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Abstract 

After allogeneic hematopoietic stem cell transplantation (allo-HCT), donor-derived immune cells 

can trigger devastating graft-versus-host disease (GVHD). The clinical effects of GVHD are well 

established; however, genetic mechanisms that contribute to the condition remain unclear. 

Candidate gene studies and genome-wide association studies have shown promising results, but 

they are limited to a few functionally derived genes and those with strong main effects. Transplant-

related genomic studies examine two individuals simultaneously as a single case, which adds 

additional analytical challenges. In this study, we propose a hybrid feature selection algorithm, 

iterative Relief-based algorithm followed by a random forest (iRBA-RF), to reduce the SNPs from 

the original donor-recipient paired genotype data and select the most predictive SNP sets in 

association with the phenotypic outcome in question. The proposed method does not assume any 

main effect of the SNPs; instead, it takes into account the SNP interactions. We applied the iRBA-

RF to a cohort (n=331) of acute myeloid leukemia (AML) patients and their fully 10 of 10 (HLA-A, 

-B, -C, -DRB1, and -DQB1) HLA-matched healthy unrelated donors and assessed two case-

control scenarios: AML patients vs healthy donor as case vs control and acute GVHD group vs 

non-GVHD group as case vs control, respectively. The results show that iRBA-RF can efficiently 

reduce the size of SNPs set down to less than 0.05%. Moreover, the literature review showed 

that the selected SNPs appear functionally involved in the pathologic pathways of the phenotypic 

diseases in question, which may potentially explain the underlying mechanisms. This proposed 

method can effectively and efficiently analyze ultra-high dimensional genomic data and could help 

provide new insights into the development of transplant-related complications from a genomic 

perspective.  
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Introduction 

Acute graft-versus-host disease (acute GVHD) is one of the major complications after HLA-

matching allogeneic hematopoietic stem cell transplantation (allo-HCT) that cause non-relapse 

morbidity and mortality, affecting up to 40~60% of transplant patients and accounting for 20% of 

deaths after allogeneic HCT. It is an immunologically mediated complex disease. To date, 

genome-wide association studies (GWAS) and candidate gene studies have identified SNPs 

associated with acute GVHD, including SNPs that cause the genetic disparities between the 

donor and the patient, i.e., the minor histocompatibility antigen (MiHA) single nucleotide 

polymorphisms (SNPs)[1], and SNPs that modify gene functions [2]. However, the genetic risks 

for acute GVHD outcome have not been well defined yet [3]. Most such studies have focused on 

single locus variants individually or a few candidate gene locations and tested them for 

association with acute GVHD. Unlike the assumptions of these studies, however, genes tend to 

interact within specific regulatory and functional pathways, contributing to the disease 

development.  

 

Next-generation sequencing technologies have enabled affordable high-throughput whole 

genome microarray genotyping and sequencing. These technologies pose multiple unique 

challenges in transplant-related genomic studies that need to be addressed and taken into 

consideration. First, each allo-HCT case involves in two individuals, the donor and the patient, 

both of whose genomes directly influence the transplant outcomes. Thus, the genomic association 

models should consider two genomes simultaneously as a single ‘sample,’ whereas, in common 

disease association studies, either the donor or recipient genome is considered as a single 

sample. Second, the transplant-related outcomes are caused by the genomic disparities between 

donor and recipient with their synergistic interactions, and hence there is no inheritability of the 
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diseases. Third, the allele frequencies may not play an as much of an important role as in the 

common disease association studies; instead, the combinations and mismatches of donor-

recipient (DR) pair genotypes may be more influential. Fourth, the cohorts in the transplant 

genomic studies are more heterogeneous and harder to control than in common disease studies. 

Each year, there are limited transplant cases due to the challenges of finding HLA-matching 

unrelated donors and hence it is harder to recruit groups that share most of the conditions. 

Furthermore, the cohort size usually is very small compared to the common disease studies, and 

this also leads to the lack of publicly available transplant-related genomic databases. 

 

Alloimmune complications after transplantation, such as acute GVHD, not only involve immune 

responses to conventional exogenous antigens but also responses to alloantigens. The latter is 

unique to transplant cases. The major player in GVHD is the activated T cells that recognize and 

eliminate alloantigens. These T cell functions are influenced by the complex interactions between 

regulatory networks, pathways, extracellular environment and the unique conditions induced by 

transplantation procedures [4]. Thus, it is reasonable to assume that both donor’s and recipient’s 

genomes matter in the development of acute GVHD. However, most transplant-related outcome 

studies often focus on patients’ genomes, and very few studies have examined both HLA-

matching donor and recipient genomes together [5]. Here, we assume the donor’s genome as 

equal weight as the recipients and form a paired genotype encoding matrix from each transplant 

case. With a sufficiently large sample size and appropriate models, we can capture the interacting 

signals from the paired genome. 

 

Similar to the general whole-genome research in common disease studies as Moore and Ritchie 

outlined [6], transplant-related genomic research also faces three major challenges. The first 

challenge is to identify meaningful genetic variants along with clinical characteristics that are 
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susceptible to transplant-related complications. The genetic variants include SNPs, genes, or 

specific gene regions. As described above, transplant-related complications are mostly caused 

by the genetic disparities between donor and recipient and the combination of their clinical and 

demographic characteristics (e.g. sex, age, race, and ethnicity), rather than the disease 

heritability. The second challenge is to build robust and powerful predictive models that take both 

genetic and demographic variables into account and output the probability of developing adverse 

transplant outcomes given a candidate graft characteristic. The predictive models will help 

facilitate effective and optimized donor search strategies with the best transplant outcomes. While 

the first two challenges are from statistical and machine learning aspects, the last challenge is to 

interpret the genetic variants and the predictive models from a biological perspective and further 

advance our understanding of the transplant-related complications. Biological functional 

interpretation will help optimize the donor selection process, improve the transplant outcomes and 

prevent transplant-related complications. It is the most important and difficult challenge and 

requires a deep understanding of human immunology as well as genetic regulatory mechanisms. 

Wet lab bench experiments would be the most effective way to validate the hypotheses but it 

would be too time-consuming and could become impossible if there are too many factors to 

control. It is one of the current leading translational bioinformatics research focus areas.  

 

Traditional logistic regression models, 𝜒"-test, and odds-ratio are efficient and intuitive when 

finding simple linear relationships from a large-scale data set; however, they have limited power 

in modeling high-order non-linear relationships among variables, especially for ultra-high 

dimensional data. Whole genome microarray genotype data usually cover over 500,000 base 

pairs of genetic variables and a majority of them may be considered as noise since they do not 

show any susceptibility to the diseases in question. Data mining or machine learning techniques 

build models without any linearity assumptions on the data and can identify the high-order 
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interactive relationship among variables. This is especially attractive to genomic data mining 

tasks. From a machine learning point of view, there are two main tasks in this context: 1) select 

the most informative variables from the over 1 million SNPs; 2) predict the disease risk from the 

selected variables using classifiers. From a clinical point of view, these selected variables should 

be interpretable. Unlike Mendelian diseases, transplant-related outcomes are influenced by non-

linear interactions of multiple genes between donor and recipient. Transplant-related outcomes 

are more likely a joint effect of multi-factors rather than one single main effect factor. The attribute 

or feature interaction methods in machine learning seem more appropriate in this case. The data-

mining methods can detect nonlinear relationships that traditional regression-based models 

cannot represent, and this is especially true for dealing with high-dimensional data. In addition, 

the data-mining algorithms may also uncover the interactions between variables other than their 

main effects. Applications of machine learning in detecting gene-gene interactions in genetic 

epidemiology are reviewed in [7–9].  

