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ABSTRACT 

The rapid proliferation of single-cell RNA-Sequencing (scRNA-Seq) technologies has spurred 

the development of diverse computational approaches to detect transcriptionally coherent 

populations. While the complexity of the algorithms for detecting heterogeneity have increased, 

most existing algorithms require significant user-tuning, are heavily reliant on dimensionality 

reduction techniques and are not scalable to ultra-large datasets. We previously described a 

multi-step algorithm, Iterative Clustering and Guide-gene selection (ICGS), which applies intra-

gene correlation and hybrid clustering to uniquely resolve novel transcriptionally coherent cell 

populations from an intuitive graphical user interface. Here, we describe a new iteration of ICGS 

that outperforms state-of-the-art scRNA-Seq detection workflows when applied to well-

established benchmarks. This approach combines multiple complementary subtype detection 

methods (HOPACH, sparse-NMF, cluster “fitness”, SVM) to resolve rare and common cell-

states, while minimizing differences due to donor or batch effects. Using data from the Human 

Cell Atlas, we show that the PageRank algorithm effectively down samples ultra-large scRNA-

Seq datasets, without losing extremely rare or transcriptionally similar distinct cell-types and 

while recovering novel transcriptionally unique cell populations. We believe this new approach 

holds tremendous promise in reproducibly resolving hidden cell populations in complex 

datasets. 
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INTRODUCTION 
 
Recent advances in single cell RNA sequencing (scRNA-Seq) provide exciting new 

opportunities to understand cellular and molecular diversity in healthy tissues and disease. With 

the rapid growth in scRNA-Seq, numerous computational applications have been developed 

that address diverse technical challenges such as measurement noise/accuracy, data sparsity 

and high dimensionality to identify cell heterogeneity within potentially complex cell populations. 

Most applications consist of a shared set of steps, including: 1) gene filtering, 2) expression 

normalization, 3) dimensionality reduction, and 4) clustering 1 . While the specific algorithms and 

options used for these steps varies significantly among applications, most approach rely heavily 

on dimensionality reduction techniques, such as PCA, t-SNE and UMAP to select features and 

define cell populations. As noted by others 1, the reliance on such techniques has several 

limitations, including insensitivity to non-linear separation of the components (PCA), loss of 

global structure due to a focus on local information (t-SNE) 2 and inability to scale to high-

dimensions (UMAP) 3, resulting in a significant loss of information during projection.  

While a number of methods exist to identify clusters from large lower dimensional 

projections, including DBSCAN, K-means, affinity propagation, Louvain clustering and spectral 

clustering, these, as well as other approaches require proper hyperparameter tuning. Identifying 

these parameters is non-intuitive and often requires multiple rounds of analysis. To address this 

concern, consensus-based approaches that considers the results from multiple runs with 

different parameters have been developed, such as SC3 4, however the ultimate selection of the 

parameters remains user dependent and is not automated. Thus, identifying the right approach 

and parameters for dimension reduction or clustering for each new dataset remains time 

consuming and technically challenging. The increasing production of atlas sized datasets 

highlights the important need for highly scalable and automated computational approaches that 

can rapidly identify common and extremely rare populations with minimal user parameter 

tweaking 5. 

Here, we present the next iteration of our previously described approach Iterative 

Clustering and Guide-gene Selection (ICGS) 6. Unlike alternative approaches, ICGS iteratively 

identifies core variable gene expression programs from a data matrix through multiple rounds of 

hybrid clustering (HOPACH 7), selection of maximally informative guide-genes and expression 

correlation. ICGS2 incorporates multiple additional downstream methods to improve subtype 

detection and reduce noise, including sparse-NMF 8, cluster fitness, SVM 9 and automated 

methods to improve parameter estimation. Here, we introduce a novel intelligent sampling-
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based strategy for extremely large datasets to capture the most informative cells for 

downstream unsupervised analyses. ICGS2 is an easy-to-use automated pipeline that requires 

minimal user inputs and no a priori details regarding the cells or the genes analyzed. Through 

integration with AltAnalyze 10, the workflow can be run from the command-line or an intuitive 

graphical user-interface and includes a large repertoire of user-friendly integrated downstream 

analysis tools (e.g., cell-type prediction, differential expression, pathway analysis). We 

demonstrate improved performance of ICGS2 when compared to diverse alternative algorithms 

applied to scRNA-Seq datasets of varying size and complexity. Importantly, this approach 

remains scalable to ultra-large data sets, without sacrificing sensitivity. These evaluations 

demonstrate that ICGS2 represents an automated, scalable, accurate and easy-to-use platform 

for next-generation scRNA-Seq analysis. 

