We develop and test a single probabilistic model that learns to predict the number
of weekly case counts for three different diseases (campylobacteriosis, rotaviral
enteritis and Lyme borreliosis) at the county level one week ahead of time.

• We employ a Bayesian Monte Carlo regression approach that provides an estimate
of the full probability distribution over inferred parameters as well as model
predictions.

• The model learns an interpretable spatio-temporal kernel that captures typical
interactions between infection cases of the tested diseases.

• The predictive performance of our model compares favorably with a contemporary
reference model for all diseases tested.

What do these findings mean?

• Interpretable predictive models can be applied to surveillance data to gain insights
into the dynamics of infectious diseases.

• Probabilistic modeling approaches provide a suitable framework for many
challenges of working with epidemiological data.

Introduction 1

Public-health agencies have the responsibility to detect, prevent and control infections in 2

the population. In Germany, the Robert Koch Institute collects a wide range of factors, 3

such as location, age, gender, pathogen, and further specifics, of laboratory confirmed 4

cases for approximately 80 infectious diseases through a mandatory surveillance 5

system [1]. Since 2015, an automated outbreak detection system, using an established 6

aberration detection algorithm [2], has been set in place to help detect outbreaks [3, 4]. 7

However, prevention and control require quantitative prediction instead of mere 8

detection of anomalies and thus prove more challenging. For logistical, computational 9

and privacy reasons, epidemiological data is typically reported or provided in bulk, often 10

grouped by calendar weeks and counties. Predictions thus have to be made about the 11

number of cases per time-interval and region, based on a history of such measurements. 12

Since outbreaks can extend over multiple counties, states or even nations, 13

spatio-temporal models are typically employed. Some approaches use scan statistics to 14

identify anomalous spatial or spatio-temporal clusters [5, 6], while others model and 15

predict case counts as time series or point processes [7]. A major advantage of such 16

predictive models over univariate aberration detection approaches is the additional 17

insight they can provide into the factors contributing to the spread of infectious diseases. 18

In general, we distinguish four qualitatively different classes of predictive features: 19

spatial, temporal, spatio-temporal and (spatio-temporal) interaction effects. The former 20

three are purely functions of space, time or both, modeling seasonal fluctuations and 21

trends, geographical influences or localized time-varying effects, such as region-specific 22

demographics or legislation, respectively. The latter is an autoregressive variable that 23

captures how an observed infection influences the number of further infections in its 24

neighborhood over time, which depends on differences in patients’ behavior, transmission 25

vectors, incubation times and duration of the respective diseases. Even in the absence of 26

direct contagion, previously reported cases can provide valuable indirect information for 27

predicting future cases through latent variables. The effect on the expected number of 28

cases at a given place and time due to interactions can thus be expressed as a 29
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(unknown) function of spatial and temporal distance to previously reported cases. 30

Particularly for regions with less available historic data or those strongly influenced by 31

their neighbours, e.g. smaller counties close to larger cities [8], incorporating the 32

county’s and its neighbours’ recent history of case counts can improve predictions. 33

The state-of-the-art spatio-temporal hhh4 method [7] [9] assumes aggregated case 34

counts to follow a Poisson or Negative Binomial distribution around a mean value 35

determined by “epidemic” and “endemic” components. The epidemic component can 36

capture the influence of previous cases from the same or neighbouring counties, e.g. 37

potentially weighted by the counties’ adjacency order, while the endemic component 38

models the expected baseline rate of cases. 39

For not aggregated data, the more general twinstim method [7] models the 40

interaction effects due to individual cases by a self-exciting point process with 41

predefined continuous spatio-temporal kernel, rather than through a binary 42

neighborhood relation as in the hhh4 model. Optimizing such a kernel for a specific 43

dataset provides an opportunity to incorporate or even infer information about the 44

infectious spread of the disease at hand. 45

In the following, we present a Bayesian spatio-temporal interaction model (referred 46

to as BSTIM), as a synthesis of both approaches: a probabilistic generalized linear 47

model (GLM) [10] predicts aggregated case counts within spatial regions (counties) and 48

time intervals (calendar weeks) using a history of reported cases, temporal features 49

(seasonality and trend) and region-specific as well as demographic information. Like for 50

the twinstim method, interaction effects are modeled by a continuous spatio-temporal 51

kernel, albeit parameterized with parameters inferred from data. Since the aggregated 52

reporting of case counts per calendar week and county leaves residual uncertainty about 53

the precise time and location of an individual case, we model times within the 54

respective week and locations within the respective county as latent random variables. 55

Monte Carlo methods are employed to evaluate posterior distributions of parameters as 56

well as predictions, which are subsequently used to assess the quality of the model. 57