 

The purpose of this study is to investigate the application of machine learning techniques in 

transplant genomics. More specifically, we propose a hybrid feature selection model (iRBA-RF) 

by incorporating the iterative Relief-based algorithms (iRBA) and a random Forest (RF).  

 

The rest of the paper is organized as follows. First, we define the transplant genomics and 

outcome association study in the machine learning context. Second, we briefly review feature 

selection and classification models. Then we apply the proposed iRBA-RF model to transplant 

cases to identify critical genetic factors. Lastly, we show the predictive results and provide a 

possible biological interpretation, as well as the applicability, limitations and future work.   
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Methods 

Problem Definition 

In allo-HCT, histocompatibility of stem cells is the primary concern of graft selection, and there 

are many factors involved in the donor screening process. In this study, we retrospectively 

investigated HLA-A, -B, -C, -DRB1, and -DQB1 fully matched (10/10) unrelated donor transplant 

cases, and explored the potential genetic variants that may influence the transplant outcomes. In 

addition to minor histocompatibility antigens (MiHAs), there are other genes involving in regulatory 

immunological pathways that are critical to the development of GVHD. In complex diseases, there 

is overwhelming evidence that non-additive synergistic effects of multiple genetic factors play an 

essential role in the development of the diseases. As described before, we consider the donor 

genome the same weight as the recipients. 

 

In order to investigate the applicability of the proposed model in the transplant-related genomic 

studies, we assess the following two case-control scenarios: 1) Scenario 1 (AML case-control): 

acute myeloid leukemia (AML) patients as case and their HLA-matched healthy donors as the 

healthy control; 2) Scenario 2 (aGVHD case-control): the donor-recipient (DR) pairs where the 

patients developed the acute GVHD symptoms as the case and the DR pairs where the patients 

did not show any adverse symptoms as the controls. 

 

The main difference between these two scenarios in the context of machine learning is how the 

genotypes are represented as a feature matrix. Scenario 1 is a common case-control situation 

where each individual’s genotype vector is a single observation, and the AML disease condition 

is the phenotypic outcome to be predicted. In Scenario 2, an observation is defined as the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/605428doi: bioRxiv preprint 

https://doi.org/10.1101/605428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

combined genotype vectors of the recipient and the donor, where the length of the vector is 

doubled compared to Scenario 1. In addition to the DR genotypes, other clinical characteristics 

may be included in the model, such as the HLA typing and the donor-recipient sex-mismatch 

status.  

iRBA-RF: a hybrid feature selection model for detecting attribute 

interactions 

In bioinformatics, the “large p small n” problem is a common challenge, especially when it comes 

to genomic association analysis. The most common problems in genomics data are 1) noisy data 

2) heterogeneous data types and 3) ultra-high dimensional feature space. In machine learning, 

the feature selection procedure is employed to avoid the “curse of dimensionality” for small 

samples with high dimensions [10–12]. The objective of feature selection is to select the most 

relevant feature subset to achieve the best classification/prediction performance without losing 

the generalization power (accuracy, speed, and generalization). A strong feature relevance 

indicates the feature is necessary for the predictive model, while an irrelevant feature does not 

contribute to the predictability. In some cases, the presence of certain features would decrease 

the predictability of the model, in which case they are considered as noise. For a formal theoretic 

derivation of feature relevance, interested readers may refer to [13].  

 

Depending on the feature search strategy and the level of predictive classifier integration, there 

are three different categories of feature selection methods: filter, wrapper and embedded. Filter 

approaches are independent of classifiers; instead, they examine the intrinsic properties and 

relationship between the phenotype in question. Specifically, the information theoretic metrics, 

such as mutual information [14, 15] and entropy/information gain [16, 17], are popular options to 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/605428doi: bioRxiv preprint 

https://doi.org/10.1101/605428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

measure the intrinsic properties. Since these approaches do not involve training a classifier, they 

are computationally fast and applicable to a large dataset. Detailed reviews of feature selection 

techniques in bioinformatics can be found in [18, 19].  

 

Since we are interested in interpretable variables that are linked to the phenotypes within a 

reasonable computation time, we adopt the filter-based approaches. More specifically, we 

propose a hybrid feature selection model that combines an iterative Relief-based algorithm and a 

random forest (iRBA-RF), to iteratively eliminate the irrelevant features and select the top-ranked 

features, respectively. In the next subsections, we describe the details of each algorithm.  

Iterative RBA for variable elimination  

The Relief-based algorithms (RBAs) was inspired by instance-based learning [20, 21], where it 

draws instances at random and iteratively compute and updates the weights of features based on 

their nearest neighbors and their phenotypes. The features that distinguish the selected instance 

from its neighbors of a different class get more weight. The original Relief algorithm only compares 

one nearest neighborhood of each class, which is sensitive to noisy data and restricted to a binary 

classification problem. There have been many studies to address the limitations and improve the 

performance of the original Relief algorithm. The most widely used RBA is ReliefF [22], which 

relies on the nearest k neighborhoods, instead of one. By comparing the entire vector of values 

across all attributes among neighbors, ReliefF can capture the attribute (feature) interactions and 

has gained popularity in data mining applications. Figure 1 shows an example of ReliefF on acute 

GVHD outcome data set with k =3 nearest neighbors in each class, respectively.   
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Figure 1. Illustration of ReliefF algorithm with k=3 nearest hits and misses, respectively, on transplant 

outcome data.  

 
 

 
Figure 2. Illustration of iRBA, adapted from [29].  
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However, ReliefF is not robust to noisy features where it cannot capture the correct signal. An 

improved ReliefF called Tuned ReliefF (TuRF)[23] was proposed to iteratively remove features 

that have low-quality scores, in most cases are noisy features. More extended RBAs were later 

developed and applied in genomic data analysis, including Spatially Uniform ReliefF (SURF)[24], 

SURF*[25], SWRF*[26], Multiple-Threshold* (MultiSURF*)[27], and MultiSURF[28]. They use 

different strategies to select neighboring hits and misses and calculate their weights to improve 

sensitivities and computational efficiency. Furthermore, unlike the original Relief algorithm, these 

improved versions can handle incomplete data and extend to multi-class problems. For an in-

depth review of RBA-based feature selection methods, readers may refer to [29]. 

 

In typical genomic association studies, there are over 500,000 SNPs to be examined. Especially 

in the context of transplantation, donor-recipient pair genotypes may include over 1 million SNPs. 

