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ABSTRACT:  22 

Whole brain dynamics intuitively depends upon the internal wiring of the brain; but to which 23 

extent the individual structural connectome constrains the corresponding functional connectome 24 

is unknown, even though its importance is uncontested. After acquiring structural data from 25 

individual mice, we virtualized their brain networks and simulated in silico functional MRI data. 26 

Theoretical results were validated against empirical awake functional MRI data obtained from the 27 

same mice. We demonstrate that individual structural connectomes predict the functional 28 

organization of individual brains. Using a virtual mouse brain derived from the Allen Mouse Brain 29 

Connectivity Atlas, we further show that the dominant predictors of individual structure-function 30 

relations are the asymmetry and the weights of the structural links. Model predictions were 31 

validated experimentally using tracer injections, identifying which missing connections (not 32 

measurable with diffusion MRI) are important for whole brain dynamics. Individual variations 33 

thus define a specific structural fingerprint with direct impact upon the functional organization of 34 

individual brains, a key feature for personalized medicine. 35 

SIGNIFICANCE STATEMENT:  36 

The structural connectome is a key determinant of brain function and dysfunction. The connectome-37 

based model approach aims to understand the functional organization of the brain by modeling the 38 

brain as a dynamical system and then studying how the functional architecture rises from the 39 

underlying structural skeleton. Here, taking advantage of mice studies, we systematically 40 

investigated the informative content of different structural features in explaining the emergence of 41 

the functional ones. We demonstrate that individual variations define a specific structural 42 

fingerprint with a direct impact upon the functional organization of individual brains stressing the 43 

importance of using individualized models to understand brain function. We show how limitations 44 

of connectome reconstruction with the diffusion-MRI method restrict our comprehension of the 45 

structural-functional relation. 46 

  47 
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INTRODUCTION 48 

Structural connectivity (SC) refers to set of physical links between brain areas (Connectome, 49 

(1)) and constitutes an individual fingerprint in humans (2, 3). Since the connectome provides the 50 

physical substrate for information flow in the brain, it should impose strong constraints on whole 51 

brain dynamics. Functional connectivity (FC), in the context of resting-state functional MRI, refers 52 

to coherent slow spontaneous fluctuations in the blood oxygenation level-dependent (BOLD) signals 53 

measured in the passive awake individual. FC is commonly used to assess whole brain dynamics and 54 

function (4). Similar to SC, FC constitutes an individual functional fingerprint (5–7), and shows 55 

specific alterations during aging and in brain disorders (8). There is thus a strong correlation 56 

between the structural and the functional connectome. However, the causal relation between SC 57 

and FC remains unknown. Large scale brain modeling offers a way to explore causality between 58 

structural and functional connectivity. Combining experimental and theoretical approaches, we 59 

here unravel and quantify the degree to which the individual’s SC explains the same individual’s 60 

variations in FC.  61 

 We use The Virtual Brain (TVB), which allows building individual brain network models based 62 

on structural data (9). This brain network modeling approach operationalizes the functional 63 

consequences of structural network variations (10, 11) and allows to systematically investigate SC-64 

FC relations in individual human brains (12–15). If SC constrains FC, SC-based simulations of FC 65 

should match empirical FC within the bounds of validity of the metric. In primates and rodents, 66 

individual SCs are derived from diffusion MRI (dMRI). However, dMRI does not provide information 67 

on fiber directionality and suffers from limitations, such as underestimation of fiber length and 68 

misidentification of crossing fiber tracks (16, 17). Given the imprecision of dMRI derived SC, it is 69 

difficult to estimate the validity of the simulations. This would require the knowledge of the ground 70 

truth connectome of an individual, which cannot be measured at present. However, the currently 71 

best gold standard can be derived in mice from cellular-level tracing of axonal projections (18), here 72 

named the Allen connectome. Although individuality is lost (the SC is a composite of many mice) 73 

and despite other limitations (19, 20), the Allen connectome provides details not available 74 

otherwise and in particular not available in humans. Focusing our attention on simulating mouse 75 

brain dynamics, we can thus use this detailed connectome to explore which missing features in the 76 

dMRI account for individual SC-FC relations. Specifically, we predict that fiber directionality and fine 77 

grain connectivity patterns should be key determinants. 78 
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Using dMRI data of 19 mice, we constructed 19 virtual mouse brain models (21), and 79 

compared predicted FC with empirical FC data acquired from the same mice during passive 80 

wakefulness (22). We found that individual SC predicts individual FC better than the dMRI-based 81 

averaged SC, and that predictions can be improved by considering fiber directionality, coupling 82 

weights and specific fiber tracks derived from the Allen connectome. We also found that 83 

hemispherical lateralization in the mouse connectome influences whole brain dynamics. 84 

 85 

 RESULTS 86 

We collected both dMRI and awake resting-state fMRI data (7 sessions per animal) from 19 hybrid 87 

B6/129P mice. We extracted SC from dMRI data to build individual virtual brains, which were 88 

imported into The Virtual Mouse Brain (TVMB), the extension of the open source neuroinformatic 89 

platform TVB (9) designed for accommodating large-scale simulations and analysis in the mouse, to 90 

generate in silico BOLD activity (21) using the reduced Wong Wang model (14, 23). We then 91 

compared simulated and empirical FC for each mouse in order to assess the power that an individual 92 

SC has to predict individual empirical FC derived from resting-state fMRI data (Figure 1). Further, SC 93 

was also obtained from the Allen connectome (our gold standard) in TVMB (21) to determine the 94 

contribution of information not available in dMRI-based SC. Experimental and simulated resting-95 

state activity was characterized by a dynamical switching between stable functional configurations 96 

as revealed by the typical checkerboard patterns of Functional Connectivity Dynamics (FCD, Figure 97 

S1a and S1b), as observed previously (14, 24, 25). As expected, FCD varied across recording sessions 98 

(Figure S1b). In contrast, static Functional Connectivity (FC) was stable between experimental 99 

recording sessions (Figure 2A and Figure S1c). To compare the goodness of in silico resting-state 100 

dynamics against in vivo data, we needed a metric stable across experimental recording sessions in 101 

individual subjects, and thus we used the static FC for evaluating the Predictive Power (PP) of a SC. 102 

We first defined the upper bound of the PP. The correlation value calculated between any 103 

pair of empirical FC for each mouse provides us with an upper boundary of the PP, taking into 104 

account inter-session variability and other sources of noise that preclude 100% PP accuracy (7, 26). 105 

In keeping with human data (6, 27), we found a high inter-session correlation for each of the 19 106 

mice, demonstrating stability across different recording sessions in a given mouse (Figure 2A). Inter-107 

session correlations within the same animal were greater than inter-subject correlations, indicating 108 

that there is an individual functional organization per mouse, which may act as a functional 109 
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fingerprint. Next, we sought to examine the extent to which individual functional connectomes 110 

correspond to individual structural connectomes.  111 

 112 

SC obtained with a deterministic algorithm is a better predictor of FC 113 

Here we considered probabilistic (Figure 2B) and deterministic (Figure 2C) dMRI-based SCs, 114 

using SD_Stream (28) and iFOD2 (29) within Mrtrix3 software (28) tractography algorithms, 115 

respectively. SC obtained with the deterministic algorithm yielded a greater PP than the SC obtained 116 

with the probabilistic one (𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡 = 0.415 ± 0.005, 𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑝𝑟𝑜𝑏 = 0.392 ± 0.005, 117 