For three different infectious diseases, campylobacteriosis, rotaviral enteritis and 58

Lyme borreliosis, the interpretability of the inferred components, specifically the 59

interaction effect kernel, is discussed and the predictive performance is evaluated and 60

compared to the hhh4 method. 61

Materials and methods 62

We evaluate both the proposed BSTIM as well as the hhh4 reference model on a 63

one-week-ahead prediction task, where the number of cases in each county is to be 64

predicted for a specific week, given the previous history of cases in the respective as well 65

as surrounding counties. Instead of point estimates, we are interested in a full posterior 66

probability distribution over possible case counts for each county and calendar week – 67

capturing both aleatoric uncertainty due to the stochastic nature of epidemic diseases as 68

well as epistemic uncertainty due to limited available training data. The data for this 69

study is provided by the Robert Koch Institute, and consists of weekly reports of case 70

counts for three diseases, campylobacteriosis, rotavirus infections and Lyme borreliosis. 71

They are aggregated by county1 and collected over a time period spanning from the 1st 72

of January 2011 (2013 for borreliosis) to the 31st of December 2017 via the SurvNet 73

surveillance system [1]. Aggregated case counts of diseases with mandatory reporting in 74

Germany can be downloaded from https://survstat.rki.de. For each of the three 75

diseases, the data preceding 2016 is used for training the model, while the remaining 76

1We use the term “county” to generally refer to rural counties (Landkreise) and cities (kreisfreie
Städte) as well as the twelve districts of Berlin (Bezirke).
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two years are used for testing. A software implementation of the BSTI Model presented 77

here is available online at https://github.com/ostojanovic/BSTIM. 78

The BSTI Model 79

The proposed model is optimized to predict the number of reported cases in the future 80

(e.g. the next week), based on prior case counts. For modeling purposes we assume 81

counts are distributed as a Negative Binomial random variable around an expected 82

value µ(t, x) that varies with time (t) and space (x). We further assume that the 83

relationship between each feature fi(t, x) and the expected value µ(t, x) can be 84

expressed in a generalized linear model of the Negative Binomial random variable 85

Y (t, x) using the canonical logarithmic link function. For the limited available data, an 86

appropriate choice of priors is crucial to prevent overfitting. We use half-Gaussian priors 87

for interaction effects to regularize the coefficients while ensuring positivity of the 88

inferred kernel. A half-Cauchy distribution is used as a weakly informative prior [11] to 89

enforce positivity of the dispersion parameter of the residual Negative Binomial 90

distribution. During training, the model parameters are regularized by a Gaussian prior 91

for the weights of all features. Since both the basis functions (c.f. section Interaction 92

effects) and the coefficients used for modeling the interaction effects are nonnegative, 93

the resulting interaction kernel is thus also constrained to be nonnegative. 94

The full probabilistic model for training can thus be summarized as follows: 95

α ∼ HalfCauchy(γ = 2) (1)

Wi ∼
{

HalfNormal(σ = 1) if fi is an interaction effect

Normal(µ = 0, σ = 1) otherwise
(2)

µ(t, x) = exp

(
N∑
i=1

Wifi(t, x)

)
· ε(t, x) (3)

Y (t, x) ∼ NegBin(µ(t, x), α) (4)

where: 96

α is a dispersion parameter 97

N is the total number of used features 98

Wi are model weights 99

fi(t, x) are features varying in time and space 100

ε(t, x) is the exposure varying in time and space 101

t refers to a time-interval (i.e. one calendar week) 102

x refers to a spatial region (i.e. one county) 103

For prediction, the priors over the dispersion parameter and weights are replaced by 104

the corresponding posterior distribution inferred on the training set. 105

A schema of our model is shown in Fig.1. To capture the interaction effects between 106

different places over time, a continuous spatio-temporal kernel is estimated through a 107

linear combination of 16 basis kernels. The individual contribution due to each of these 108

basis kernels is included into the model as a feature. Four temporal periodic basis 109

functions are used to capture seasonality and five sigmoid basis functions (one for each 110

year of available training data) to capture temporal trends. Four region-specific features 111
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(ratio of population in a county belonging to three age groups and one political 112

component) are used, which results in 29 features. In addition, the logarithm of the 113

population of each county in the respective year is used as a scaling parameter 114

(exposure) ε. 115

X
X
X

X
X
X

-
X
X

-
-
X

X
X
X

model A:
model B:
model C:

+ + +exp[ + + + ]·

Fig 1. Model scheme. Exemplary contributions from different features, grouped into
interaction, temporal, political and demographical components, each evaluated in all
counties in Germany for campylobacteriosis in the week 30 of 2016. Each county’s total
population is always included as an exposure coefficient. We consider three models of
increasing complexity, A, B and C, that differ in whether features are included (X) or
not (-).