This poses a challenge in computational efficiency. For such ultra-high dimensional genomic data, 

iterative and efficient approaches that are wrapped around and integrated into the above core 

RBAs are recommended. VLSReliefF [30] algorithm is reported to be able to detect feature 

interactions in very large feature space both efficiently and accurately. The main idea is to 

randomly group s subsets of the feature set with as features and individually apply ReliefF to each 

group to calculate local feature weights. The global weights of each feature are the maximum 

value of the local feature weights among the subsets. In this study, we follow the framework of 

VSLReliefF and repeat the process multiple times to remove low-quality features iteratively, as 

shown in Figure 2. Instead of ReliefF, here we choose MultiSURF as the core RBA since it has 

shown to outperform in multi-way interaction detection as well as various associations, compared 

to the other RBA algorithms [28]. 
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Random forests for feature importance ranking and variance selection 

Random forests (RF) are ensembles of tree-structured classifiers that are constructed in the 

following random fashion: each tree is grown using a bootstrap sample, i.e., aggregated sampling 

with replacement, of original training set and a randomly chosen subset of features and a majority 

voting scheme to ensemble individual trees, as illustrated in Figure 3 [31]. Instead of using the 

whole set of a training set, each tree is trained on the bootstrapped sample set, and the rest 

samples are used as a validation set to estimate the tree’s classification error. This validation set 

is called the out-of-bag (OOB) samples. The OOB scheme is used to monitor the generalization 

error, strength, and correlation of trees in the forests, as well as the variable importance. As more 

trees added to the RF, it is guaranteed to converge with a limited generalization error and does 

not suffer from overfitting problem due to the Law of Large Numbers [31].  

 

In addition to its effective predictive ability, RFs also measure the importance of the variables in 

terms of their relevance to the phenotypic outcome. This function has shown great potential in 

genome-wide association studies and bioinformatic applications due to its effectiveness and 

potential interpretability. The original RF measures the feature importance using two different 

metrics. 
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(a)  

 
(b)  

Figure 3 Diagram of single decision tree and the random forests. (a) a single decision tree in the forest; (b) 

Random Forest classifying transplant outcome from the donor-recipient pair genotypes. 

 

The first variance importance metric is called Gini importance (GIMP). At a node in a tree, the 

objective is to reduce the class ambiguity as the tree grows and the split at a node is determined 

by the feature that reduces the class ambiguity the most when the sample passes down the split. 

In RF, the impurity of splits is measured by the Gini impurity index [32], defined as follows: 

suppose at a node ,  observations are trained using feature set 𝑅$ = {𝑓$(, 𝑓$",… , 𝑓$+}. Write 
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 to denote each observation, where  has 𝑑-dimensional features and  is the 

corresponding outcome label of  possible classes, . The frequency of class  

at node  is defined as  

 

where ∑ 𝑝$01
02( = 1. The final class of the observation at the node is determined as 𝑝$0	, i.e., the 

majority class in the node . For binary classification (𝐾 = 2), the Gini impurity index is defined 

as 

 

 

In our case-control cases, there are two classes: AML patient as 1 and healthy donor as 0 for 

scenario 1; or acute GVHD group as 1 and non-acute GVHD group as 0 for scenario 2. In both 

cases, the Gini index is 

 

where  and  are the probabilities of the two classes mentioned above, respectively, and 

.  

 

The Gini importance (GIMP) of a feature in a tree is calculated as the sum of the Gini impurity 

decrease from a parent node to its children nodes over all nodes in the tree. The GIMP score in 

the RF is defined as the sum (or average) of the Gini importance value among all trees in the 

forest.  

 

The second feature importance is based on the feature’s predictability. After estimating the OOB 

prediction error during the training phase, the feature values in the OOB data set are randomly 
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permuted and fed into the trained RF. The difference between the OOB prediction error and the 

permuted prediction error is defined as the prediction-based feature importance. If this value is a 

large positive value, the corresponding feature has high predictability and is favored high in the 

ranking; whereas negative or zero values indicate the features are not predictive and thus are 

discarded in ranking.  

 

It has been shown that both of these metrics suffer a certain degree of selection bias when ranking 

features. The GIMP favors the features with many possible split points, i.e., categorical variables 

with many categories or continuous variable [33]. In genomic variance selection, it tends to be in 

favor of SNPs with high minor allele frequencies (MAF)[34, 35]. Many studies have proposed 

correction methods to eliminate bias. Altmann et al. [36] proposed to permute the response 

(phenotypic outcome) to calculate the null importance distribution while preserving the 

relationships between features. The algorithm is shown to reduce the feature selection bias 

induced by the GIMP but also provides the significance level P-values for each feature. Later, 

Janitza et al. Janitzza et al. [37] proposed an alternative approach to improve the computational 

speed while correcting the feature selection bias and providing the P-values for each feature. 

Nembrini et al. [38] provided a unified framework with a corrected impurity importance measure 

(AIR) to calculate the GIMP fast and they claimed that AIR outperforms the previous approaches 

in terms of computational performance and statistical power. All these bias correction methods 

have been incorporated and implemented in the R package ranger [39], and the Altmann-

corrected GIMP is adopted in this study.   

  

The prediction-based importance (PIMP) does not have these issues; however, it tends to favor 

the features that locate closer to the root node since they tend to affect the prediction accuracy of 

a larger set of observations and the permutation-based importance favors these variables [33]. A  
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Figure 4 Illustration of iRBA-RF feature selection model 

modified PIMP was proposed by Ishwaran [40], where it follows the same procedure as in the 

original RF, except instead of permuting the features in the out-of-bag data and test on the trained 

trees from the in-bag data, here the trees are randomized by using left-right random daughter 

assignment at each of the features. When a case is dropped down to the node with the feature in 

question, the left and the right daughter nodes of the following lower trees are chosen randomly 

with the same probability to till it reaches the leaf node. This procedure promotes the poor leaf 

node values for cases that pass through the nodes that split on the feature.  

 

The predictability of the selected feature set is assessed by using OOB samples with the overall 

classification error, area under the receiver operating characteristic curve (AUC), and the 

normalized Brier score defined by Ishwarn and Lu [41]. Brier score is more stable than AUC when 

assessing the classifier performance. A value of 100 normalized Brier score indicates random 

guessing and 0 being a perfect classifier.  

 
Figure 4 shows the proposed iRBA-RF feature selection model. During the first stage, noise and 

phenotypically irrelevant features are removed through the iRBA using MultiSURF as its core 

RBA. By removing the lowest ranked features, it retains the multi-way interaction relationships 
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between features from MultiSURF. The refined feature set is then fed into the RF model in the 

second stage. The RF then train models and rank the features through GIMP and/or PIMP 

metrics. In this study, we implemented the model by incorporating the scikit-rebate library 

written in Python [28] (available at https://github.com/EpistasisLab/scikit-rebate) and two random 

forest R packages, ranger [39] and randomForestSRC [41, 42].  