𝑚𝑒𝑎𝑛 ± 𝑆𝐷
√𝑁
⁄  , Welch’s test: P < 0.001 Figure 2E). The significative density difference in the two 118 

kind of connectomes (𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑝𝑟𝑜𝑏 = 69 ± 1%, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡 = 28.2 ± 0.2%, 119 

Welch’s test: P < 0.001), by itself, is not enough to explain the observed discrepancy in the PP. 120 

Connection density does not fully account for the predictive power of a connectome, but instead 121 

the relation depends on the connectome derivation (Figure S2). We argue that the observed 122 

difference in PP between deterministic and probabilistic processed connectomes depends on the 123 

proportion of false negative (FN) and false positive (FP) connections introduced by the two different 124 

algorithms: Zalesky and colleagues (2016)(30) show that the typical brain small-world topology is 125 

biased by the introduction of FP connections two times more than by the introduction of FN 126 

connections. In line with this finding, we attribute the difference in PP of the two connectomes to 127 

the detrimental role of FP connections, which are more likely introduced by probabilistic than 128 

deterministic tractography. However, deterministic tractography more likely overlooks some 129 

connections, introducing FN. This highlights the importance of preserving SC specificity (FN versus 130 

FP) versus SC sensitivity (FP versus FN) in the context of large-scale models. Namely, to preserve the 131 

global topology, specificity is more important as sensitivity in SC reconstruction. In the following, 132 

we compared deterministic SC-based simulated and empirical FCs. 133 

 134 

Individual SC is the best predictor of individual FC 135 

Next, we found that individual SCs had a greater predictive power than the averaged SC 136 

(𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡 = 0.415 ± 0.005, 𝑃𝑃𝐴𝑉𝐺−𝑑𝑒𝑡 = 0.377 ± 0.003, Welch’s test: P < 137 

0.001, 𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑝𝑟𝑜𝑏 = 0.392 ± 0.005, 𝑃𝑃𝐴𝑉𝐺−𝑝𝑟𝑜𝑏 = 0.349 ± 0.004, Welch’s test: P < 0.001; 138 

Figure 2E), showing the importance of individual SCs. Although the Allen SC was obtained from 139 

hundreds of different mice, we found that it had a greater PP than individual dMRI-based SCs 140 
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(𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡 = 0.415 ± 0.005, 𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 = 0.488 ± 0.005, Welch’s test: P < 0.001; Figure 141 

2D,E), suggesting that the tracer-based connectome has structural information that is not present 142 

in dMRI, but which is central to explain the emergence of the functional connectome, even at the 143 

individual level. As the Allen SC was built from C57BL/6 mice, we verified the generality of our results 144 

in this strain (Figure S3a). Global signal regression, which improves structure-function relations and 145 

averaging recording sessions within each mouse (31), which reduces noise, increased the PP but did 146 

not alter the results (Figure S3b-c). Finally, splitting the recording sessions of each mouse, and 147 

submitting the data to a test-retest analysis revealed a close agreement between datasets (Figure 148 

S3d). Thus, our conclusions are strain- and preprocessing-independent, and reproducible. 149 

 150 

Importance of long-range connections and directionality 151 

To identify the source of the systematic superior performance of the Allen SC, we focused 152 

on the major limitations of dMRI: (1) difficulty to resolve long axonal tracts, (2) lack of information 153 

on fiber directionality and (3) imprecise estimation of connection weights. We estimated the 154 

contribution of fiber length by filtering the Allen SC to include only fibers present in the dMRI-based 155 

SC (Figure 3A); we characterized the role of fiber directionality by symmetrizing the Allen SC (Figure 156 

3A), asymmetrizing the dMRI-based SC (Figure 3B), and quantifying the impact of each manipulation 157 

(Figure 3C).  158 

Since dMRI fiber reconstruction reliability is inversely proportional to fiber length (16, 32, 159 

33), dMRI SCs are sparser than the Allen SC (Figure 2B-C-D, S2a). To test the influence of the missing 160 

fibers in predicting FC, we built a filtered Allen SC (Figure 3A), which includes only the connections 161 

contained in at least one of the 19 deterministic dMRI SCs. The filtered connectome contains the 162 

32% of the connections of the original tracer connectome, that are those captured by the dMRI-163 

based deterministic processed connectomes. The connections that remain after the filtering 164 

operation are mainly those characterized by short-range length (Figure S2B): the averaged path 165 

length of the connections in the original and filtered tracer-based connectome is 5.40±0.02 mm and 166 

3.57±0.03 mm, respectively (Welch’s test, P<0.001). Figure 3C shows that the PP of the filtered Allen 167 

SC is lower than the original Allen SC (𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 0.461 ± 0.005, 𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 = 0.488 ±168 

0.005, Welch’s test: P < 0.001; Figure 3C), however it remains statistically greater than the PP of 169 

individual SCs (𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡 = 0.415 ± 0.005, Welch’s test: P < 0.001; Figure 3C). Thus, 170 

although connections overlooked by the dMRI method, which are mainly long-range connections, 171 

are important to explain FC, other important structural features present in the Allen SC are 172 
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necessary to explain the discrepancy in PP between the tracer-based and dMRI-based connectomes.  173 

We next focused on fiber directionality, since imposing bidirectional communication between 174 

regions connected with unidirectional links in vivo may affect FC. We used an approach based on 175 

surrogate SCs to test the role of directionality. Since the Allen SC contains directionality between 176 

regions, we removed this information by symmetrizing it (Figure 3A). Figure 3C shows that 177 

symmetrizing the Allen SC reduces its PP significantly (𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 𝑠𝑦𝑚 = 0.418 ± 0.004, 𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 =178 

0.488 ± 0.005, Welch’s test: P < 0.001; Figure 3C), making it comparable to the PP of the dMRI-179 

based SCs (Welch’s test, P < 0.001 ). This demonstrates that directionality is a key determinant of 180 

FC. It is notable that symmetrizing the filtered Allen SC led to a more modest reduction of the PP 181 

than the symmetrisation of the original Allen SC (𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 𝑠𝑦𝑚 = 0.418 ± 0.004, 182 

𝑃𝑃𝑇𝑟𝑎𝑐𝑒𝑟 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 & 𝑠𝑦𝑚 = 0.446 ± 0.004, Welch’s test: P < 0.001; Figure 3C). We argue that the PP 183 

difference can be explained by considering the amount of false positive introduced in the surrogate 184 

connectomes by the transformation: the filtering operation inserts FN connections, while the 185 

symmetrisation operation inserts both FN and FP connections (34). It follows that the symmetrized 186 

and filtered connectome contains less FP than just the symmetrized connectome. Thus, as 187 

previously discussed for the tractography processing, introducing FP connections, as produced by 188 

the symmetrisation but not by the filtering, is more detrimental than the introduction of FN 189 

connections. To summarize when the tracer-based connectome is manipulated in order to remove 190 

the information not detected by dMRI, which is the inability to detect (i) the directionality of brain 191 

connections, as well as, (ii) some brain connections, especially the long-range ones, we found that 192 

the removal of the directionality information biases the predictive power of the connectome more 193 

than the removal of the connections not detected by the dMRI method. 194 

We then took the complementary approach: enriching the dMRI-based SC with information on fiber 195 

directionality, i.e. asymmetrizing it. The results show that asymmetrizing the dMRI SCs does not 196 

increase, but rather decreases the PP (𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡 = 0.415 ± 0.005, 𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑑𝑒𝑡−𝑎𝑠𝑦𝑚 =197 