For example, given one parameter sample w = [w1, . . . , wn], inferred from the 116

training set of campylobacteriosis case counts, the conditional mean prediction within 117

county x during week t is determined as follows: 118

µ(t, x) = exp


16∑
i=1

wifi(t, x)︸ ︷︷ ︸
interaction

+

20∑
i=17

wifi(t)︸ ︷︷ ︸
periodic

+

25∑
i=21

wifi(t)︸ ︷︷ ︸
trend

+

29∑
i=26

wifi(t, x)︸ ︷︷ ︸
region-specific

 · ε(t, x)︸ ︷︷ ︸
exposure

(5)

Monte Carlo sampling procedure 119

The model described above determines the posterior distribution over parameters by the 120

data-dependent likelihood and the choice of priors. We want to capture this parameter 121

distribution in a fully Bayesian manner, rather than summarize it by its moments (ie. 122

mean, covariance, etc.) or other statistics. Since an analytic solution is intractable, we 123

use Markov Chain Monte Carlo (MCMC) methods to generate unbiased samples of this 124

posterior distribution. These samples can be used for evaluation of performance 125

measures (here Widely Applicable Information Criterion (WAIC), and Dawid-Sebastiani 126

score; cf. section Predictive performance evaluation and model selection), visualization 127

or as input for a superordinate probabilistic model. 128

Our model combines features that can be directly observed (e.g. demographic 129

information) with features that can only be estimated (e.g. interaction effects, due to 130

uncertainty caused by data aggregation). To integrate the latter into the model, we 131

generate samples from the distribution of interaction effects features as outlined in 132

section Interaction effects. 133

The sampling procedure generates samples from the prior distribution over 134

parameters and combines them with training data and our previously generated samples 135

of the interaction effect features to produce samples of the posterior parameter 136

distribution. These samples from the inferred joint distribution over parameters are 137
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then used to generate samples of the posterior distribution of model predictions for 138

testing data. 139

We employ a Hamiltonian Monte Carlo method, No-U-Turn-Sampling [12], 140

implemented in the probabilistic programming package pyMC3 [13]. 141

Interaction effects 142

Each reported case provides valuable information about the expected number of cases to 143

come in the near future and close proximity. We suppose that this effect of an 144

individual reported infection on the rate of future (reported) infections in the direct 145

neighborhood can be captured by some unknown function κ(dtime(t?, tk), dgeo(x?, xk)), 146

which we refer to as interaction effect kernel in the following, where (tk, xk) refer to the 147

time and location of the k-th reported case and (t?, x?) represent the time and location 148

of a hypothetical future case. Here, dgeo(x, y) represents the geographical distance 149

between two locations x and y, whereas dtime(t, s) denotes the time difference between 150

two time points t and s. Thus, κ(·, ·) is a radial, time- and location-invariant kernel, 151

depending only on the spatial and temporal proximity of the two (hypothetical) cases. 152

For the sake of simplicity, we assume that interaction effects due to individual infections 153

add up linearly. 154

Since κ is not known a-priori for each disease, we wish to infer it from data. To this 155

end, we approximate it by a linear combination of spatio-temporal basis kernels κi,j 156

with coefficients wi,j that can be inferred from training data: 157

κ(4t,4x) ≈ κ̂(4t,4x) :=
∑
i,j

wi,jκi,j(4t,4x). (6)

As the basis functions for the interaction effect kernel, we choose the products 158

κi,j(4t,4x) := κTi (4t) · κSj (4x) between one temporal (κTi ) and one spatial factor 159

(κSj ), each (cf. Fig.2). As temporal factors, we use the second order B-spline basis 160

functions corresponding to the knot vector [0, 0, 1, 2, 3, 4, 5] (measured in weeks), 161

resulting in four smooth, positive, unimodal functions, spanning the overlapping time 162

interval from zero to two weeks, zero to three weeks, one to four weeks and two to five 163

weeks after a reported case, respectively. Outside these intervals, the functions are 164

identically zero; a-causal effects, i.e. the influence of a reported case on hypothetical 165

other cases reported at an earlier time, are thus excluded. As spatial factors, we use 166

exponentiated quadratic kernels (i.e. univariate Gaussian functions) centered at a 167

distance of 0km to a reported case, with shape parameters σ of 6.25km, 12.5km, 168

25.0km, and 50.0km. Since both temporal as well as spatial factors are nonnegative, the 169

resulting basis functions κi,j are also nonnegative, and, consequently, a linear 170

combination with nonnegative weights wi,j , as enforced in the fitting procedure, must 171

result in a nonnegative interaction effect kernel κ̂. See Fig.2 for an illustration of how 172

the basis functions κi,j are constructed. 173
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Fig 2. Spatial and temporal basis functions for interaction kernel. The
inferred interaction kernel is composed of a linear combination of spatio-temporal basis
functions (four-by-four grid of contour plots), each of which is a product of one spatial
(left column) and one temporal factor (top row).