Data Collection and Preprocessing 

A retrospective cohort of blood cancer patients and their HLA matching donors have been 

selected in this study. The microarray genotype data collection and primary analysis have been 

described in [43]. In order to reduce the bias induced by disease types and the reference 

population, we chose AML patients and their transplant cases and used the original genotypes 

without imputation. After data quality control [supplementary material 7], 331 transplant cases 

(662 individuals in total) of AML patients and HLA matching donors with 630,793 genotyped 

autosomal SNPs were included in this study. SNPs from the sex chromosome were excluded 

from this study; however, sex-mismatch conditions were considered as clinical characteristics in 

Scenario 2 acute GVHD case-control context. 

 

As described in the Methods section, we investigated the iRBA-RF model in two scenarios. In 

Scenario 1, the formatted genotype matrix has a size of 662×630,793 and the AML disease status 

as its target label; in Scenario 2, the formatted genotype matrix has a size of 311×261,586 and 

the acute GVHD status as the target label. 
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Results 

Scenario 1: AML case-control experiment 

The original 630,793 SNPs were reduced to 200 SNPs through the iRBA-RF and they were further 

reduced to 176 SNPs and 164 SNPs using GIMP and PIMP, respectively. Table 1 shows the top 

30 SNPs ranked by the GIMP scores with their significance P-values. Of the 176 GIMP-based 

SNPs, 103 SNPs showed statistically significant scores at the confidence level  . The full 

list for the 200 SNPs can be found in the Supplementary Table 1.   

 

The PIMP scores are further assessed through the delete-d Jackknife subsampling scheme as 

proposed in [41]. Figure 5 illustrates the 95% asymptotic normal confidence intervals for the top 

50 SNPs ranked by the median PIMP scores. For a full list of features by PIMP, please refer to 

Supplementary Table 2. Compared to the SNPs listed in Table 1, 9 SNPs (rs2694642 (USP34), 

rs928770 (KCNJ15),  rs10936248, rs2293836 (NRXN3), rs6915644 (EYS), rs1173099, rs788871, 

rs17329514,  rs675992) are ranked in the top 30 in both cases, whereas 3 SNPs (rs10002187, 

rs6106323, rs1365342) from Table 1 ranked between 31 and 50 in Figure 5.  

 
Table 1. Top 30 SNPs linked to AML, which are ranked by the Gini impurity importance using the bias-

corrected metric. For illustration purpose, here lists the top 30 SNPs out 200 SNPs from the proposed 

feature selection model. 

Rank Marker CHR:POS Gene(s) Major Minor MAF Importance 
score 

p-values 

1 rs2694642 chr2:61369045 USP34 A G 0.315 1.669 0.010 

2 rs928770 chr21:38265545 KCNJ15 C T 0.287 0.932 0.010 

3 rs10936248 chr3:161818648  C T 0.383 0.854 0.020 
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4 rs4698732 chr4:14336718  C T 0.442 0.832 0.010 

5 rs4692262 chr4:27923209 LOC105374552* C A 0.372 0.770 0.040 

6 rs11869908 chr17:72674911 SLC39A11 G T 0.210 0.768 0.010 

7 rs7718156 chr5:172669363 NEURL1B C A 0.321 0.719 0.010 

8 rs2293836 chr14:79840947 NRXN3 T C 0.112 0.694 0.010 

9 rs6915644 chr6:65106919 EYS G A 0.397 0.692 0.010 

10 rs10002187 chr4:149994262 DCLK2** G A 0.190 0.689 0.010 

11 rs749773 chr2:165877228 TTC21B T C 0.199 0.644 0.020 

12 rs285206 chr20:43667902 MYBL2 T C 0.202 0.605 0.010 

13 rs10926025 chr1:239949314 LOC105373224 C T 0.298 0.597 0.010 

14 rs12675334 chr8:83887031  A G 0.396 0.587 0.020 

15 rs9819506 chr3:172452314 GHSR*; 
BZW1P1**; 
TNFSF10***; 
FNDC38*** 

C T 0.427 0.578 0.030 

16 rs6106323 chr20:2169032 STK35**; 
LOC105372502** 

G A 0.257 0.574 0.010 

17 rs2914290 chr5:7629643 ADCY2 C T 0.181 0.565 0.010 

18 rs1365342 chr4:37097911 LOC101928721 G A 0.329 0.564 0.040 

19 rs1173099 chr9:90679392 DIRAS2**; 
OR7E109P*** 

T G 0.260 0.556 0.010 

20 rs2222514 chr7:123206473 SLC13A*; 
LYPLA1P1** 

A G 0.432 0.548 0.010 
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21 rs12714359 chr2:2603252 LOC105373389***; 
LOC107985839*** 

A G 0.367 0.548 0.020 

22 rs2185591 chr20:43133279 PTPRT C A 0.423 0.542 0.020 

23 rs788871 chr1:30591356 MATN1*** T C 0.474 0.528 0.030 

24 rs17329514 chr18:71998994 LOC102725148***; 
LOC105372189*** 

A G 0.101 0.522 0.010 

25 rs41135 chr5:96830323 ERAP1 G A 0.369 0.519 0.020 

26 rs428148 chr2:70583509 TGFA*; ADD2*** C T 0.298 0.518 0.030 

27 rs10794031 chr10:125876751 DHX32 A G 0.439 0.517 0.020 

28 rs725856 chr4:39746658 UBE2K A G 0.124 0.510 0.010 

29 rs675992 chr1:17888266 ACTL8*** A G 0.255 0.492 0.040 

30 rs2025009 chr14:68376888 RAD51B C G 0.476 0.491 0.020 

*: genes that are within 10 kb range of upstream or downstream from the marker 
**: genes that are outside 10 kb but within 50 kb range from the marker 
***: genes that are outside 50 kb but within 100 kb range from the marker 
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Figure 5 Delete-d Jackknife 95% asymptotic normal confidence intervals for the top 50 SNPs in the AML 

case-control scenario. The large positive variance importance values indicate the high predictability of the 

features, whereas zero and negative values suggest noise variables. 

Scenario 2: acute GVHD case-control 

In the case of acute GVHD, the genotype matrix has twice as many dimensions as Scenario 1, 

since the donor and recipient genotypes were concatenated in the same vector for each case. 

The original genotype matrix has a total of 1,261,586 SNPs, and after the iRBA-RF, the number 
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was reduced to 400 SNPs. The classical HLA typing (HLA-A, -B, -C, -DQB1, -DRB1) and DR sex 

mismatch status are major factors that influence the transplant outcome, and hence these two 

types of variables were added to the reduced genotype matrix before RF feature ranking. A total 

of 411 variables (400 SNPs, 10 HLA gene typing, 1 sex mismatch status) were ranked through 

the RF using GIMP and PIMP metrics, respectively.  