0.394 ± 0.005, Welch’s test: P = 0.001 , 𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑝𝑟𝑜𝑏 = 0.392 ± 0.005, 198 

𝑃𝑃𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙−𝑝𝑟𝑜𝑏−𝑎𝑠𝑦𝑚 = 0.377 ± 0.005, Welch’s test 𝑃 = 0.02; Figure 3B,C). We argue that the 199 

asymmetrization of the dMRI connectomes biased the PP because asymmetrizing a matrix is an ill-200 

posed problem, since there is no unique solution (more details can be found in the Methods). In 201 

addition, there is no 1:1 correspondence between the connection strengths obtained with dMRI 202 

(axonal bundles) and Allen ones (axonal branches) since axons tend to branch more or less profusely 203 

when reaching their target zone. 204 
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 205 

Connection strengths as key determinants of FC 206 

The symmetric filtered Allen SC and the deterministic dMRI SCs have a similar structure: both 207 

matrices are symmetric and contain the same number of elements. Since the PP of the symmetric 208 

filtered Allen SC is still greater than the dMRI one, the difference can only result from dissimilarities 209 

in the values of the matrices’ entries, i.e. the connection strength values. Figure 3D shows that there 210 

is a significant relation between the normalized U-statistics of the Mann-Whitney test calculated 211 

between the filtered symmetric Allen SC and the individual dMRI SC and the PP of the latter (𝑟 =212 

0.52, 𝑃 = 0.02). Namely, the more the distribution of connection strengths of the deterministic 213 

dMRI is similar to that of the Allen SC, the more reliable the predictions are. From the analysis of 214 

the topological characteristics of the SCs, it emerges that there is a significant linear relation (𝑟 =215 

−0.55, 𝑃 = 0.014; Figure S4d) between the PP of the deterministic dMRI SCs and the level of 216 

topological organization of the connectome as a small world network, i.e. high local clustering yet 217 

short average path (35) as measured by the Small World Propensity of a network (36). Specifically, 218 

the more similar the network's connection topology of the dMRI SC is to the Allen one, the more 219 

reliable the predictions are (Figure S4c-d). 220 

 221 

Specific refinement of individual dMRI connectomes  222 

Since some afferent and efferent connections of specific areas may not be reliably 223 

reconstructed with dMRI, we examined whether refining dMRI SCs with more precise patterns 224 

derived from the Allen SC would improve the PP. For each deterministic dMRI SC, we substituted 225 

the non-zero incoming and outgoing connections of a specific region with the corresponding Allen 226 

SC projections, thus building a hybrid connectome (Figure 4A, S5A).  227 

When considering all mice, we found that substituting the anterior cingulate areas and the 228 

right caudoputamen connectivity patterns with the Allen SC projections significantly improved the 229 

PP of the connectome (left ACAd , improvement =0.047±0.006, t=7.23, P<0.001; left ACAv, 230 

improvement 0.032±0.006, t=4.96, P=0.002; right ACAv, improvement=0.028±0.003, t=7.58, 231 

P<0.001; right CP, improvement=0.018±0.003, t=6.42, 𝑃 < 0.001; Figure 4B), suggesting that both 232 

regions are poorly resolved by dMRI in mice. Importantly, the majority of substitutions decreased 233 

the PP (Figure 4B). For each animal, we quantified the specificity of each connection with respect to 234 

the other mice. Figure S5b shows that there is a relation between the connection specificity and the 235 

change in PP when the corresponding connections are replaced with the non-specific tracer ones. 236 
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This result confirms that the specificity of connections in individuals is a key feature for brain 237 

dynamics. 238 

For each individual SC, we identified the region in which replacement of its dMRI-239 

connections with the Allen ones generates a new connectome, hybridbest, which has the best PP 240 

improvement as compared to the other hybrid connectomes (Figure S5a). Figure 4C shows that the 241 

PP achieved by hybridbest is statistically indistinguishable to the one achieved by the filtered Allen 242 

SC (Welch’s test: 𝑃 = 0.95). In other words, it is sufficient to replace in the dMRI SC the connections 243 

of one particular region with the corresponding Allen ones, to get a similar prediction, which is 244 

specific for each mouse. 245 

 246 

The asymmetric mouse brain 247 

Finally, we sought to estimate the potential contribution of asymmetric transhemispheric 248 

connectivity. Figure 4D shows that there is a considerable improvement in the PP of hybrid SCs when 249 

using connections from the right hemisphere, as compared to those from the left one. The Allen 250 

connections have been estimated using unilateral injection in the right hemisphere (18). Since no 251 

tracer injections were done in the left hemisphere, TVMB uses a mirror image of the right 252 

hemisphere to build the left one (21). This suggests that the tracer-based intra-hemispheric 253 

connectivity predicts better right intra-hemispheric functional behavior than the left one, as 254 

demonstrated in Figure S6a. Figure 4E shows that there is a significant relation between hemispheric 255 

lateralization in the functional connectomes and the improvement in PP when the right and left 256 

homotopic tracer area’s connections are introduced in the dMRI SC (𝑟 = 0.14, 𝑃 = 0.01). Namely, 257 

the more functional connections are asymmetric, the more the PP decreases when using the right 258 

hemisphere connections to build the left ones. These results suggest that connectivity asymmetry 259 

impacts brain dynamics and that it is region- and mouse-specific.  260 

 261 

Hemispherical lateralization of the mouse brain 262 

Figure 4E shows that the region demonstrating the greatest lateralization in terms of 263 

functional connectivity in individual mice is the supplemental somatosensory area (SSs). Figure 4B 264 

shows that when we introduce the mirror image of the right SSs into the dMRI SC, the predictive 265 

power is considerably decreased, which means that the mirror image of the right SSs poorly 266 

represents the true left SSs. We thus focused on the SSs area. If SC drives FC, we predicted that 267 

introducing in the tracer-based connectome the detailed left SSs connections, instead of using the 268 
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mirror image of the right SSs ones, would increase the PP of the connectome. We first performed 269 

tracer injections in the left SSs and determined the projection pattern. As predicted, we found 270 

evidence of an asymmetric distribution of fibers between the left and right SSs (Figure 5A). To test 271 

whether these structural differences were sufficient to explain the functional ones, we introduced 272 

the connections of the left SSs into the tracer connectome and obtained a statistically greater PP as 273 

compared to the ones of purely mirrored connectomes built from the injection experiments 274 

performed in the right SSs (Figure 5B). Next, we introduced the left connections of the SSs into the 275 

dMRI-based SCs (hybrid connectome), and, as predicted, we found a greater PP as compared to 276 

using the mirror image of the right connections of the SSs as shown in Figure 5C (between the 14 277 

experiments performed in the right SSs we take into account the one whose injection location is 278 

more similar to those used in the left SSs injection experiment). Finally, since our previous results 279 

demonstrate that the lateralization is animal-dependent, we sought to examine whether lateralized 280 

FC is supported by lateralized SC, and found that the improvement of the PP following hybridization 281 

of left SSs dMRI connections is indeed proportional to the degree of functional lateralization (𝑟 =282 

0.42, 𝑃 = 0.01; Figure 5D). Together, these results show that the mouse brain is structurally 283 

lateralized, and that this lateralization impacts whole brain dynamics at the individual subject-level.  284 

