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SUMMARY 

Single-cell RNA-seq permits the characterization of the molecular expression states of 

individual cells. Several methods have been developed to spatially and temporally resolve 

individual cell populations. However, these methods are not always integrated and some 

of them are constrained by prior knowledge. Here, we present an integrated pipeline for 

inference of gene regulatory networks. The pipeline does not rely on prior knowledge, it 

improves inference accuracy by integrating signatures from different data dimensions and 

facilitates tracing variation of gene expression by visualizing gene-interacting patterns of 

co-expressed gene regulatory networks at distinct developmental stages. 
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INTRODUCTION 
The sequential and dynamic establishment and dismantling of gene regulatory networks 

(GRNs) instruct uncommitted and progenitor cells to adopt or avoid branching lineage 

choices (Davidson, 2006). Bulk transcriptomes have provided considerable insights and 

fostered the discovery and characterization of GRNs (Trapnell et al., 2010; Wang et al., 

2009). However, bulk transcriptomes provide population-based averaged measurements 

which blur cell heterogeneity and developmental dynamics of asynchronous cell 

populations. Single-cell transcriptome technologies (scRNA-seq) capture cell 

heterogeneity and thus are useful for the discovery of cell populations, identification of 

cell mutants, and quantification of subpopulations (Linnarsson and Teichmann, 2016). 

Leveraging on the ability of generating thousands of individual measurements, methods 

have been developed to spatially and temporally resolve cell populations. Clustering and 

dimensionality reduction algorithms such as PCA, tSNE, and diffusion maps permit the 

identification and enumeration of cell types among cell populations (Satija et al., 2015) 

(Butler et al., 2018). Temporal trajectories are generated by pseudotime ordering of single 

cells to identify unique transition paths among different cell states (Trapnell et al., 2014) 

(Qiu et al., 2017) or by predicting future states of gene expression based on 

measurements of unspliced and spliced transcripts (La Manno et al., 2018). Using spatial 

or temporal information from clustering and trajectories, boolean models (Woodhouse et 

al., 2018), co-expression analysis (Allen et al., 2012), and multivariate information theory-

based algorithms (Chan et al., 2017) have been successfully employed to infer GRNs. 

However, their accuracy depends on the size of the network (Fiers et al., 2018) and 

methods of normalization (Crow et al., 2016). To alleviate these issues, SCENIC (Aibar 

et al., 2017) combines co-expression with DNA binding motif enrichment analysis and 

SINCERA  (Guo et al., 2015) makes use of scRNA-seq specific cell-type gene signatures. 

Because their power to infer GRNs is knowledge-based, the use of these models is 

constrained by the availability of  annotated datasets (Fiers et al., 2018). 

Here, we present an integrated pipeline for GRNs inference which uses clustering, 

temporal, and biological signatures extracted directly from scRNA-seq datasets. To 

evaluate its predictive power, we apply it to datasets derived from differentiating human 
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pluripotent stem cells. The pipeline correctly identifies signaling pathways activated and 

dismantled at specific stages of cell differentiation and reveals the composition of gene 

hubs underlying discrete GRNs in pluripotent and committed human cells.  
 

RESULTS 
 

Pipeline Workflow 

The integrated computational pipeline for single cell gene regulatory network (IMSGEN) 

(Figure 1A) starts with the identification of transcripts corresponding to candidate genes 

in top 100 gene transcripts with average log fold changes among all cell clusters. Gene 

signatures are then employed to identify signaling pathways and gene ontology (GO) 

enrichment within each cluster. The clusters are temporally ordered by cell re-clustering 

using principal component analysis for dimension reduction and minimum spanning tree 

(MST) methods for trajectory modeling to predict the temporal relations among the 

clusters. After temporal ordering of cell clusters, distance matrices of dynamic and cluster-

specific gene-interacting patterns are employed to infer GRNs by corrected gene 

interacting (CGI) maps and force-directed graph (FDG) network model (Fruchterman, 

1991). This approach permits the identification and visualization of GRN transitions 

occurring in distinct cell states independent of cell-type and annotation biases.  
 