Since the contributions of individual cases are assumed to sum up linearly, the total 174

influence of all cases that were previously reported at times and places (tk, xk), 175

k ∈ 1 . . . n onto the expected rate of cases reported at a later time t and location x is 176

given by: 177

∑
i,j

wi,jfi,j(t, x) where

fi,j(t, x) :=
n∑
k=1

κi,j(dtime(t, tk), dgeo(x, xk)) (7)

Each fi,j(t, x) for i ∈ 1, . . . , 4, j ∈ 1, . . . , 4 is a spatio-temporal function that depends 178

on all cases reported prior to t, providing us with a total of 16 autoregressive features to 179

use for the model. By determining the corresponding coefficients wi,j , the fitting 180

procedure thus allows us to infer an interaction effect kernel κ̂ in a 16-dimensional 181

parameterized family from data. It should be noted, however, that since the basis 182

functions κi,j capture strongly correlated and possibly redundant information, the 183
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effective number of degrees of freedom (as estimated by WAIC during model selection) 184

may be well below 16. Since we work with aggregated data at a spatial resolution of 185

counties and a temporal resolution of calendar weeks, the exact time and location of an 186

individual case report, as well as time and location of a hypothetical future case, are 187

conditionally independent random variables given the county and week in which they 188

occur. Because of this epistemic uncertainty, the features fi,j derived in equation 7 are 189

thus random variables themselves. To deal with this uncertainty, the twinstim model 190

proposed in [7] suggests to replace these features by their expected values, which can be 191

numerically approximated efficiently. Here, instead of using such point-estimates, which 192

might lead the model to underestimate its uncertainty, we want to incorporate the 193

features fi,j directly into our probabilistic model and thus need to account for their full 194

probability distribution. 195

While this distribution is intractable to calculate analytically, we can generate 196

unbiased samples from it through rejection sampling: For a case reported in a given 197

calendar week and county, possible sample points of a precise time and location can be 198

independently generated by uniformly drawing times from within the corresponding 199

week and locations from a rectangle containing the county, rejecting points that fall 200

outside the county’s boundary. By randomly drawing a sample time and location for 201

each reported case, we can thus generate an unbiased sample of the (unavailable) data 202

prior to aggregation that accurately reflects the uncertainty caused by the aggregation 203

procedure. Using these resulting sample times and locations in place of tk and xk in 204

equation 7 yields unbiased samples of the features fi,j , which are in turn used when 205

generating samples of the model’s posterior parameter distribution (cf. section Monte 206

Carlo sampling procedure). 207

It bears repeating that what we refer to as interaction effect features in this paper 208

are thus in fact latent random variables due to the epistemic uncertainty caused by 209

aggregated reporting of infections by counties and calendar weeks. 210

Additional features 211

Infection rates vary in time due to natural processes, such as seasons and climate trends, 212

evolution of pathogens and immunization of the population, as well as societal 213

developments such as scientific and technological advancement and medical education. 214

Within Germany these effects may not differ much across space and can thus be 215

included into the model as feature functions fi(t) that only depend on time. For 216

modeling yearly seasonality, four sinusoidal basis functions (ie. sin (2π · t · ωyearly), 217

sin (4π · t · ωyearly), cos (2π · t · ωyearly), cos (4π · t · ωyearly)) are used as temporal 218

periodic components, where ωyearly = (1 year)
−1

. Slower time-varying effects are 219

subsumed in a general trend modeled by a linear combination of one logistic function 220(
ie.
(
1 + exp

(
− t−τi2 · ωweekly

))−1)
centered at the beginning of each year (τi) with 221

slope 1/2 ωweekly, where ωweekly = (1 week)
−1

. 222

Due to the historical division between eastern and western Germany, and their 223

different developments, some structural differences remain, such as unemployment rate, 224

density of hospitals and doctors, population density, age structure etc. [14, 15] To 225

account for such systematic differences, a political component, which we refer to as the 226

east/west component in the following, is introduced which labels all counties that were 227

part of the former German Democratic Republic as 1 and counties that were part of the 228