 285 

 286 

DISCUSSION 287 

Our results provide direct evidence of a type of causality between SC and FC, in the sense 288 

that individual structural connectomes predict their functional counterparts better than the dMRI-289 

based averaged connectomes. Previous studies utilized the Allen Mouse Connectivity Atlas to study 290 

structure-function relations at the group level using voltage-sensitive dyes (37) and FC (22, 25, 38). 291 

In addition, a recent work in rats (39) used TVB to simulate FC based on SC and found strong 292 

correlation at the group level; a similar finding has been reported in humans (40). Here we compared 293 

structure-function relations in individual brains and we used the detailed Allen connectome as a 294 

gold standard to identify regions and connections that play a preeminent role in the emergence of 295 

individual brain dynamics. We showed that, similar to humans (6), intra-mice FCs are more stable 296 

than inter-mice FCs (Figure 2A). We propose that the emergence of the personal features in the 297 

functional data is, at least partially, driven by the emergence of underlying individual-specific 298 

structural organization with individual stable features (Figure 2E). Notwithstanding, we cannot 299 
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exclude that the variations in hemodynamic response functions (HRF) across animals and brain 300 

location affect SC-FC relations, as it has been shown in humans (41). However, the fact that we 301 

analyzed awake animals reduces the impact of this confounding factor (42, 43). 302 

The detrimental role of false positive (FP) connections in the connectome topology has been 303 

explored by (30) and (34) analyzing, respectively, the effect of FP as introduced by probabilistic 304 

tractography and overlooking connections’ directionality. In line with these findings, we showed 305 

that the introduction of FP connections biases the connectome predictions. We found the dMRI-306 

based connectomes processed with the deterministic tractography have a statistically greater PP 307 

than those processed with probabilistic algorithms. Since the observed difference in PP is not 308 

directly related with the difference in connections density (Figure S2), we argue that the difference 309 

in PP is driven by the different characteristics of the connections overlooked by both types of 310 

tractography processing: more FP and less FN in the case of probabilistic processed connectivity, 311 

and conversely in the case of deterministic processed connectivity. This highlights that brain 312 

dynamics predictions are more accurate if connectome specificity is preserved, even at the cost of 313 

sensitivity, as it is the case of deterministic processed connectome. 314 

When processing the tracer-based data, the probabilistic computational model used to 315 

construct the original Allen connectome (18) may introduce several false negative connections, 316 

resulting in a low connection density reconstruction (35-73%), whilst others reported a 97% density 317 

(19, 20). Here, we have used the Allen connectome builder interface, which implements a 318 

deterministic approach to reconstruct whole brain connectivity (21), leading to a 98% density of 319 

connections. Still, as shown in Figure 3B, the introduction of FN connections (filtered tracer-based 320 

connectome) does not dramatically influence the PP of the connectome. 321 

The main drawback of the Allen connectome is that it has been obtained from hundreds of 322 

different mice, thus blurring individual variability. In keeping with this, we found that replacing most 323 

individual dMRI connections with Allen connections reduces the PP. However, in some regions such 324 

as the anterior cingulate and the caudoputamen, group-level Allen connections outperform 325 

individual dMRI connections. This finding can be explained by the fact that connections from the 326 

anterior cingulate are difficult to resolve as this area is located in the midline brain region, where 327 

the cortex folds, resulting in an abrupt change in fiber directionality. Moreover, the axons make 328 

sharp turns around the corpus callosum while the extraction algorithm assumes a logical 329 

continuation of the vector direction. The connections of the striatum are often short and, due to its 330 

multipolar organization without a clear gradient orientation limiting fiber reconstruction. To sum 331 
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up, including the tracer information of these complex fiber pathways in the dMRI-based 332 

connectome significantly increases the predictive power of individual connectomes. It would be 333 

interesting to test the same procedure when using whole brain modeling of human individuals by 334 

including tracer information from non-human primates experiments. 335 

Although the Allen connectome was obtained from C57BL/6 mice, brain dynamics of hybrid 336 

F1 mice could be predicted by the Allen connectome, suggesting that the structural organization of 337 

the mouse brain was not impacted by out-breeding. Findings from hybrid mice are considered more 338 

generalizable to other strains (44), thus suggesting that the pattern observed here is not strain-339 

specific. Nonetheless, since the genetic background affects the behavioral phenotype (45), it will be 340 

important to systematically assess these findings in mouse strains where this aspect is directly 341 

manipulated. 342 

The Allen SC includes directionality and long-range connections, which are not well (or at all) 343 

resolved by dMRI. However, the removal of the connections not resolved by dMRI-based 344 

connectomes, mostly those characterized by long-range length, is not sufficient to explain the 345 

discrepancy between the tracer-based and dMRI-based predictive power. In addition, we showed 346 

that removing the directionality information from the tracer-based connectome, that it is 347 

symmetrizing the connectome, thus introducing FP and FN connections, worsens the predictive 348 

power more than the filtering operation, that consist in introducing just FN connections (34). This 349 

shows the key role of connections directionality in predicting brain dynamics; and it confirms our 350 

results on tractography algorithm processing: FP connections biases the predictive power ability of 351 

the connectome more than FN. Finally, analyzing the connections strength differences between the 352 

dMRI and tracer-based connectome, we have showed that connection strengths are the main 353 

determinant of these dynamics, and consequently of individuality (Figure 3D).  354 

An unexpected result was the important role played by the transhemispheric asymmetry of 355 

connections. This finding is consistent with calcium imaging studies reporting such asymmetry in 356 

rodents (46). By comparing injections between left and right hemispheres, we confirmed our 357 

prediction that the approximation of left areas connections as right areas' connections, necessary 358 

in the tracer-based connectome reconstruction, significantly affect the predictive power of the 359 

connectome. Moreover, we showed that the bias introduced by this approximation is proportional 360 

to the degree of the individual animal’s functional lateralization. 361 

Progress in connectomics enabled the development of large-scale brain models to study brain 362 

function in health and disease (12, 47). Although individual whole brain modelling has a potentially 363 
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high translational value for the benefit of patients (15, 48, 49), the entire approach relies on the 364 

extent to which individual differences in structural connectomes determine the emergent network 365 

dynamics and consequent neuroimaging signals. Although SC does not provide enough 366 

information to predict an epileptogenic zone in humans (50), our work shows that using more 367 

precise information (e.g. obtained from tracer injections in non-human primates) to take into 368 

account directionality, synaptic weights and poorly-resolved dMRI connections, will increase the 369 

predictive power. Our here demonstrated link of individual SC and FC variability and brain network 370 

modeling bears the promise to build a systematic approach to individual diagnosis and clinical 371 

decision making (15, 47).   372 
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MATERIALS AND METHODS 373 

1.1. Animals and Surgical Procedures 374 

All procedures were conducted in accordance with the ethical guidelines of the National Institutes 375 

of Health and were approved by the institutional animal care and use committee (IACUC) at 376 

Technion. 19 male first generation hybrid mice (B6129PF/J1, 9-12 weeks old) were implanted with 377 

MRI compatible head-posts using dental cement as previously described (22). After 3 days of 378 

recovery, the animals were acclimatized to extended head fixation. This training included 5 handling 379 

sessions performed over 3-5 days, and 4 daily acclimatization sessions inside the MRI scanner. In 380 

each acclimatization session, mice were briefly anesthetized with isoflurane (5%), and then head-381 

fixed to a custom-made cradle for gradually longer periods (2, 5, 10, 25 min). Subsequently, mice 382 

underwent seven 45 min long awake imaging sessions, and one diffusion tensor imaging (DTI) 383 

session under continuous isoflurane anesthesia (0.5-1%). A second group that included 7 male 384 

inbred C57BL/6 mice (11-16 weeks old) was operated and scanned according to the same protocol.  385 