 

METHODS 

Algorithm Design.  

The software ICGS2 has been developed as part of an open-source python toolkit, AltAnalyze, 

with a complete documentation of its use, algorithms and optional user-defined parameters 

(https://altanalyze.readthedocs.io/en/latest/). ICGS2 identifies cell clusters through a five-step 

process: 1) PageRank-Down-sampling (optional), 2) feature selection-ICGS2, 3) dimension 

reduction and clustering (sparse-NMF), 4) cluster refinement (MarkerFinder algorithm), and 5) 

cluster re-assignments (SVM) (Fig. 1a). AltAnalyze includes support for multiple input format 

including: A) an already normalized expression file, such as counts-normalized, non-log or log2, 

with genes as rows and samples as columns, B) 10x Genomics (version 1.0-3.0) produced 

filtered sparse matrix results (.mtx, HDF5), C) genome-aligned BAM files, or D) FASTQ files for 

individual cells. A tab-delimited gene-counts matrix can be normalized prior to import using the 

module CountsNormalize. The principle steps of this program are: 

 
Step 1: PageRank-Down-sampling (recommended for datasets with > 2,500 cells or user-

defined).  

a) Selection of variable genes:  ICGS2 imports an input expression file processed from 

AltAnalyze (automatically log2 normalized, protein-coding genes and initial ICGS 

variance filtered) and identifies the top 500 genes with the highest dispersion. Dispersion 

for each gene is calculated as the ratio of the variance divided by its mean. The resulting 

PageRank input file is filtered for these genes. 
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b) Graph construction: Since the filtered input is not a graph, a graph representation of the 

dataset is created by finding the k-nearest neighbors (k =10 default) for each cell.  

Identification of the k-nearest neighbors is performed using efficient python package 

called Annoy 11 and the graph is created using the networkx python package. (Optional) 

For very large scRNA-Seq datasets (n>25,000), an initial down-sampling is performed 

using a community analysis approach, Louvain clustering (community python library). 

Louvain clustering is performed with the lowest possible resolution (r=0) to find maximal 

clusters (smallest communities). This value indicates at which level to cut the clustering 

dendrogram, with 0 resulting in the most granular and -1, the least. Once each 

community is identified using Louvain clustering, it is then sampled to identify medoid 

cells that are representative of the community. A medoid for a community is defined as  

          xmediod=𝑎𝑟𝑔𝑚𝑖𝑛'∈{*+,*-,….*0} ∑ 𝑑(𝑦, 𝑥7)9
7:;  

where 𝑥7, 𝑥<, … . 𝑥9 are the cells of a community, n is the total number of cells in the 

community, and d is the distance function. The distance function considered here is 

euclidean distance (sklearn.metrics.pairwise). 

The total number of medoids sampled for a community is given as:  

mi=argmin(ci,
=
9
), for  i =1,2,3,…n, 

where n is the total number of communities, ci is the total number of cells in the 

community i, mi is the number of medoids to be identified for the community i and s is the 

required down-sampling number (default=10,000). This step is performed to increase the 

speed and efficiency in processing large datasets and reduce the sample space (cells) 

for PageRank (step 3). Steps a and b are then repeated on the Louvain sampled data.  

c) PageRank: Once the graph is generated, a score is calculated for each cell based on 

PageRank score (networkx python library). The top 2,500 cells (by default) with the 

highest PageRank score is selected and used for the remaining analysis. For datasets of 

potentially millions of cells, these default thresholds should likely be increased to 

accommodate potentially hundreds of cell types. 