Federal Republic of Germany as 0. Since Berlin itself was split into two parts, yet 229

todays counties don’t accurately reflect this historic division, counties within Berlin are 230

labeled with an intermediate value of 0.5. 231

Since diseases can affect children and elderly in different ways, yearly demographic 232

information about each county is incorporated into the model. The logarithm of the 233
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fraction of population belonging to three age groups (ages [0− 5), [5− 20) and 234

[20− 65)) is used. The total population of each county acts as a scaling factor for the 235

predicted number of infections2. 236

Predictive performance evaluation and model selection 237

To evaluate the predictive performance of the model, forecasts of the number of 238

infections are made one calendar week ahead of time for each disease and each county. 239

To determine the relevance of different features, model selection is performed on the 240

training dataset between three models of different complexity [Fig.1]: 241

model A - includes interaction and temporal (periodic and trend) components, 242

model B - includes interaction, temporal and political components, 243

model C - includes interaction, temporal, political and demographic components. 244

The Widely Applicable Information Criterion [16] is applied to the posterior 245

distribution over parameters and predictions from the training set to determine which 246

combination of features (i.e. model A, B or C) minimizes the generalization error while 247

penalizing a large effective number of parameters. This is relevant here since modeling 248

interaction effects introduces multiple features that capture redundant information. 249

Different error measures are applied to evaluate the fit of the predictive distribution 250

for the test set to observations. Deviance of the Negative Binomial distribution (i.e. the 251

expected difference between the log-likelihood of observations and the log-likelihood of 252

the predicted means) is used as a likelihood-based measure and the Dawid-Sebastiani 253

score (a covariance-corrected variant of squared error, cf. [17]) is included as a 254

distribution-agnostic proper scoring rule. 255

To evaluate the performance of the model presented here as well as an hhh4 model 256

implementation for reference, we compare the resulting distributions of scores across 257

counties. 258

The hhh4 model reference implementation 259

We use an hhh4 model for Negative Binomial random variables, implemented in the R 260

package ”surveillance” [18], with a mean prediction composed of an epidemic and an 261

endemic component. The epidemic component is a combination of an autoregressive 262

effect (models reproduction of the disease within a certain region) and a neighborhood 263

effect (models transmission from other regions). The endemic component models a 264

baseline rate of cases due to the same features as described above. The reference model 265

is trained and evaluated on the same datasets as the BSTIM. 266

Results and discussion 267

Testing models of varying complexity (see Fig.1) reveals that the most complex model 268

(model complexity C, including interaction effects, temporal, political as well as 269

demographical features) generalizes best as measured by WAIC for all three different 270

tested diseases (campylobacteriosis, rotavirus and borreliosis). [Tab.1] For the remainder 271

of this text, we thus focus only on the full model variety C. The posterior parameter 272

distribution inferred from the training data can be analyzed in itself, which provides 273

valuable information about the disease at hand as well as the suitability of the model. 274

Subsequently, it is used to generate one-week-ahead predictions for the test data. 275

2The age group of 65 years and above accounts for the remaining share of the population and thus is
a redundant variable with respect to the other three age groups and the total population.
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model campylobacteriosis rotavirus borreliosis

A 423422 349929 31499.1
B 420294 339715 31501.1
C 420151 338735 30810

Table 1. Training set WAIC scores for the three tested diseases and the three levels of
model complexity.

The inferred model 276

The procedure outlined above produces samples from the posterior parameter 277

distribution, which in turn provides a probability distribution over interaction kernels. 278

Due to the large number of free parameters (16) involved (see Fig.2), the family of 279

parameterized kernels is flexible enough to capture different disease-specific interactions 280

in time and space. The mean interaction kernel for campylobacteriosis (see Fig.3, 1A) 281

shows the furthest spatial influence over up to 75 km, whereas rotavirus (see Fig.3, 2A) 282

and borreliosis (see Fig.3, 3A) are more localized within a radius of up to 25 km. 283

Borreliosis exhibits longer lasting interaction effects, extending up to four weeks. 284

Despite the fact that borreliosis is not contagious between humans, this is consistent 285

with a pseudointeraction effect due to a localized, slowly changing latent variable such 286

as the prevalence of infected ticks or other seasonal factors. 287
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Fig 3. Learned interaction effect kernels. Kernels for campylobacteriosis are
shown in 1A-C, for rotavirus in 2A-C and for borreliosis in 3A-C. Mean interaction
kernels are shown in the row A, while rows B and C show two random samples from
the inferred posterior distribution over interaction kernels.