 

342 out of 411 variables were selected by GIMP, only 124 of which showed statistically significant 

scores at the confidence level . Top 30 variables by GIMP is listed in Table 2, and the 

full list can be found in Supplementary Table 3. Similar to Scenario 1, PIMP scores are assessed 

through delete-d jackknife subsampling procedure and estimated the 95% asymptotic normal 

confidence interval. 297 variables were selected through PIMP scores, top 50 of which are shown 

in Figure 6, and the full list of PIMP features can be found in Supplementary Table 4.  

 

Compared to GIMP features in Table 2, 6 SNPs [rs10936748 (LOC105374224), rs3818283 

(TEK), rs17161332 (SGCZ), rs17236893 (LOC101928583), rs10974006, rs2868956] are ranked 

in the top 30 in both cases, whereas 4 SNPs [rs1341852 (LOC105370228), rs11160228, 

rs4863533, rs504371 (C6orf118)] from Table 2 ranked between 31 and 50 in Figure 5. 

 
Table 2 Top 30 variables linked to acute GVHD, which are ranked by the bias-corrected Altmann-GIMP. 
For illustration purposes, here lists the top 30 variables out 411 SNPs from the iterative feature selection 
model.  

Rank Marker CHR: POS Gene(s) Major Minor MAF Source Importance 
score 

P-value 

1 rs10936748 chr3:173283597 LOC105374224 T G 0.151 recipient 0.562 0.020 

2 rs2389923 chr4:119810542 LINC01365** A G 0.246 donor 0.507 0.010 
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3 rs17172094 chr7:42622588 LOC105375251 G A 0.435 recipient 0.474 0.010 

4 rs3818283 chr9:27169126 TEK C T 0.252 recipient 0.473 0.010 

5 rs4262322 chr8:14839455 SGCZ G T 0.244 donor 0.472 0.020 

6 rs1410267 chr13:97614111 LOC105370324 A C 0.306 donor 0.471 0.010 

7 rs17161332 chr7:78675562 MAGI2 T C 0.069 recipient 0.417 0.010 

8 rs1341852 chr13:60350653 LOC105370228 A G 0.449 recipient 0.416 0.010 

9 rs7940835 chr11:3244721 MPGPRE** T C 0.140 recipient 0.408 0.010 

10 rs7187289 chr16:67933975 PSMB10*; CTRL*; 
PSKH1*; 
LCAT*; 
SLC12A4* 

A C 0.320 donor 0.406 0.010 

11 rs4638670 chr18:27701183 LOC105372042*** A C 0.174 recipient 0.404 0.010 

12 rs354843 chr4:141267650 ZNF330**; 
RNF150*** 

T C 0.269 donor 0.400 0.010 

13 rs719910 chr7:42722647 LINC01448** T C 0.399 recipient 0.395 0.010 

14 rs6461551 chr7:21312333  G A 0.383 recipient 0.391 0.010 

15 rs17236893 chr3:170745833 LOC101928583 A G 0.095 recipient 0.367 0.010 

16 rs10974006 chr9:38738297  G T 0.257 recipient 0.364 0.020 

17 rs273592 chr11:30857302 LOC107984419 A G 0.482 recipient 0.361 0.010 

18 rs2481955 chr13:28009444 FLT3 G A 0.378 donor 0.360 0.010 

19 rs227130 chr20:8452312 PLCB1 G A 0.370 recipient 0.350 0.020 
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20 rs11160228 chr14:95051806 DICER1** G A 0.242 recipient 0.336 0.010 

21 rs4863533 chr4:137992400 LOC107986315**; 
LOC105377447**; 
LINC00616**; 
SLC7A11*** 

G A 0.270 recipient 0.333 0.010 

22 rs2868956 chr19:28320511 LOC107985269** T C 0.235 recipient 0.329 0.020 

23 rs13035654 chr2:139894716  T C 0.182 recipient 0.328 0.020 

24 rs509012 chr13:21720524 FGF9** G A 0.225 donor 0.316 0.020 

25 rs10503960 chr8:34340069 RPL10AP3*** A C 0.181 donor 0.314 0.010 

26 rs12203592 chr6:396321 IRF4 C T 0.037 recipient 0.304 0.010 

27 rs12763563 chr10:12989971 CCDC3 G A 0.220 recipient 0.301 0.010 

28 rs4685366 chr3:16614824 DAZL* A G 0.445 donor 0.301 0.030 

29 rs504371 chr6:165310563 C6orf118; 
LOC105378113 

G T 0.431 recipient 0.298 0.010 

30 rs2161495 chr5:103750446 LOC105379107 C T 0.313 recipient 0.297 0.010 

*: genes that are within 10 kb range of upstream or downstream from the marker 
**: genes that are outside 10 kb but within 50 kb range from the marker 
***: genes that are outside 50 kb but within 100 kb range from the marker 
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Figure 6 Delete-d Jackknife 95% asymptotic normal confidence intervals for the top 50 SNPs in the acute 
GHVD case-control scenario. The large positive variance importance values indicate the high 
predictability of the features, whereas zero and negative values suggest noise variables. ‘r_’ indicates 
SNPs from recipients, while ‘d_’ for SNPs from donors. 

Discussions 

Ideally, the features that are selected by iRBA-RF have the best predictability on the phenotypic 

outcomes and the related gene regions are actively involved in the pathways of the diseases in 

question. To assess the results, we first examined the predictability of the selected feature sets 

by comparing the classification performance to a random set of features with the same size. The 
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classification performance was examined in three criteria: the normalized Brier score where a 

score of 100 indicates a random guess and the lower, the better classifier performance, the AUC, 

and the overall OOB error rate. Figure 7 shows the comparison among different feature sets. The 

random feature sets (Random200/Random400) were selected 1000 times, while the rest feature 

groups were trained and tested on OOB samples 1000 times. The selected features through 

iRBA-RF (Top200/Top400, GIMP, PIMP) in both scenarios show significantly superior 

classification performance in all three criteria (p < 2.2e-16). Within the selected groups 

(Top200/Top400, GIMP, PIMP), the pairwise t-tests showed a significant difference between each 

group using all three criteria (p < 0.001), except for the Brier scores between Top200 and GIMP 

groups. As shown in Figure 7, the classifiers using the PIMP-based feature sets generally showed 

better predictive performance, and this is mainly because PIMP-based features are ranked based 

on the classifier’s performance.  

 

From the functional point of view, the top-ranked features are not random and evidence can be 

found in the literature. In Scenario 1, multiple SNPs among the selected 200 SNPs are from the 

following functional gene groups that are reported to be linked to AML [44, 45]. These gene groups 

include spliceosome (rs10794031, rs3205166), cohesin complex (rs2025009), epigenetic 

modifiers (rs1987193), serine/threonine kinase (rs10002187, rs994502, rs13000880), protein 

tyrosine phosphatases (rs2185591) and other myeloid transcription factors (rs285206). Most of 

these SNPs didn’t show significant importance scores, however, SLC39A11 (rs11869908), 

MYBL2 (rs285206), PTPRT (rs2185591), DHX32 (rs10794031), RAD15B (rs2025009) are ranked 

the top 30 GIMP with p-value<0.05.  