Clustering and Temporal Ordering of Human Pluripotent Cells undergoing 
Mesoderm Differentiation 

We tested IMSGEN performance on experimental data generated from scRNA-seq of 498 

human pluripotent cells undergoing mesoderm differentiation (Loh et al., 2016). scRNA-

seq was performed on cells induced to differentiate and captured at specific 

developmental stages:  51 human pluripotent stem cells (embryonic stem cells, ESCs), 

cells differentiated into anterior and middle primitive streaks (59 APS and 22 MPS cells, 

respectively), paraxial mesoderm (67 PXM cells), lateral mesoderm (LatM 55 cells), 

somitomere (76 cells), early somites (36 cells), dermomyotome (67 cells), and sclerotome 

(65 cells)  (Figure 1B). We aggregated scRNA-seq datasets without a priori knowledge of 
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the developmental stage of the individual cells and clustered gene expression data using 

PCA and graph-based clustering method (Butler et al., 2018). Cells segregated into 8 

clusters, representing each developmental stage with the exception of APS and MPS 

populations which could not be individually and correctly identified (Figure S1A). To 

evaluate somitogenesis (left branch of Figure 1B), we temporally ordered cell clusters by 

independent component analysis (ICA) for dimension reduction and MST for trajectory 

model (Figure S1B). Signatures for the individual clusters were generated by differential 

gene expression of the top 100 expressed genes (Figure 1C, Table S1) which were 

subsequently employed to perform pathway and GO enrichment analyses for the different 

clusters (Figure 1D, Figure S1C, Table S2). As expected, pathways regulating 

pluripotency of stem cells were identified and, consistent with their role in mesoderm 

induction (Cheung et al., 2012) (Gertow et al., 2013) (Loh et al., 2016), WNT and TGFb 

pathways were also captured by this analysis. This unbiased approach permitted the 

identification of metabolic (glycolysis-gluconeogenesis) and several other pathways not 

directly queried in (Loh et al., 2016) (Figure 1D and see below).  

 

Identification of Signaling Pathways and Visualization of Gene Regulatory 

Networks  

WNT and TGFb pathways play key roles in mesoderm formation starting from human 

pluripotent stem cells (Cheung et al., 2012) (Gertow et al., 2013) (Loh et al., 2016). 

However, the composition, structure and temporal formation of WNT and TGFb GRNs 

occurring at discrete differentiation states have not been elucidated. To infer GRNs in 

cells undergoing somitogenesis, we queried sub-datasets for WNT and TGFb signaling 

pathways (Figure 1C,D and Table S1) and generated pairwise matrices to represent gene 

co-expression using normalized distance methods (Figure 2). In these matrices, gene 

proximity (red in Figure 2) indicates co-expression while gene distance (blue in Figure 2) 

indicates absence of co-expression, thus allowing to evaluate the presence of functionally 

connected and related modules (Stuart et al., 2003) (Nguyen and Lio, 2009). This analysis 

revealed formation of WNT GRN in ESC and APS (Figure 2A). In PXM and somitomere 

cells, the GRN’s strength was reduced and further decreased in early somite and 
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sclerotome cells (Figure 2A). Similarly, gene interactions within a TGFb GRN present in 

ESC and APS were diminished in PXM and somitomere cells and continued to decline in 

early somite and sclerotome cells (Figure 2B). These findings are consistent with an 

inhibitory role exerted by both WNT and TGFb signaling pathways on early somitogenesis 

(Loh et al., 2016). Using the same approach, an embryonic morphogenesis GRN was 

revealed to be gradually established and to progressively increase its connectivity as cells 

progressed from pluripotent to more differentiated cell states (Figure 2C), reflecting 

morphogenesis that occurs during cell differentiation. Appropriate temporal expression of 

the somitomere-specific MESP2, HEYL, and HOPX, and somite-specific  MEOX1 and 

PARAXIS (TCF15) and FOXC2 genes (Loh et al., 2016) confirmed that the matrices 

accurately represent the individual cell developmental stages (Figure S1D). Thus, using 

an unbiased approach, our computational pipeline correctly identified and ordered GRNs 

for pathways known to regulate human pluripotent cell differentiation. Converting 

similarity matrices to adjacency matrices, we visualized co-expression networks using 