Looking at individual samples from the respective kernel distributions (see Fig.3, 288

rows B and C) reveals a degree of uncertainty over the precise kernel shape for the 289

different diseases: while there is little variation in the kernel shape inferred for rotavirus, 290

there is uncertainty about the temporal profile of interactions for campylobacteriosis. 291
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See also supplementary figures S1 Fig, S2 Fig and S3 Fig for an overview of the 292

respective posterior distributions over interaction effect coefficients. 293

The seasonal components (see Fig 4) for campylobacteriosis and borreliosis show a 294

yearly peak in July and June, respectively. In the case of rotavirus the incidence rate is 295

higher in spring with a peak from March to April. The learned trend components 296

capture the disease-specific baseline rate of infections, which remains stable throughout 297

the years 2013 to 2016. While there is little uncertainty in the seasonal component, 298

there is a high degree of uncertainty in the constant offset of the trend component. The 299

effect of combining both contributions within the model’s exponential nonlinearity 300

results in higher uncertainty around larger values. 301
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Fig 4. Learned temporal contributions. Periodic contributions over the course of
three years (2013-2016) for all three diseases are shown in the row A, trend
contributions in the row B and their combination in the row C. Red lines show the
mean exponentiated linear combination of periodic or trend or both features through
the respective parameters. Dashed lines show random samples thereof; the shaded
region marks the 25%-75% quantile.

For campylobacteriosis and, to a lesser extent, rotavirus reported incidence rates are 302

higher in regions formerly belonging to eastern Germany (see Fig. 5). The parameters 303

inferred for demographic components (see Fig. 5) show the role that age stratification 304

plays for susceptibility. For all three diseases, a larger share of children and adolescents 305

(ages 5-20 years) in the general population is indicative of increased incidence rates. 306

Additionally, working-age adults (ages 20-65 years) appear to increase the incidence rate 307

of borreliosis. It should be noted that this does not necessarily imply an increased 308

susceptibility of the respective groups themselves, but could instead be due to latent 309

variables correlated with age stratification, such as economic or cultural differences. The 310

pairwise joint distributions reveal strong (anti-)correlations of the coefficients associated 311

with the demographic and political components. E.g. the coefficient associated with age 312

group [20-65) is strongly correlated with the coefficient associated with the east/west 313
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component, which implies ambiguity in the optimal choice of parameters. 314

[0-5)

[5-20)

[20-65)

[0
-5

)

east/west

[5
-2

0)

[2
0-

65
)

ea
st

/w
es

t
0.16 0.17 0.18

α

h
h

h
4

re
fe

re
n

ce

[0
-5

)

[5
-2

0)

[2
0-

65
)

ea
st

/w
es

t

0.6 0.7

α

h
h

h
4

re
fe

re
n

ce

[0
-5

)

[5
-2

0)

[2
0-

65
)

ea
st

/w
es

t

0.6 0.8

α

h
h

h
4

re
fe

re
n

ce

1A campylob.

1B

2A rotavirus

2B

3A borreliosis

3B

Fig 5. Learned weights for political and demographic components. Plots of
the pairwise marginal distributions between inferred coefficients for three age groups
and the east/west component for all three diseases are shown in row A. The marginal
distribution of each coefficient shows a narrow unimodal peak, yet the pairwise
distributions show that the individual features are clearly not independent. Row B
shows the inferred posterior distributions of the overdispersion parameter α for three
diseases. Values of α obtained using the hhh4 reference model are indicated with a
dashed black line. The inferred values for the dispersion parameter α are different, yet
of similar magnitude, between the two models.

The posterior probability over the dispersion parameter α (see Fig.5) is tightly 315

distributed around the respective disease specific means. With small values of α, the 316

distribution of case counts for campylobacteriosis approaches a Poisson distribution, 317

whereas the corresponding distributions for rotavirus and borreliosis are over-dispersed 318

and deviate more from Poisson distributions. 319

Predictive performance 320

The one-week-ahead predictions are shown in Fig.6, for two selected cities (Dortmund 321

and Leipzig for campylobacteriosis and rotavirus, Nürnberg and München for 322

borreliosis), together with the corresponding prediction from the reference hhh4 323

model [18] fitted to the same data. A choropleth map of Germany (or the federal state 324

of Bavaria in the case of borreliosis) shows the individual predictions for each county in 325

one calendar week as an example. See also supplementary figures S4 Fig, S5 Fig and S6 326

Fig for predictions for 25 additional counties. 327

The BSTIM fits the mean of the underlying distribution of the data well. For 328

rotavirus and borreliosis, it appears to overestimate the dispersion for the cities shown 329

in Fig.6 as indicated by most data points falling within the inner 25%-75% quantile. 330