 

SLC39A11 (rs11869908), also known as ZIP11, is a zinc transporter gene that has been reported 

to be linked to multiple cancers [46]. Specifically, a high expression of ZIP4 and low expression 
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of ZIP11 are significantly associated with the higher grade of Glioma[47]. In addition, mutations 

in IDH1 is reported to be highly correlated with higher expression of ZIP11, suggesting a possible 

synergistic interaction between IDH1 and ZIP11 [47]. MYBL2 (rs285206) has an essential role in 

cell cycle progression, cell survival, and cell differentiation, and is found to be overexpressed in 

multiple cancer cases [48]. Overexpression of MYBL2 is suggested to have a prognostic value 

for disease-free survival and cumulative incidence of remission for AML patients [48, 49]. PTPRT 

(rs2185591) encodes cellular signaling proteins that regulate cell growth, differentiation, and 

oncogenic transformation and is reported to be in the genetic interaction network of AML 

mutational landscape [50–52]. DHX32 is an RNA helicase that is reported to associate with the 

acute lymphoblastic leukemia [53, 54]. Notably, its dysregulation is believed to contribute to 

carcinogenesis [55]. RAD51B (rs2025009) encodes one of the RAD51 paralogs that participate 

in DNA repair, and the polymorphisms in the gene and the gene inactivation through chromosome 

translocation have been demonstrated to be linked to AML, breast cancer, head and neck cancer 

[56–59].  

 

Other genes ranked high in the list have also shown evidence of roles in AML linked pathways. 

For instance, the top-ranked gene USP34 (rs2694642) is reported to regulate the levels of axin 

and stabilize beta-catenin and further modulate Wnt signaling pathway positively [60]. Wnt/β-

catenin pathway has shown to be essential in AML for leukemia stem cells to develop and thus 

allow malignant progression [61–66]. KCNJ15 (rs928770) encodes potassium inwardly-rectifying 

channel on the cell membrane and is reportedly a susceptible gene for Type 2 diabetes [67, 68] 

and linked to the hematological traits and clinical features of Down syndrome [69–71]. NEURL1B 

is a paralog of NEURL1, and the deletion of this gene region has been linked to adult de novo 

AML [44]. 
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(a) Scenario 1: AML case-control 

 
(b) Scenario 2: aGVHD vs non-GVHD 

Figure 7 (a) Scenario 1: AML case control.  (b) Scenario 2: aGVHD vs non-GVHD. Comparison of four 
different sets of features: (1) Random200 (or Random400): 200 (or 400) features randomly selected from 
the original feature set. (2) Top200 (or Top400): top ranking 200 (or 400) features selected by the iRBA-RF 
algorithm (3) GIMP: 176 (or 342) SNPs out of the selected 200 (or 400) SNPs using the GIMP score, (4) 
PIMP: 164 (or 297) features out of the selected 200 (or 400) SNPs using the PIMP score. Each feature sets 
were trained 1000 times and evaluated by the normalized Brier scores, AUC and overall error rate of OOB 
samples, respectively.  

 
In the case of acute GVHD, most of the top-ranked SNPs do not lie in a gene region; however, 

they are within 50 kb range of downstream or upstream of the coding genes. Interestingly, multiple 

gene regions from donors are ranked high in both GIMP- and PIMP-based feature set, suggesting 
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the potential role of genetic polymorphisms from graft stem cells in the transplant outcomes. 

Genes that are linked to abnormalities of skin and the gastrointestinal (GI) tract are also selected 

by the iRBA-RF algorithm, all of which are the main symptoms of acute GVHD.  

 
Notably, rs7187289 (donor) is located on chromosome 16q22.1, where five genes (PSMB10, 

CTRL, PSKH1, LCAT, SLC12A4) tightly clustered together [72]. It is in the upstream of PSMB10, 

an immunoproteasome subunit that plays a vital role in major histocompatibility complex (MHC) 

class I restricted antigen processing and presentation [73], T-cell polarization and differentiation, 

and cytokine production by macrophages [74]. Hence, PSMB10 is believed to involve in the 

development of inflammatory autoimmune diseases and hematologic malignancies and to be a 

marker of cell damage and immunological activity [75]. In renal transplantation, it has recently 

reported being associated with chronic antibody-mediated rejection (AMR) and posed as a 

potential intragraft and peripheral blood marker of acute rejection [76, 77]. The impairment of 

immunoproteasome subunits is critical for malignant cells to escape immune recognition, 

suggesting its possible role in the graft-versus-tumor effect after allo-HCT. LCAT is secreted by 

the liver and generally believed to maintain the unesterified cholesterol gradient between 

peripheral cells and high-density lipoprotein (HDL)[78]. SLC12A4 encodes a human potassium 

chloride cotransporter 1 (KCC1)[79], and the dysfunction of the membrane ion channels has been 

reported to link to several diseases, like sickle cell disease [80]. 

 

Several gene regions in the list have direct roles in the signs of acute GVHD in the GI tract. CTRL 

is a chymotrypsin-like protease expressed in the pancreas and secreted in pancreatic juice [81] 

and is well known to be downregulated in pancreatic cancer [82]. PSKH1 protein is mainly found 

in Golgi apparatus, endoplasmic reticulum (ER), nucleus, cell membrane, cytoskeleton [83] and 

believed to play a role in intranuclear serine/arginine-rich domain (SR protein) trafficking and pre-
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mRNA processing [84]. A recent study suggested it possibly linked to the pathogenesis of Crohn’s 

disease [85]. MAGI2 (rs17161332) encodes a scaffolding protein that involved in epithelial 

integrity, and studies have shown that the genetic variation in MAGI2 is linked to the inflammatory 

bowel disease (IBD), i.e., ulcerative colitis and Crohn’s disease [86]. Moreover, IRF4 

(rs12203592) controls TH2 (T helper cell) responses and intestinal Th17 cell differentiation, 

mucosal cytokine IL-17 regulation, suggesting a central of IRF4 in immune regulation in the gut 

[87–92].  

 

The risk of getting a secondary solid cancer following allo-HCT is substantially higher than in 

general population, and the risk factors have been well documented [93–95]. Melanoma, breast 

cancer, thyroid cancer, prostate cancer, and cervix cancer are the most frequently occurring 

cancer types after allo-HCT in the recipient’s later life. The genes that were selected in this study 

have evidence to link to the cancer progression and may be able to explain the incidents. The 

feature sets after iRBA-RF include multiple genes that play critical roles in the progression of 

carcinogenesis. For example, SGCZ (rs4262322) encodes a protein that plays a role in 

maintaining cell membrane stability and have been reported its role linked to cancer development 

and progression [96]. DICER1 (rs11160228) encodes essential proteins for a micro-RNA 

processing pathway and plays a central role in epigenetic modulation of gene expression, and 

downregulation of DICER1 expression has been reported to be linked to a wide range of cancer 

types [97, 98]. 

 

A few leukocyte-specific genes, such as TEK, FLT3, and PLCB1 are also ranked high in the list. 