FDG network model (Fruchterman, 1991). This way, we could identify the nodes (genes), 

edges (gene connectivity) and overall structures of the WNT, TGFb, and embryonic 

morphogenesis GRNs at each different stages of somitogenesis (Figure S2A,B). Both 

WNT and TGFb networks increased their connectivity during the transition from 

pluripotency (ESC) to APS. Genetic interactions were pruned and refined at later stages 

of somitogenesis (Figure 2A,B). In early somite cells, the transcription factors Smad2, 

TCF7L2 (TCF-4), the TCF-4 interacting corepressor CtBP1, and calcineurin (PPP3CA), 

known to be involved in mesoderm formation (Dunn et al., 2004) (Kardon et al., 2003) 

(Hogan et al., 2003), were found to establish a WNT subnetwork (Figure S2A). A TGFb 

subnetwork revealed connectivity between the TGFb-stimulated Rho-associated kinase 

ROCK1, important for somitogenesis (Wei et al., 2001) and the activin A receptor 

ACVR2B in early somite cells (Figure S2B). SMAD2 and the serine/threonine Protein 

Phosphatase 2 (PPP2R1A) were equally connected in both WNT and TGFb subnetworks, 

confirming cross-talk of the two pathways (Attisano and Wrana, 2013). In contrast to the 

dismantling of the TGFb and WNT GRNs, a GRN composed of genes related to 

embryogenic morphogenesis (Figure S2C) gradually increased connectivity acquiring 
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additional nodes and edges in cells undergoing differentiation. Thus, IMSGEN was able 

to identify and dissect the composition, structure and temporal formation of GRNs in 

human pluripotent cells undergoing mesoderm differentiation. 

 

DISCUSSION 

Inference of GRNs from scRNA-seq data provides important clues to understand gene 

expression dynamics in developing systems. The pipeline described here, IMSGEN, 

complements and integrates existing methods. The salient characteristics of the pipeline 

are its independence from annotation biases, improved accuracy of inference integration 

of transcriptional signatures from different data dimensions, and easy visualization of 

gene interacting patterns and co-expressed GRNs. The pipeline performed well when 

tested with published data and its use can be extended to analyze GRNs during cellular 

development in any cell type and organism.   
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Figure 1. (A) Pipeline’s flowchart. (B) Scheme representing alternative mesoderm 

differentiation choices of human pluripotent stem cells. Left branch, somitogenesis; right 

branch, cardiogenesis (Loh et al., 2016). (C) Heatmap of top 100 most variably expressed 

genes in human pluripotent stem cells (ESC) and at the indicated stages of mesoderm 

differentiation. (D) Identification of pathways enriched in human pluripotent stem cells 

(ESC) and at the indicated stages of mesoderm differentiation. 

 

Figure 2 (A-C) Distance matrices indicating gene connectivity (highest connectivity, red; 

lowest connectivity, blue) for the WNT (A), TGFb (B), and Embryonic morphogenesis (C) 

genes in human pluripotent stem cells (ESC) and at the indicated stages of mesoderm 

differentiation. 

 

Figure S1 (A) tSNE-based clustering of human pluripotent stem cells (ESC) and of cells 

at different stages of mesoderm differentiation. (B) Pseudotime ordering of ESC and cells 

at different stages of somitogenesis. (C) Pathway enrichment representation based on 

pathways identified in Figure 1C. The size of the symbols for differentially-expressed 

genes (DEGs) is proportional to gene number (10,20, or 30 genes, respectively) and p-

values of the single pathways indicated in the -log10 red color scale m (lower p-values, 

brighter red color). (D) Heatmap of MESP2, HEYL, HOPX, MEOX1, FOXC2 and TCF15 

(PARAXIS) transcripts at different stages of mesoderm differentiation. 

 

Figure S2 (A-C) Force-directed networks of WNT (A), TGFb (B), and Embryonic 

morphogenesis (C) genes in human pluripotent stem cells (ESC) and at the indicated 

stages of mesoderm differentiation. Red edges indicate positive and grey edges negative 

gene correlation. 