This may be due to a too high dispersion parameter α (cf. Fig.5) or uncertainty about 331

model parameters. It should be noted, however, that the optimal dispersion parameter 332

itself varies from county to county, whereas our model infers only one single value for all 333
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Fig 6. Predictions of case counts for various diseases by county. Reported
infections (black dots), predictions of case counts by BSTIM (orange line) and the hhh4
reference model (blue line) for campylobacteriosis (column 1), rotavirus (column 2)
and borreliosis (column 3) for two counties in Germany (for campylobacteriosis and
rotavirus) or Bavaria (borreliosis), are shown in rows A and B. The shaded areas
show the inner 25%-75% and 5%-95% percentile. Row C shows predictions of the
respective disease for each county in Germany or the federal state of Bavaria in week 30
of 2016 (indicated by a vertical red line in rows A and B).

counties together. The resulting predictions for all three diseases are smoother in time 334

and space (cf. the chloropleth maps in Fig.6) than the predictions by the reference hhh4 335

model. We attribute this to the smooth temporal basis functions and spatio-temporal 336

interaction kernel of our model. 337

To quantitatively compare the performance of both models, we calculate the 338

distributions of deviance and Dawid-Sebastiani score over all counties for BSTIM and 339

the hhh4 reference model as shown in Fig.7. Both measures show a very similar 340

distribution of errors between both models for all three diseases, as it can be seen in 341
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table 2. Only for borreliosis, the hhh4 model appears to be more sensitive to outliers. 342
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Fig 7. Evaluation of prediction performance. The distribution of deviance over
counties is shown in row A for BSTIM (blue) and the reference hhh4 model (red) for
all three diseases. The corresponding distribution of Dawid-Sebastiani scores is shown in
row B.

disease score BSTIM hhh4

campylob. deviance 1.11 ± 0.3 1.11 ± 0.26
DS score 2.49 ± 1.18 2.47 ± 1.06

rotavirus deviance 1.03 ± 0.32 1.04 ± 0.3
DS score 2.09 ± 2.14 2.1 ± 2.54

borreliosis deviance 0.81 ± 0.27 0.85 ± 0.27
DS score 0.74 ± 1.56 1.63 ± 2.24

Table 2. Deviance and Dawid-Sebastiani score (mean ± standard deviation) for all
three diseases and both BSTIM and the hhh4 model.

Benefits of probabilistic modeling for epidemiology 343

Probabilistic modeling relies on the specification of prior probability distributions over 344

parameters [13]. In the context of epidemiology, this makes it possible to incorporate 345

domain knowledge (e.g. we know that case counts tend to be overdispersed relative to 346

Poisson distributions, but not to which degree for a specific disease) as well as modeling 347

assumptions (e.g. we constrain interaction effects to be nonnegative). This is 348

particularly relevant for diseases with limited available data (e.g. those not routinely 349

recorded through surveillance), where appropriately chosen priors are required to 350

prevent overfitting. The framework can easily be extended to include additional features 351

or latent variables. For example, we introduce precise locations and times of individual 352

cases as latent variables, given only the counties and calendar weeks in which they 353

occurred. 354

Probabilistic models as discussed here provide samples of the posterior distribution 355

of parameters as well as model predictions. This allows for analysis that is not possible 356

with point estimation techniques such as maximum likelihood estimation. In 357

epidemiology, datasets can be small, noisy or collected with low spatial or temporal 358

resolution. This can lead to ambiguity, where the observations could be equally well 359
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attributed to different features and thus different model parameterizations are plausible. 360

While maximum likelihood estimation in such a situation selects only the single most 361

likely model, Bayesian modeling captures the full distribution over possible parameters 362

and predictions, and thus preserves information about the uncertainty associated with 363

the parameters of the model itself. Analyzing the parameter distribution can thus help 364

identify redundant or uninformative features. 365

Samples from the inferred parameter distributions are afterwards used to derive 366

samples of predicted future cases. The resulting predictions thus incorporate both noise 367

assumptions about the data as well as model uncertainty. This can be relevant for 368

determining confidence intervals, in particular in situations where model uncertainty is 369

large. The samples of the predictive distribution can in turn be used for additional 370

processing, or if predictions in the form of point estimates are desired, they can be 371

summarized by the posterior mean. 372

Possible extensions 373

Due to the flexibility of the probabilistic modeling and sampling approach, additional 374

variables can be easily included and their influence analyzed (e.g. weather data, 375

geographical features like forests, mountains and water bodies, the location and size of 376

hospitals, vaccination rates, migration statistics, socioeconomic features, population 377

densities, self-reported infections on social media [19], work, school and national 378

holidays, weekends and large public events). For features where precise values are not 379

known, probability distributions could be specified and included in the probabilistic 380

model, which could improve the model’s estimate of uncertainty. Whereas 381

spatio-temporal interaction effects are here modeled as a function of geographical 382

proximity, the kernel’s composite basis functions make it possible to use alternative 383