TEK (rs3818283) encodes angiopoietin-1 receptor that is critical to the induction and growth of 

new blood vessels and influence tumor growth. It has been reported that mutations in TEK are 
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linked to AML suggesting its essential role in leukemogenesis depending on an uncharacterized 

cellular context [99, 100]. A more recent study demonstrated that angiogenesis precedes 

leukocyte infiltration during inflammation suggesting the essential involvement of angiogenesis in 

the initiation of inflammatory diseases, such as acute GVHD and IBD [101]. Proteins encoded by 

FLT3 (rs2481955) stimulates hematopoiesis and is reportedly expressed at high levels in a 

spectrum of hematologic malignancies, including AML. Mutations in FLT3 usually lead to a poor 

prognosis and is suggested to be a potential therapeutic target for kinase inhibitor [102]. Similarly, 

PLCB1 (rs227130) is recently proposed as a potential therapeutic target for AML patients, since 

the monoallelic deletion or increased PLCB1 expression is a prognostic factor and is reportedly 

linked to the transition from myelodysplastic syndromes (MDS) to AML [103–105]. 

 

These genes and their functional interpretation seem to explain potential underlying mechanisms; 

however, they by no means explain the actual biological functions nor do they provide a full picture 

of the genetic interactions in AML or acute GVHD. The SNPs used in this study are common 

polymorphisms (MAF>0.005), and the locations are much sparser than the whole genome 

sequences. Thus, the representation of genes from the SNPs is merely a remote approximation. 

The highly ranked SNPs are not necessarily directly involved in the pathways linked to the 

disease; instead, some ungenotyped genes that share a high linkage disequilibrium with those 

SNPs may exert more significant influence on the disease status. On the other hand, the feature 

interactions captured through iRBA-RF suggest the statistical epistasis among these features or 

SNPs but not the biological epistasis. Therefore, functional interpretation from SNP sets needs 

much careful consideration. More rigorous experiments may be needed to validate the potential 

genetic interactions. Overall, it is a promising start to investigate the genetic interactions in 

transplant-related outcome studies while considering both donor’s and recipient’s genomes 

simultaneously.  
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                   (a) AML case-control scenario                                                 (b) Acute GVHD scenario 

Figure 8 The effect of the number of SNPs. from 10,000, 5000, 1000, 900, 700, 500, 300, 200, 100: the 
OOB prediction error reaches its minimum between 300 and 500 SNPs for both AML and acute GVHD. 
Number of features are shown on a log10 scale. OOB: Out-of-bag sample average prediction error, shown 
in percentage (%); AUC: Area under the ROC; Brier: the normalized Brier score. The optimal feature size 

would produce the minimum OOB error rate (%), the minimum Brier score and the maximum AUC value.  

 
One of the advantages of using GIMP and PIMP-ranked features in RF is that it removes the 

arbitrariness of choosing the number of features. Positive values of GIMP or PIMP indicate the 

features contribute positively to the predictive power of the predictive models and a value of zero 

is an appropriate cutoff. The p-values of GIMP scores add additional confidence level to the 

selection, as do the confidence intervals to the PIMP scores. On the other hand, GIMP ranking 

and PIMP ranking are not always consistent with each other, as they are using two different 

criteria to measure the feature importance. Moreover, as many researchers have point out [106, 

107], a p-value is not a reliable metric to infer the significance, since it depends on assumptions 

of the models and the sample size and lacks reproducibility. Lu et al. [108] proposed standard 

error and confidence intervals of PIMP as an alternative to the p-values of regression models and 

demonstrated the robustness of PIMP to the sample size and model assumptions. Especially, 
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when the sample size is small, it is a more reliable indicator than p-values. Therefore, it is 

desirable to use the PIMP ranked feature set for further downstream analysis. 

 

There are several parameters to determine for the iRBA-RF model. There are three parameters 

for the first step of feature elimination using iRBA: the optimal subset size (Ns), the number of 

iterations (Iteration), the percentage of features that will be removed after each iteration (pct), the 

number of features to keep after the last iteration (featNum). The original VLSReliefF algorithm 

suggested a large sample size and relatively small Ns achieve reliable results[30]. By default, top 

50th percentile (pct=0.5) rank of SNPs is selected after each iteration. However, in our 

experiment, this removes many interactive and relevant variables, and the final feature sets have 

very little predictive power. The goal of iRBA is to remove as many irrelevant variants as possible 

while keeping all possible interacting ones. In this study, we chose the following parameters for 

both scenarios: Ns=1000, Iteration=5, pct=0.25. As for featNum, we employed a grid search 

strategy to find the optimum values for each of the scenarios. As shown in Figure 8, featNum=200 

for Scenario 1 and featNum=400 for Scenario 2 achieved the best classification performance, 

measured by the normalized Brier score, AUC and overall OOB error rate. As for RF models, 

each forest has 300 trees (ntree=300) with the default mtry=sqrt(dimension). 

 

One caveat of the iRBA-RF model, however, is that, unlike regression or a simple associations 

test, it cannot tell the direction of a variable’s impact on the disease (positive or negative, 

protective or progressive) from the model. On the other hand, this may avoid or minimize the 

effect of Simpson’s paradox, where the positive or negative association of variables reverse sign 

due to the change of a confounding factor. Simpson’s paradox is a common issue in association 

studies, especially in a high-dimensional bioinformatics data set [109]. Keep in mind that, the 

selected features collectively contribute to the predictive power and thus it is not an indication of 
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the influence of a single SNPs on the disease. It is worth noting that the importance scores and 

feature ranking are a relative concept, and they have little indication of biological importance. In 

summary, the iRBA-RF model offers a computationally efficient and functionally effective method 

to find the candidate variable groups whose interactions may exert to the disease status. With a 

larger cohort size with broader genomic coverage, it may effectively find the genetic interaction 

networks that are directly linked to the disease development.  

Conclusion 

We developed a hybrid feature selection model, iRBA-RF, to reduce the feature space and 

ultimately rank and select the variants that may be linked to the diseases in question, AML, and 

acute GVHD. The proposed model successfully selected the most related SNPs out of over 600 

K and 1 M SNPs and produced a reasonable predictive accuracy. The model was applied to 

genomic data in this study, but it can be extended to examine multi-omics data with other clinical 

characteristics, as well as the multi-class prediction problems.  