Experiments involving mice were approved by the Institutional Animal Care and Use Committees of 386 

the Allen Institute for Brain Science in accordance with NIH guidelines. For left side injections into 387 

SSs, surgical procedures were followed as described in (18). In brief, a pan-neuronal AAV expressing 388 

EGFP (rAAV2/1.hSynapsin.EGFP.WPRE.bGH, Penn Vector Core, AV-1-PV1696, Addgene ID 105539) 389 

was used for injections into wildtype C57BL/6J mice at postnatal day 56 (stock no. 00064, The 390 

Jackson Laboratory). SSs was targeted using stereotaxic coordinates from Bregma (AP: -0.7, ML, -391 

3.4 and -3.9) and from brain surface (DV: 1.66). rAAV was delivered by iontophoresis with current 392 

settings of 3 µA at 7 s ‘on’ and 7 s ‘off’ cycles for 5 min total, using glass pipettes (inner tip diameters 393 

of 10–20 µm). Mice were perfused transcardially and brains collected 3 weeks post-injection for 394 

imaging using serial two-photon tomography, using methods as previously described for the Allen 395 

Mouse Connectivity Atlas (18). 396 

 397 

1.2. Data acquisition (fMRI and diffusion-MRI) 398 

MRI scans were performed at 9.4 Tesla MRI (Bruker BioSpin GmbH, Ettlingen, Germany) using a 399 

quadrature 86 mm transmit-only coil and a 20 mm loop receive-only coil (Bruker). Mice were shortly 400 

anesthetized (5% isoflurane) before mounted on the cradle. After acquisition of a short low-401 

resolution rapid acquisition process with a relaxation enhancement (RARE) T1-weighted structural 402 

volume (TR = 1500 ms, TE = 8.5 ms, RARE-factor = 4, FA = 180°, 30 coronal slices, 150 × 150 × 450 403 
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m3 voxels, no interslice gap, FOV 19.2 × 19.2 mm2, matrix size of 128 × 128), four spin echo EPI (SE-404 

EPI) runs measuring BOLD fluctuations were acquired (TR = 2500 ms, TE = 18.398 ms, 200 time 405 

points, FA = 90°, 30 coronal slices, 150 × 150 × 450 m3 voxels, no interslice gap, FOV 14.4 × 9.6 406 

mm2, matrix size of 128 × 128). In addition, mice underwent another session under anesthesia to 407 

acquire high resolution T2 image (TR = 6000 ms, TE = 8.8 ms, RARE-factor = 16, FA = 180°, 36 coronal 408 

slices, 100 × 100 × 400 m3 voxels, FOV 16 × 16 mm2, matrix size of 160 × 160, 10 averages) and 409 

diffusion tensor imaging data (DTI) with a diffusion-weighted spin-echo echo-planar imaging (EPI) 410 

pulse sequence (TR = 9000 ms, TE = 21.68 ms, Δ/ δ=11/2.6 ms , 4 EPI segments, 30 gradient directions 411 

with a single b-value at 1000 s/mm2 and three images with b-value of 0 s/mm2 (B0), 36 slices, 100 × 412 

100 × 400 m3 voxels, FOV 16 × 16 mm2, matrix size of 160 × 160, 2 averages). Each DTI acquisition 413 

took 39.6 min. 414 

  415 

1.3. Data processing 416 

Intrinisc functional connectivity data: 417 

fMRI data preprocessing procedure was validated in a previous study (22). Briefly, the first two time 418 

points were removed for T1-equilibration effects, slice-dependent time shifts were compensated, 419 

head motion was corrected using rigid body correction, volumes were registered to a downsampled 420 

version of the Allen Mouse Brain Atlas, and data underwent intensity normalization. Then, motion 421 

scrubbing procedure was applied to remove motion-related artifacts as previously shown. A 422 

rigorous censoring criteria were used including frame displacement (FD) of 50 m and temporal 423 

derivative root mean square variance over voxels (DVARS) of 105% of median. An augmented 424 

temporal mask of 1 frame before and 2 frames after detected motion was used and sequences of 425 

less than 5 included frames were also censored. Runs with less than 50 frames, and sessions with 426 

less than 125 frames (5.2 mins) were excluded. The average number of included sessions per mouse 427 

was 6.31±0.82 (mean±SD) for the F1 hybrid mice and 3.71±2.21 for the C57BL/6 inbred mice. Total 428 

included time per session was 15.7±4.4 (minutes per session, mean±SD) and 11.41±3.67, 429 

respectively. 430 

 431 

After motion scrubbing, resting-state fMRI specific preprocessing procedure was applied including 432 

demeaning and detrending, nuisance regression of 6 motion axes, ventricular and white matter 433 

signals and their derivatives, temporal filter (0.009 < f < 0.08 Hz), and spatial smoothing (Gaussian 434 

kernel with FWHM of 450 m.) The C57BL/6 group was preprocessed both with and without global 435 
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signal regression to test the effects of this procedure on structure-function relations. 436 

To estimate functional connectomes, we build a parceled volume with a resolution compatible with 437 

the fMRI technical constraints by manipulating the Allen Mouse Brain Connectivity Atlas (18) 438 

downloaded through The Virtual Brain (9, 21). The volume was registered to the space of the 439 

functional data ('target.nii.gz') using the nearest neighbor interpolation (FLIRT software, (51)). The 440 

parcellation was reduced only to the areas where the SNR was higher than 12, and that had a volume 441 

greater than 10 voxels (>0.1mm3). Finally, very anterior and posterior areas, such as the main 442 

olfactory bulb and cerebellum, were excluded from the parcellation due to registration problems 443 

and susceptibility artifacts associated with the head-post implantation. Once the parcellation 444 

volume was built, mean BOLD signals were extracted from the voxels composing each parcel, and 445 

correlations were calculated from included frames only (based on motion scrubbing). 446 

 447 

Diffusion-MRI data: 448 

We processed diffusion-MRI data using MRtrix3 software (28). 449 

The fiber orientation distribution of each voxel was estimated using the Constrained Spherical 450 

Deconvolution (CSD, (52)). To obtain the tract streamlines we integrated the field of orientation 451 

probability density using both deterministic (SD_Stream, (28)) and probabilistic (iFOD2, (29)) 452 

algorithms; in both cases, the tracts number was set to 100 million. The streamlines were then 453 

filtered using the SIFT algorithm (53) which selectively reduces the number of tracts exploiting the 454 

fiber orientation density information obtained through the CSD in the previous step. The filtered 455 

tracts of the right SSp-bfd obtained with probabilistic and deterministic algorithm, for an illustrative 456 

mouse, are shown in Figure 2B and 2C respectively. We defined seed regions using the Allen Mouse 457 

Brain Connectivity Atlas (18) obtained through the The Virtual Brain (9, 21); after registering the 458 

volume in the individual mouse diffusion space, we reduced the parcellation only to those areas 459 

whose volume was greater than 250 voxels (>1.125mm3). 460 

Using the deterministic and probabilistic streamlines and the node parcellation image, we 461 

generated a connectome. The connection strength between each pair of nodes was defined as the 462 

streamline count between the two nodes scaled by the inverse of the volumes of the two areas. A 463 

radial research was performed to assign each streamline end point to a given node. If no node was 464 

found inside a sphere of 1 mm radius, the streamline was not assigned to any node. We excluded 465 

all self-connections by setting the diagonal elements of the connectome to zero and normalized all 466 

connection strengths between 0 and 1. Then, we repeated this procedure for all mice. An example 467 
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of personalized connectome obtained with probabilistic and deterministic algorithm is shown in 468 