spatial distance measures such as derived from transportation networks for people or 384

goods [20]. Since the precise locations and times of individual infections are not publicly 385

known, we simply assume a geographically and temporally uniform distribution of cases 386

within the given county and calendar week. The conditional probability distributions 387

could be refined by incorporating additional information (e.g. weekends and population 388

density maps). However, precise information on place and time of infection are available 389

to local health agencies: The model presented here could readily be implemented there 390

and use exact space and time data. 391

Conclusion 392

In this paper, a probabilistic model is proposed for predicting case counts of epidemic 393

diseases. It takes into account a history of reported cases in a spatially extended region 394

and employs MCMC sampling techniques to derive posterior parameter distributions, 395

which in turn are incorporated in predicted probability distributions of future infection 396

counts across time and space. 397

For all three tested diseases (campylobacteriosis, rotavirus and borreliosis) the same 398

model, using interaction effects, temporal, political and demographic information, 399

performs well and produces smooth predictions in time and space. 400

A comparison with the standard hhh4 model, which uses maximum likelihood 401

estimation instead of Bayesian inference, shows comparable performance. At the 402

expense of higher computational costs than the point estimate used in hhh4, the 403

sampling approach employed here provides information about the full posterior 404

distribution of parameters and predictions. The posterior parameter distribution 405

provides information about the relevance of the corresponding features for the inferred 406

model, and helps in identifying redundant features or violated model assumptions. The 407
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inferred features of our model are interpretable and their individual contribution to the 408

model prediction can be analyzed: spatio-temporal interactions reveal information about 409

the dynamic spread of the disease, temporal features capture seasonal fluctuations and 410

long-term trends, and the assigned weights indicate relevance of additional features. 411

The posterior predictive distribution also accounts for the uncertainty about parameters, 412

e.g. due to simplifying model assumptions or a lack of data, rather than just the 413

variability inherent in the data itself. This additional information is valuable for 414

public-health policy-making, where accurate quantification of uncertainty is critical. 415

References

1. Faensen D, Claus H, Benzler J, Ammon A, Pfoch T, Breuer T, et al.
SurvNet@RKI–a multistate electronic reporting system for communicable
diseases. Euro surveillance : bulletin europ??en sur les maladies transmissibles =
European communicable disease bulletin. 2006;11(4):100–103.
doi:10.2807/esm.11.04.00614-en.

2. Noufaily A, Enki DG, Farrington P, Garthwaite P, Andrews N, Charlett A. An
improved algorithm for outbreak detection in multiple surveillance systems.
Statistics in Medicine. 2013;32(7):1206–1222. doi:10.1002/sim.5595.
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S1 Fig. Pairwise correlation plot of weights for interaction components
inferred for campylobacteriosis. Each sub-diagonal plot shows the (marginal) joint
distribution and regression line for two coefficients of the interaction kernel inferred
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respective univariate marginal distributions of each coefficient. Note that since the
coefficients are constrained to positive values, only the first quadrant is shown.
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S2 Fig. Correlation plot of weights for interaction components inferred
for rotavirus. Each sub-diagonal plot shows the (marginal) joint distribution and
regression line for two coefficients of the interaction kernel inferred from training data
for rotavirus. The plots on the diagonal show the respective univariate marginal
distributions of each coefficient. Note that since the coefficients are constrained to
positive values, only the first quadrant is shown.
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S3 Fig. Correlation plot of weights for interaction components inferred
for borreliosis. Each sub-diagonal plot shows the (marginal) joint distribution and
regression line for two coefficients of the interaction kernel inferred from training data
for borreliosis. The plots on the diagonal show the respective univariate marginal
distributions of each coefficient. Note that since the coefficients are constrained to
positive values, only the first quadrant is shown.
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S4 Fig. Predictions of case counts for campylobacteriosis for various
counties across Germany. Reported infections (black dots), predictions of case
counts by BSTIM (orange line) and the hhh4 reference model (blue line) for
campylobacteriosis for 25 counties in Germany. The shaded areas show the inner
25%-75% and 5%-95% percentile.
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S5 Fig. Predictions of case counts for rotavirus for various counties across
Germany. Reported infections (black dots), predictions of case counts by BSTIM
(orange line) and the hhh4 reference model (blue line) for rotavirus for 25 counties in
Germany. The shaded areas show the inner 25%-75% and 5%-95% percentile.
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S6 Fig. Predictions of case counts for borreliosis for various counties
across Bavaria. Reported infections (black dots), predictions of case counts by
BSTIM (orange line) and the hhh4 reference model (blue line) for borreliosis for 25
counties in Bavaria. The shaded areas show the inner 25%-75% and 5%-95% percentile.
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