 

Step 2: Feature selection. While feature selection in ICGS2 is the same as in the original 

version ICGS, the associated thresholds are automatically determined, including the correlation 

cutoff appropriate for the dataset. In brief, ICGS identifies correlated gene modules through 

pairwise correlations of variable genes (Pearson>user supplied threshold), followed by multiple 

rounds of HOPACH clustering of genes and cells and determination of representative marker 

genes (guide-genes) for supervised correlation analysis. Guide-gene selection enables the 
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direct exclusion of cell-cycle gene expression modules by exclusion of guide-associated cell 

cycle genes prior to supervised correlation of those guides. ICGS2 begins with a default 

Pearson rho>0.2 for the identification of correlated genes, however, if the number of initial 

correlated genes is > 5,000, the cutoff is automatically incremented by 0.1 and the correlation 

step is re-iterated until this cutoff is met. By default, only protein-coding genes are considered 

with exclusion of mitochondrial genome, L ribosomal and S ribosomal genes. 10x Genomics 

data is automatically imported and normalized (counts per gene divided by the total counts per 

barcode multiplied by a 10,000). 

 

Step 3: Dimension Reduction with sparse-NMF (SNMF). To improve the delineation of cell-

clusters following HOPACH clustering in ICGS, SNMF is applied to the clustered cells to refine 

population detection. SNMF uses a L1-norm minimization and is solved using a fast 

nonnegativity constrained least squares algorithm (FCNNLS)8. The Guide3 results from ICGS 

are produced as previously described 6. To estimate the number of ranks (i.e., clusters) for 

SNMF, the ICGS Guide3 (final correlation heatmap text output of ICGS) matrix is z-score 

normalized and its eigenvalues are calculated. The number of clusters is estimated as 2*k, 

where k is determined by the number of eigenvalues that are significantly different with P < 

0.001 from the Tracy–Widom distribution 4whose mean is (>𝑔 − 1+√𝑐)2 and standard deviation 

is:  

C>𝑔 − 1 + √𝑐E. F
1

>𝑔 − 1
+
1
√𝑐
G

;
H
 

where is the g is the number of genes and c is the number of cells 4. 

 

Dimension reduction is performed on the ICGS Guide3 results using SNMF/R which is available 

in the ‘nimfa’ python package. Given an input matrix c x g where c is the number of cells and g 

is the number of genes, the SNMF/R factorization returns two sub-matrices called the basis 

matrix, W with the dimensions c x r, where c is the number of cells and r is the number of ranks 

and the coefficient H matrix with the dimensions g x r, where g is the number of genes and r is 

the number of ranks. For each cell, its assignment was based on its largest contribution in W. All 

the parameters are set to default as per the package except the rank.   

 

Step 4 Marker gene selection (cluster fitness). In some cases, the clusters identified in step 3 

will be weakly defined by unique gene expression. To identify rigorously defined cell-clusters 
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with unique gene expression for downstream cell-cluster assignment (all-cells, not just down-

sampled), ICGS2 applies the MarkerFinder algorithm, which is a component of AltAnalyze 6. 

MarkerFinder identifies genes that are positively correlated with an idealized cluster-specific 

expression profile (1 or 0). For each SNMF cluster, a reference is created where cells belonging 

to the group are assigned 1 and the remaining cells are assigned 0. Each gene is correlated to 

the references and assigned to a particular cluster based its highest Pearson correlation (rho). 

Using the initial correlation cutoff identified for ICGS pipeline, SNMF cell clusters with less than 

2 genes above the supplied rho threshold are excluded from the analysis. As such, centroids 

will be derived for only clusters with unique gene expression for supervised assignment to those 

final cluster. The top 60 Pearson correlated genes for each SNMF cluster with a rho>0.3 are 

considered for the remaining SNMF groups. As such, this method addresses the vital unmet 

need to exclude clusters that specifically result from noise or low-depth sequencing (assuming 

transitional or mixed-lineage states are associated with some uniquely expressed genes).  

  

Step 5: Cell cluster assignment (linear SVC). Using the marker genes identified for sufficiently fit 

clusters, cluster medoids are determined based on the cells assigned to the specific SNMF 

clusters. Next, a Linear SVM model with a linear kernel is constructed. This model is applied to 

all the cells in the dataset and re-classified based on the training models. ICGS2 uses the 

LinearSVC option in scikit-learn (default parameters). 