Figure 2B and 2C, respectively. 469 

 470 

Tracer data: 471 

The recent updates of The Virtual Brain software (9, 21) allows us to manipulate the anterograde 472 

tracer experiments performed at the Allen Institute (18) in order to obtain a very precise mouse 473 

connectome. Unless otherwise specified, the tracer-based connectome is built averaging 474 

experiments performed injecting the tracing compound in the areas in the right hemisphere. 475 

One of the main differences between tracer and diffusion-MRI technique is the spatial resolution; 476 

in order to discard this factor as a cause of diversity in the reconstructed connectome, the seed 477 

areas included in the tracer connectome are the same as the ones included in the diffusion-MRI 478 

connectome. As for the diffusion-MRI connectome, the self-connections were excluded and the 479 

connection strengths were normalized between 0 and 1. The tracer connectome is shown in Figure 480 

2D. 481 

To evaluate the impact of introducing connections of the left SSs obtained injecting the tracing 482 

compound in the left structure (and not in the right structure as generally done in the building 483 

procedure) we built tracer-based connectome using the information of just one experiment per area 484 

(Figure S6b). In particular in Figure 5B we evaluate how reconstructing left SSs connections using 485 

different experiments (14 injection experiments performed in the right SSs and 1 injection 486 

experiment in the left SSs) impact the Predictive Power of the tracer connectome. 487 

 488 

1.4. Surrogate connectomes 489 

Connectomes derived with different methodologies (e.g. tracer experiments, deterministic or 490 

probabilistic diffusion-MRI tractography) give rise to different simulated resting state dynamics. 491 

Since in this study we always use the same large-scale model to simulate the functional brain 492 

patterns (reduced Wong Wang model in the bistable configuration, see section simulated 493 

dynamics), the observed differences are determined uniquely by the different structural 494 

organization used to conceptualize the brain network, i.e. the connectome. 495 

In order to test different hypotheses about what could be the connectivity properties that give rise 496 

to the observed discrepancies in the simulated dynamics, we built different kinds of surrogate 497 

connectomes as described in what follows. 498 

 499 
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Averaged connectome: the role of individual variability 500 

In order to assess the role of individual variability in dMRI data, we built an averaged connectome, 501 

both for deterministic and probabilistic tractography. We defined the averaged connectome as a 502 

matrix whose entry �́�𝑖𝑗, i.e. the connection strength between area i and area j, is the arithmetic 503 

mean of the values of the connection strength 𝑤𝑖𝑗 of the N individual dMRI connectomes containing 504 

both area i and area j: 505 

�́�𝑖𝑗 =
1

𝑁
∑𝑤𝑖𝑗

𝑛

𝑁

𝑛=1

 506 

( 1 ) 507 

where n is the connectome index. 508 

 509 

Filtered connectome: the role of long range connections 510 

Comparing the connectomes in Figure 2B-D it is possible to notice that the number of long range 511 

connections detected with probabilistic, and more dramatically with deterministic, tractography is 512 

drastically lower than the one retrieved with the tracer method. It is well known that the accuracy 513 

of fiber reconstruction with diffusion-MRI data decreases with fiber distance; however, it is still 514 

unclear how to address this methodological limitation. 515 

In order to quantify the impact of long-range connections presence in the simulated system, we 516 

filtered down the tracer connectome by removing all the connection not present in the deterministic 517 

diffusion-MRI connectomes. The filtered tracer connectome is shown in Figure 3A. 518 

 519 

Symmetrized and asymmetrized connectome: the role of fiber directionality 520 

The incapacity to detect fiber directionality is one of the main drawbacks of dMRI method. 521 

In order to understand the influence of this property in the simulated system, we symmetrized the 522 

tracer connectome and we asymmetrized the diffusion-MRI connectome. 523 

Symmetrized tracer connectome: 524 

For each asymmetric matrix exists one, and only one, decomposition that enables us to find the 525 

corresponding symmetric matrix: each generic matrix A can be decomposed in its symmetric and 526 

asymmetric part as: 527 

𝐴 = 𝐴sym + 𝐴asym =
1

2
(𝐴 + 𝐴𝑇)
⏟      
symmetric part

+
1

2
(𝐴 − 𝐴𝑇)
⏟      
asymmetric part

 528 
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thus, symmetrizing a matrix means neglecting its asymmetric part. 529 

Following this consideration, the tracer symmetric connectome was defined as the matrix whose 530 

entries �̂�𝑖𝑗 are defined as: 531 

 532 

�̂�𝑖𝑗 =
𝑡𝑖𝑗 + 𝑡𝑗𝑖

2
 533 

( 2 ) 534 

where 𝑡𝑖𝑗 represents the original tracer connection strength between area i and area j. 535 

The symmetric tracer structural connectivity is shown in Figure 3A. 536 

 537 

Asymmetrized dMRI connectome: 538 

As opposed to symmetrizing a matrix which is a straightforward procedure, a-symmetrizing a matrix 539 

is an ill-posed problem, since it means introducing a new degree of freedom in the system, and not 540 

a unique solution exists. Thus, to find the asymmetric version of the dMRI connectome we assumed 541 

some constraints: we injected in each connection the same degree of asymmetry contained in the 542 

respective tracer connection, while preserving the dMRI weight balancing. In other words, our 543 

asymmetrization method assumes that the degree of asymmetry is independent on the connection 544 

strength value.  545 

We defined the asymmetry degree 𝜇𝑖𝑗between connection i and connection j as: 546 

 547 

𝜇𝑖𝑗 =

{
 
 

 
 
𝑡𝑖𝑗

𝑡𝑗𝑖
,∧ 𝑡𝑖𝑗 ≤ 𝑡𝑗𝑖

𝑡𝑗𝑖

𝑡𝑖𝑗
,∧ 𝑡𝑖𝑗 > 𝑡𝑗𝑖

 548 

( 3 ) 549 

so that: 550 

if the ij connection is symmetric: 𝑡𝑖𝑗 = 𝑡𝑗𝑖  𝜇𝑖𝑗 = +1 551 

if the ij connection is anti-symmetric: 𝑡𝑖𝑗 = −𝑡𝑗𝑖  𝜇𝑖𝑗 = −1 552 

However, since the connection strengths in the connectome are always positively defined, 𝜇𝑖𝑗 is a 553 

value always between 0 and 1. 554 

The information on the directionality of the tracer connection between area i and area j, measured 555 

by 𝜇𝑖𝑗, are inserted in the diffusion-MRI connectome by modifying the original connection 𝑤𝑖𝑗 in 556 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613307doi: bioRxiv preprint 

https://doi.org/10.1101/613307


 

 
20 

�̌�𝑖𝑗: 557 

𝜇𝑖𝑗 =
𝑡𝑖𝑗

𝑡𝑗𝑖
=
�̌�𝑖𝑗

�̌�𝑗𝑖
 558 

Specifically, we defined �̌�𝑖𝑗 = 𝑤𝑖𝑗 − 𝑘 and �̌�𝑗𝑖 = 𝑤𝑗𝑖 + 𝑘, where 𝑘 is defined as: 559 