 

As discussed above, evidence of the genes can be found in the literature to be linked to the 

disease in question; however, in order to determine their biological role and further assist 

optimized donor selection process and personalized therapeutic development, experiments on a 

larger cohort size, along with immunological wet lab validation experiments on the selected genes, 

are desired.  
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Supplementary Table 5. Characteristics of acute myeloid leukemia patients 
transplant cases 
 

Variable Value 

No. of transplant cases 
No. of transplant centers 
Recipient age, median (range), years 

Age at transplant, yr 
<20  
20-59 
≥60  

Recipient race group 
CAU  
AFA  
API  
HIS  
Native American  
Other/multiple/declined/unknown 

Donor age, yrs 
18-29  
30-39 
40-49  
≥50 

Donor race group 
CAU  
AFA  
API  
HIS  
Native American  
Other/multiple/declined/unknown 

AML disease status at transplant 
Early 
Intermediate 
Advanced 
Other 

Graft Type 
Bone marrow  
Peripheral blood 

In vivo T cell depletion 
No  
Yes  

ATG given 
No 
Yes 

Donor/recipient CMV match 
Negative/negative  
Negative/positive  
Positive/negative 
Positive/positive  
Unknown 

331 
97 
42 (0~65 yrs) 
 
42     (12.7%) 
276   (83.4%) 
13     (3.9%) 
 
319   (96.4%) 
2       (0.6%) 
8       (2.4%) 
0       (0 %) 
1       (0.3%) 
1       (0.3%) 
 
152   (45.9%) 
89     (26.8%) 
71     (21.5%) 
19     (5.7%) 
 
284   (85.8%) 
3       (0.9%) 
9       (2.7%) 
0       (0 %) 
0       (0 %) 
35     (10.6%) 
 
243   (73.4%) 
10     (3.0%) 
77     (23.3%) 
1       (0.3%) 
 
132   (39.9%) 
199   (60.1%) 
 
238   (71.9%) 
93     (28.1%) 
 
243   (73.4%) 
88     (26.6%) 
 
107   (32.3%) 
114   (34.4%) 
33     (10.0%) 
69     (20.9%) 
8       (2.4%) 
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GVHD prophylaxis 
Ex vivo T cell depletion  
CD34 Selection 
Cyclophosphamide  
Tacrolimus + (MTX or MMF) ± other  
Tacrolimus ± other  
Tacrolimus alone  
CsA + (MMF or MTX) ± other (except 
Tacrolimus) 
CsA ± other (no MTX nor MMF)  
CsA alone  
Other  

HLA-DPB1 typing 
Double mismatch  
Single mismatch 
Matched 
Missing/not typed 

Donor/recipient sex match 
Male/male  
Male/female  
Female/male  
Female/female 

GVHD outcome 
Grades 0~I acute GVHD 
Grades II~IV acute GVHD 

 
20     (6.0%) 
0       (0%) 
5       (1.5%) 
206   (62.2%) 
15     (4.5%) 
4       (1.2%) 
74     (22.4%) 
2       (0.6%) 
3       (0.9%) 
2       (0.6%) 
 
58     (17.5%) 
115   (34.7%) 
31     (9.4%) 
127   (38.4%) 
 
127   (38.4%) 
97     (29.3%) 
40     (12.1%) 
67     (20.2%) 
 
185   (55.9%) 
146   (44.1%) 
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Supplemental table 6. HLA typing summaries 
 

HLA-A  Freq  HLA-B Freq  HLA-C Freq 
A*02:01 
A*01:01 
A*03:01 
A*24:02 
A*11:01 
A*29:02 
A*68:01 
A*26:01 
A*32:01 
A*31:01 
A*25:01 
A*23:01 
A*30:01 
A*33:01 
A*68:02 
A*02:05 
A*30:02 
A*03:02 
A*24:03 
A*24:17 
A*30:04 
A*36:01 

174 
115 
94 
50 
32 
21 
21 
18 
17 
15 
13 
12 
12 
6 
6 
3 
3 
2 
1 
1 
1 
1 

 B*07:02 
B*08:01 
B*44:02 
B*40:01 
B*15:01 
B*35:01 
B*18:01 
B*27:05 
B*13:02 
B*44:03 
B*57:01 
B*14:02 
B*38:01 
B*37:01 
B*52:01 
B*49:01 
B*51:01 
B*55:01 
B*56:01 
B*14:01 
B*40:02 
B*35:03 
B*39:01 
B*41:01 
B*45:01 
B*50:01 
B*15:17 
B*27:02 
B*35:02 
B*47:01 
B*53:01 
B*58:01 
B*15:02 
B*15:03 
B*15:10 
B*15:18 
B*35:08 
B*58:02 

114 
107 
73 
41 
40 
37 
36 
21 
19 
19 
16 
15 
13 
11 
8 
7 
6 
6 
6 
5 
5 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

 C*07:01 
C*07:02 
C*05:01 
C*03:04 
C*06:02 
C*04:01 
C*03:03 
C*12:03 
C*08:02 
C*01:02 
C*02:02 
C*16:01 
C*07:04 
C*12:02 
C*14:02 
C*17:01 
C*02:10 
C*08:01 
C*15:02 

126 
115 
71 
56 
56 
54 
29 
26 
20 
19 
16 
12 
10 
8 
3 
2 
1 
1 
1 
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HLA-DRB1 Freq  HLA-DQB1 Freq 
DRB1*15:01 
DRB1*03:01 
DRB1*07:01 
DRB1*01:01 
DRB1*04:01 
DRB1*13:01 
DRB1*11:01 
DRB1*13:02 
DRB1*04:04 
DRB1*08:01 
DRB1*11:04 
DRB1*12:01 
DRB1*01:02 
DRB1*14:01 
DRB1*01:03 
DRB1*15:02 
DRB1*04:02 
DRB1*09:01 
DRB1*13:03 
DRB1*04:07 
DRB1*10:01 
DRB1*16:01 
DRB1*04:03 
DRB1*04:05 
DRB1*11:03 
DRB1*08:02 
DRB1*08:04 
DRB1*11:02 
DRB1*12:02 
DRB1*13:04 
DRB1*13:05 
DRB1*14:02 
DRB1*16:02 

116 
105 
74 
60 
56 
37 
30 
24 
23 
13 
12 
12 
11 
11 
10 
8 
4 
4 
4 
3 
3 
3 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 

 DQB1*06:02 
DQB1*02:01 
DQB1*03:01 
DQB1*05:01 
DQB1*02:02 
DQB1*03:02 
DQB1*06:03 
DQB1*06:04 
DQB1*03:03 
DQB1*04:02 
DQB1*05:03 
DQB1*06:01 
DQB1*05:02 
DQB1*06:09 

116 
106 
103 
77 
59 
48 
37 
21 
18 
15 
11 
8 
4 
3 
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Supplemental Material 7: Microarray genotype data preprocessing 
 
The original SNP genotype data was obtained and processed by Madbouly et al. and described 

in (Madbouly et al. 2017). In this study, we performed the quality control separately and did not 

use the imputed genotypes.  

 

We have removed individuals that show ambiguous sex genotype than their reported sex. The 

rest of parameters used in the SNP filtering is as follows. 1) If a SNP minor allele frequency 

(MAF) is less than 0.005 or showed up in less than 10 individuals, then those SNPs are filtered 

out. 2) SNPs that have less than 95% call rate are removed. 3) It is recommended to use the 

control-only samples for Hardy-Weinberg equilibrium (HWE) test (Anderson et al. 2010). Here 

we used the healthy donor-only samples and excluded the SNPs that have P-values lower than 

0.001 after the HWE test. After these steps, we obtained 630,793 SNPs for the 331 donor-

recipient pairs.  
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