 
Table S1. List of the top 100 differentially expressed genes in human pluripotent stem 

cells (ESC) and in different stages of mesoderm differentiation. 
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Table S2. Pathways enriched in human pluripotent stem cells (ESC) and in different 

stages of mesoderm differentiation. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Single cell RNA-seq data of 
human pluripotency 

(Loh et al., 2016) ftp://ftp.ncbi.nlm.nih.gov/geo/sa
mples/GSM2257nnn/GSM22573
02/ 

Software and Algorithms 
R package source code This paper https://github.com/holyone09/lms

gen 
Seurat (Butler et al., 2018) https://satijalab.org/seurat/ 

 
Pathfind Ulgen E. et al. 2018  https://cran.r-

project.org/web/packages/pathfi
ndR/index.html 

Metascope (Zhou et al., 2019) http://metascape.org/gp/index.ht
ml#/main/step1 

Pheatmap Kolde R. et al. 2015 https://cran.r-
project.org/web/packages/pheat
map/index.html 

Igraph Csardi G. et al. 
2006 

https://igraph.org/redirect.html 

 

Contact for Reagent and Resource Sharing 

Further information and requests for reagents should be directed to Lead Contact 

Vittorio Sartorelli (sartorev@mail.nih.gov). 

 
Method Details 
The pipeline (Figure 1A) consist of five modules, and each module is implemented by R 

programming language with its package. To evaluate the effectiveness of analyzing 

results from the pipeline, we applied it to scRNA-seq datasets of human pluripotent stem 

cells (Loh et al., 2016). 

     

Extracting spatial, biological, and temporal signatures from datasets  

The first step of the pipeline is to reduce the matrix of UMI counts or gene expressing 

values such as TPMs (Transcripts per millions) into PCA dimension. Based on Seurat R 

package (Butler et al., 2018), cells are clustered using graph-based clustering methods 

with PCA values and top-ranking genes are collected among clusters calculating average 
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log fold changes. Next, the results of clustering and top-ranking gene list are transferred 

into the modules to identify biological signatures and reconstruct the temporal orders of 

clustered groups separately. Using Pathfind R package (Ulgen E. et al. 2018), we predict 

signaling pathways with low p-value (<0.01) for entire cell populations and gather 

candidate genes related to the pathways involved in cell differentiation. In addition, genes 

are extracted from GO (Gene Ontology) enrichment analysis (p < 0.01) of Metascope 

(Zhou et al., 2019). Finally, lists of genes are preprocessed to visualize gene interaction. 

To reconstruct temporal orders of clusters, we reduce the dimension of the distance 

matrix to PCA after calculating euclidean distances among scRNAseq data. Then, 

temporal signatures are restored from PCA by Mclust and MST (Minimum Spanning Tree) 

algorithms (Xu et al., 2002). Finally, we reorganize spatial clusters following temporal 

signatures. 

 

Visualization of gene-interacting patterns and GRNs 

Using pre-processed gene lists, we generate the temporal submatrices of selected gene 

expression from an original expressing matrix.  To visualize the patterns of gene 

interactions in the temporal submatrices, we generate the matrices of similarity calculating 

normalized distance methods with eq.(1), and we draw correlational heatmaps using the 

matrices of similarity using Pheatmap R package (Kolde R. et al. 2015). 
 

Similarity(x, y) = .∑ (x0 − y0)23
0

MAX(.∑ (x0 − y0)23
0 )

7                   (1) 

 

Converting these similarity matrices to adjacency matrices for co-expression networks, 

we visualize co-expression networks in each state using Igraph R package (Csardi G. et 

al. 2006) and the Fruchterman-Reingold layout algorithm (Fruchterman, 1991). Genes 

with concordant expression levels are closely positioned forming multiple hubs within a 

given GRN. 

 

Data and Software Availability 
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Source code and installation of the R package is available 

at https://github.com/holyone09/lmsgen under Open-source R package under ‘GPL 

(version 2 or later)’. 
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