 

User Parameters. By default, ICGS2 includes built-in automated parameter estimation for its 

correlation cutoff (ICGS and MarkerFinder), estimation of cluster number (rank estimation for 

sparse-NMF) and number of cells to down-sample. These defaults can be explicitly set by the 

user to force the software to identify more or less clusters/heterogeneity. Additionally, ICGS has 

default options which can be modified by the user including: 1) number of variable cells, 2) gene 

expression fold-cutoff, 3) protein-coding gene filter, 4) exclusion of cell-cycle effects and 5) 

HOPACH clustering metric (Correlation, Euclidean, Cosine). For evaluation of these methods, 

the software defaults have been used.  

 

Benchmarking. To evaluate the performance of ICGS2, we compare cell clustering results to 

known reference clusters identified by previous authors of the different datasets tested. 

Adjusted RAND Index 12 which has been used previously for these validations have been used 

to test the tools rigorously.  
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Sample Datasets. Sample datasets that can be tested with ICGS2 are provided with AltAnalyze 

software. This include a sample 10x Genomics dataset (sparse matrix files) and Fluidigm 

scRNA-Seq data. Please see the folder DemoData and associated information and instructions 

for analysis in the AltAnalyze program folder. A YouTube tutorial for running ICGS2 with this 

data (along with downstream comparison analyses using the tool cellHarmony) can be found at: 

https://youtu.be/mRiGIz-zV80. 

 
Software Availability. ICGS2 is a part of AltAnalyze, starting with version 2.1.2. AltAnalyze is 

available as open-source python code (https://github.com/nsalomonis/altanalyze), PyPI 

installation (pip install altanalyze) and as pre-compiled binaries with dependent libraries 

included (http://www.altanalyze.org). Through AltAnalyze, this software can be run through an 

intuitive graphical user interface (https://altanalyze.readthedocs.io/en/latest/RunningAltAnalyze/) 

or using command-line options in the various implementations 

(https://altanalyze.readthedocs.io/en/latest/CommandLineMode/). Online video tutorials are 

provided for example input datasets (http://www.altanalyze.org).  

 

Software Outputs. Primary ICGS2 results include marker gene heatmaps with likely predicted 

cell types (down-sampled and all cells), UMAP projection, marker genes associated with each 

cell population and ranks (text file), SVM scores (text file) and cell-to-cluster (text file) 

associations within the ICGS-NMF and NMF-SVM folders. Secondary results include differential 

expression results between clusters, protein-protein and protein-DNA predicted interactions 

among these genes (network plots), QC plots, LineageProfiler cell-type predictions and GO-Elite 

pathway/Ontology/gene set enrichments by default.  

 

 

RESULTS 

 

To improve the prediction of discrete cell states from diverse possible single-cell RNA-Seq 

datasets, we developed a significantly improved iteration of our software ICGS. These new 

methods were built on-top of ICGS rather than creating a new method from scratch, as this 

software has several potential fundamental advantages over existing approaches. These 

advantages include ease-of-use (graphical and non-graphical user interfaces), a lack of reliance 

on dimensionality reduction to identify initial cellular and gene expression heterogeneity (guide-

gene based discovery), automated data visualization outputs (heatmap, UMAP), methods for 
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cell-type prediction and embedded pathway/network analyses. We previously demonstrated that 

use of this approach improves the delineation of rare transcriptionally distinct populations while 

minimizing “batch” or donor-bias through the selection of highly coherent gene expression 

clusters derived through intra-correlation of genes 6, 13. To improve the delineation of rare 

transcriptional states, we have augmented the core ICGS algorithms with rigorous methods for 

determining biologically valid clusters (SNMF, SVC, cluster fitness), automated cluster number 

determination, introduced a new method for accurate down-sampling (e.g., PageRank) for large 

scRNA-Seq datasets and added new methods for data visualization (UMAP) (Fig. 1a). These 

methods were designed to increase sensitivity of ICGS to identify important rare cell populations 

in datasets with potentially hundreds of thousands of cells. 