𝜇𝑖𝑗 =
�̌�𝑖𝑗

�̌�𝑗𝑖
=
𝑤𝑖𝑗 − 𝑘

𝑤𝑗𝑖 + 𝑘
⇒ 𝑘 = 𝑤𝑖𝑗

1 − 𝜇𝑖𝑗

1 + 𝜇𝑖𝑗
 560 

( 4 ) 561 

It is important to notice that the asymmetrization of the connectome does not imply the 562 

introduction of new connections: if the original diffusion-MRI connection 𝑤𝑖𝑗 is absent it follows, 563 

from the last equation, that also the increment 𝑘 will be zero. 564 

The asymmetrized deterministic connectome is shown in Figure 3C. 565 

 566 

Hybrid connectome: the role of individual connections 567 

We aimed to study the influence of the technique, the dMRI or the tracer one, in reconstructing the 568 

connections of a specific brain area. For this purpose, we built surrogate connectomes where all the 569 

brain wirings were reconstructed with deterministic dMRI except the connections of the region 570 

under examination that were measured with anatomical tracing. 571 

In particular, for each deterministic dMRI connectome W, composed of N brain areas, we generated 572 

N different connectomes 𝑊𝑘 by substituting the incoming and outgoing non-zero dMRI connections 573 

of area k with the corresponding tracer connections. The entry 𝑤𝑖𝑗
𝑘of the hybrid connectome 𝑊𝑘 574 

are defined as: 575 

 576 

𝑤𝑖𝑗
𝑘 = {

𝑤𝑖𝑗if 𝑖, 𝑗 ∈ [1,2, … , 𝑘 + 1, 𝑘 − 1,… ,𝑁]

𝑡𝑘𝑗  if 𝑖 = 𝑘and 𝑤𝑖𝑗 ≠ 0

𝑡𝑖𝑘 if 𝑗 = 𝑘and 𝑤𝑖𝑗 ≠ 0

 577 

 578 

where 𝑤𝑖𝑗 and 𝑡𝑖𝑗 represent the connection strength of the original-individual deterministic dMRI 579 

and the original tracer connectome, respectively. 580 

It is important to notice that this operation does not imply the introduction of new connections. 581 

 582 

1.5. Comparing anatomical connectivities 583 

We quantify the difference in the connectomes using both statistical tools (the Mann-Whitney test 584 
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and the Pearson correlation) and graph theory tools (54). 585 

 586 

U-static as a measure of connectome similarity 587 

We used the Mann-Whitney test to check if the connections strength of connectomes 𝑊𝑖 and 𝑊𝑗 588 

come from the same distribution. The null hypothesis of the test, 𝐻0, is that the probability of an 589 

observation, i.e. a connection strength, of the connectome 𝑊𝑖 exceeding an observation from 590 

population 𝑊𝑗 equals the probability of an observation 𝑊𝑗 exceeding an observation from sample 591 

𝑊𝑖: 592 

𝐻0: 𝑃(𝑊𝑖 > 𝑊𝑗) = 𝑃(𝑊𝑖 < 𝑊𝑗) 593 

the alternative hypothesis, 𝐻1, is: 594 

𝐻1: 𝑃(𝑊𝑖 > 𝑊𝑗) ≠ 𝑃(𝑊𝑖 < 𝑊𝑗) 595 

The test involves the calculation of a statistic, usually called U. 596 

For sample size above 20, which is our case, the distribution of the U variable under the null 597 

hypothesis can be approximated using the normal distribution. The U variable ranges between 0 598 

and 𝑛1𝑛2, where 𝑛1 and 𝑛2 are the dimensionalities of the two connectomes. For 𝑈 ≤ 𝑈∗ = 𝑛1𝑛2 2⁄  599 

the test states that the 𝐻0 can be rejected. 600 

It follows that it is possible to normalize the U value between 0 and 1, by dividing it by the product 601 

of the dimensionality of the two connectomes; in this case the discriminator value 𝑈∗ is 0.5. 602 

 603 

Graph theory measures 604 

We characterized anatomical mouse brain structures using graph theory tools; in particular, we 605 

characterized each connectome by calculating its degree distribution and its topological properties. 606 

 607 

Degree distribution 608 

For each connectome, we calculated the directed degree distribution as: 609 

𝑘𝑖 = 𝑘𝑖
out + 𝑘𝑖

in =∑𝑤𝑖𝑗
𝑗

+∑𝑤𝑖𝑗
𝑖

 610 

We quantified the probability that the degree distribution comes from a given theoretical 611 

distribution through the Kolmogorov Smirnov test. 612 

 613 

Topological structure 614 

Topological measures as clustering coefficient and shortest path (and consequently the small world 615 
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index) are strictly dependent on graph densities, and thus the comparison of topological measures 616 

of different graphs should be carefully accomplished (55). 617 

To avoid spurious results from the comparison, we used a modified version of the small world index, 618 

i.e. the Small World Propensity (SWP), as introduced by (36).  619 

 620 

Pearson correlation as a measure of area’s connections peculiarity: 621 

We quantified the peculiarity of an area’s connections of a certain animal m by calculating the 622 

averaged Pearson correlation between the area’s connections of the animal m and the area’s 623 

connections in the other animals. 624 

 625 

Euclidean distance as quantification of hemispheric functional lateralization: 626 

We quantified the functional lateralization of a given region x as the Euclidean distance between 627 

the functional connections of the left area x and the functional connections of the right area x.  628 

 629 

1.6. Simulated resting state dynamics 630 

Using the previously described connectomes we conceptualized the mouse brain as a neuronal 631 

network. The mean activity of each brain region, i.e. the network’s node, was defined by the reduced 632 

Wong Wang model (23). In this approach, the dynamics of a region is given by the whole dynamics 633 

of excitatory and inhibitory populations of leaky integrate-and-fire neurons interconnected via 634 

NMDA synapses. Here we take into account the model with a further reduction performed in (13): 635 

the dynamics of the output synaptic NMDA gating variable 𝑆 of the i-th brain area is strictly bound 636 

to the collective firing rate 𝐻𝑖. The resulting model is given by the following coupled equations: 637 

𝑑𝑆𝑖
𝑑𝑡

=
−𝑆𝑖
𝜏𝑠
+ (1 − 𝑆𝑖)𝛾𝐻𝑖 + 𝜎𝜂𝑖(𝑡) 638 

( 5 ) 639 

𝐻𝑖 =
𝑎𝑥𝑖 − 𝑏

1 − 𝑒𝑥𝑝 (−𝑑(𝑎𝑥𝑖 − 𝑏))
 640 

( 6 ) 641 

𝑥𝑖 = 𝜔𝐽𝑁𝑆𝑖 + 𝐽𝑁𝐺∑𝑤𝑖𝑗𝑆𝑗 + 𝐼𝑜
𝑗

 642 

( 7 ) 643 

where 𝑥𝑖  is the synaptic input to the i-th region. 𝛾 is a kinetic parameter fixed to 0.641, 𝜏𝑠 is the 644 
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NMDA decay time constant and its value is 100 ms; 𝑎, 𝑏 and 𝑑 are the parameters of the input and 645 

output function 𝐻 and are respectively equal to 270 𝑛𝐶−1, 108 Hz, 0.154 s. 𝐽𝑁 = 0.2609𝑛𝐴 is an 646 

intensity scale for the synaptic input current. 𝜔 is the local excitatory recurrence and 𝐼𝑜 is the 647 

external input current. 𝐺 is the coupling strength i.e. a scalar parameter which scales all the 648 

connection strengths 𝑤𝑖𝑗 without altering the global topology of the network. We set the noise 649 

amplitude σ of the normally distributed stochastic variable 𝜂𝑖  to 0.015 since this level of noise is 650 

able to sustain brain states oscillations. 651 

The local excitatory recurrence, 𝜔, and of the local excitatory recurrence and 𝐼𝑜 are set to 0.3 nA 652 

and 1, respectively, in order to enrich the non-linearity of the dynamics of each brain region. In this 653 

case, studying the dynamics of isolated brain areas (𝐺 = 0 in equation ( 7 ), it is possible to notice 654 

that each brain area is in a bistable state and it oscillates between high and low activity fixed points 655 

(14). It has been noticed in (14) that enriching the non-linearity of each brain areas introduces global 656 

network’s attractors that are not in trivial relation with the anatomical connectivity; this model 657 

offers the chance to reproduce the non-stationary features of the functional connectivity patterns, 658 

as shown by the checkboard pattern of the simulated FCD in Figure S1b. 659 

For each connectome, we identified the coupling strength values for which the system is 660 

experiencing multistability. The optimal coupling strength range is defined as the values for which 661 

the system low and high states coexist, and it is identified by building the system's bifurcation 662 

diagram as described in (13). 663 

The brain activity, for each connectome, is simulated for 40 values of coupling strength that equally 664 

span between 0 and M, where M corresponds to the coupling strength value for which the low state 665 

(identified with the previous method), disappears. The simulations obtained from each 666 

connectome, for different coupling strength value, are used to calculate the predictive power of the 667 

connectome as explained in the section. 668 

 669 

Integration scheme and BOLD signals 670 

Model equations are numerically solved using the Euler Maruyama integration method with a fixed 671 

integration step of 0.1 ms. Simulated BOLD signal is obtained by converting the simulated synaptic 672 

activity (equation ( 5) using the Balloon-Windkessel method (56) with the default value 673 

implemented in The Virtual Brain (57). 674 

The BOLD time-series are down-sampled to 2.5 sec according to the temporal resolution of the 675 

experimental data. 676 
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 677 

1.7. Resting state signals analysis 678 

Functional connections in the experimental and simulated time-series are explored from both 679 

spatial and temporal point of views using the Functional Connectivity (FC) and the Functional 680 

Connectivity Dynamics (FCD), respectively. We also explored the relation between functional links 681 

by estimating the Functional Meta-Connectivity (FMC). 682 

 683 

Functional Connectivity (FC) 684 

The FC matrix is defined as the matrix whose ij-th element is the Pearson correlation between the 685 

BOLD signal of the brain region i and of the brain region j. An example of empirical and simulated 686 

FC is shown in figure 1. 687 

 688 

Functional Connectivity Dynamics (FCD) 689 

The FCD matrix for the experimental and simulated signals is calculated using the sliding windows 690 

approach (14, 24). 691 

To estimate the FCD, the entire BOLD time-series is divided in time windows of a fixed length (2 min) 692 

and with a spanning of 2.5 sec; the data points within each window centered at the time 𝑡𝑖were 693 

used to calculate FC(𝑡𝑖).  694 

The ij-th element of the FCD matrix is calculated as the Pearson correlation between the upper 695 

triangular part of the FC(𝑡𝑖) matrix arranged as a vector and the upper triangular part of the FC(𝑡𝑗) 696 

matrix arranged as a vector. 697 

In order to observe signal correlations at frequency greater than the typical one of the BOLD signals, 698 

the sliding window length is fixed to 2 min, since, as demonstrated by (Leonardi and Van De Ville 699 

2015), the non-spurious correlations in the FCD are limited by high-pass filtering of the signals with 700 

a cut-off equal to the inverse of the window length. 701 

An example of empirical and simulated FCD is shown in Figure 1. 702 

The typical FCD matrix during resting-state has a checkboard appearance (see experimental FCD in 703 

Figure 1) indicating that the system is switching between stable networks configuration (14, 24). We 704 

quantified the switching degree of the simulated and experimental system as the variance of the 705 

triangular part of the FCD once excluded the overlapping entries (i.e. the entries of the FCD matrix 706 

that quantify the correlation of FCs calculated over the sliding window of overlapping time interval). 707 

We called this quantity clue of switching (cs). 708 
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 709 

Functional Meta-Connectivity (FMC) 710 

To compare the dynamical evolution of the functional connections between different systems we 711 

calculate, for each system, the FMC. The FMC, of a BOLD signals of N areas, is a 𝑁2x𝑁2 matrix that 712 

quantifies the inter-region functional correlation of the system. The ij-th element of the FMC 713 

represents the Pearson correlation between the temporal evolution of the i-th functional link and 714 

the j-th functional link.  715 

 716 

1.8. Comparing experimental and simulated BOLD signals 717 

We quantified the ability of a given connectome to be used as a skeleton of the virtual system by 718 

comparing the accordance between the simulated functional connections, generated using that 719 

connectome, and the functional connections arranged during the experimental resting state 720 

recordings. 721 

As discussed in the article we used the FC as the metric for quantifying the experimental and 722 

simulated functional connections. Indeed, although the FC metric is not able to capture the non-723 

stationary nature of the resting state signals, the static functional connections are stable across 724 

resting state recordings in the same animal; on the other hand, FMC, that is able to quantify the 725 

dynamical evolution of the functional connections, is not stable across resting state recordings (see 726 

Figure S1), and thus cannot be used for quantifying the goodness of the simulated activity. 727 

  728 

The simulated functional network is generally composed of more areas than the experimental one 729 

since the simulation is based on the anatomical information that has a greater spatial resolution 730 

than the functional ones. Thus, in order to correlate the eFC and the sFC we reduced them to the 731 

same number of areas. For each virtual mouse brain we simulated for different values of the 732 

coupling strength G and then select the value of G for which the simulated neuronal network is able 733 

to obtain the more realistic outcome, i.e. the maximum correlation between the empirical and 734 

simulated FC (12, 14, 58). 735 

 736 

For each mouse, m, and each session, d, we defined the 𝑃𝑃 of a given connectome 𝑐 as the 737 

maximum Pearson correlation between empirical the FC (eFC) and the simulated FC (sFC) obtained 738 

for the different coupling strength values G: 739 

𝑃𝑃(𝑐,𝑚, 𝑑) = 𝑚𝑎𝑥
𝐺
{𝑐𝑜𝑟𝑟[𝑠𝐹𝐶(𝑐, 𝐺), 𝑒𝐹𝐶(𝑚, 𝑑)]} 740 
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The PP of a given connectome 𝑃𝑃(𝑐) is the mean over all the mice and the sessions of the 741 

𝑃𝑃(𝑐,𝑚, 𝑑): 742 

𝑃𝑃(𝑐) = 𝑚𝑒𝑎𝑛
𝑚,𝑑

{𝑃𝑃(𝑐,𝑚, 𝑑)} 743 

Since the tracer connectomes and the diffusion-MRI averaged connectomes are not derived from a 744 

specific animal, the corresponding simulated-FCs are correlated with all the functional data 745 

composing our dataset (irrespective to the mouse in which the functional data were recorded).  746 

Diffusion-MRI connectomes, instead, are specific of each animal, and thus the FCs derived from the 747 

connectome of a certain mouse are correlated only with the empirical FC recorded in the same 748 

animal.  749 

In order to assess the significance of the difference in PP of differently derived connectomes we 750 

used the p-value calculated through the Welch's test.  751 

752 
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