 

ICGS2 outperforms alternative algorithms for established benchmarks 

ICGS2 was tested against multiple gold- and silver-standard datasets, with varying 

technologies, dimensionality and complexity. To benchmark the core subtype identification 

module, four datasets previously used for benchmarking the SC3 algorithm against diverse 

established algorithms. The datasets Zeisel 14, Pollen15, Usoskin 16 and Treutlein 17 were 

selected particularly for their size and number of clusters. Further, these datasets had variable 

performance for the different methods compared.  For comparison with ICGS2, we consider the 

previously benchmarked tools SC3 v.1.2 4, SEURAT v.1.3 14, SINCERA 18, SNN-Cliq 19, 

tSNE+kmeans, as well as updated versions of SC3 (version 1.8) and SEURAT (version 2.3) 20. 

The Adjusted Rand Index (ARI) was used for the evaluation metric and author provided labels 

were used as ground state truth. Incorporating the original and our ARI measurements, we find 

that ICGS2 has improved or equivalent performance to all other methods tested, including SC3 

v.1.2 (Fig. 1b). As the newer version of SC3 had decreased performance over the original 

tested, we reran the data, for SC3 v.1.2 and Seurat v.1.3 and validated the previously reported 

ARIs. These results indicate that ICGS2 collectively outperforms other methods on datasets of 

distinct size and complexity. 

 

Identification of distinct hematopoietic subtypes in the Human Cell Atlas 

We recently performed a comprehensive analysis of eight independent donor bone marrow 

scRNA-Seq samples collected and profiled from Human Cell Atlas (HCA) initiative 21, 22. This 

analysis defined 35 distinct hematopoietic cell populations from over 100,000 cells. Although the 

workflow applied from this analysis relied on ICGS, ICGS was run independently on the cells 

from each eight donor individually, prior to those results being aggregated and used as 
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references for cell alignment using a novel classification strategy. This analysis produced both a 

combined dataset with all mature and progenitor cells and a separate analysis in which 

selectively defined refined populations in presumptive bone marrow progenitors (11,548 CD34+ 

cell clusters). As these populations were independently verified using prior sorted-population 

transcriptomic references and/or marker genes and were found to largely exclude donor-driven 

effects 21, we consider these predictions as additional “silver” standards. When applied to this 

smaller dataset of progenitors (11,548 cells), ICGS2 had the greatest relative performance 

(ARI), relative to the algorithms SC3 v.1.8, Seurat v.2.3, Scanpy 23 and two recent versions of 

the Monocle software (version 2 24 and version 3 5) (Fig. 2a). 

 

Optimized population discovery from large scRNA-Seq datasets 

ICGS2 is dependent on HOPACH clustering and SNMF which are computationally expensive 

with increasing dataset size. As such, it is not immediately applicable to ultra-large datasets, 

such as the HCA bone marrow compendium, hence, we implemented a new method for 

intelligent down-sampling of the cellular data, prior to the existing SVM classification of cells. 

While approaches such as SC3 apply random down-sampling, this procedure is likely to miss 

rare but biologically important cell populations. Alternatively, a recent down-sampling single-cell 

method (BigScale) applies k-nearest neighbor approach that is effective at preserving 

heterogeneity in large scRNA-Seq datasets, but requires defining the number of nearest 

neighbors a priori 25. To address this challenge, ICGS2 applies the Google PageRank algorithm 
26, a graph-based algorithm, originally designed to identify the most frequently visited websites. 

This approach prioritizes the selection of interspersed nodes in the larger graph, with minimum 

representation bias. Using the PageRank score, ICGS2 identifies the top 2,500 representatives 

cell profiles (by default) for large datasets. To evaluate this down-sampling technique, we again 

used the progenitor population dataset (HCA, n=11,548). We compared the percentage of cells 

retained for each known group and found that the down-sampling approach consistently 

identified around 17-26% from the total 22% cells considered (Fig. 2b). The results of the 

original ICGS2 and down-sampled ICGS2 were highly concordant, with an ARI of 86%. We 

attributed the differences in the ARI to the slight differences in the assignment of cells in 

particular highly related transitional states. While, none of the evaluated scRNA-Seq algorithms 

were able to replicate some of the original author transcriptionally distinct clusters (two separate 

Monocytic Dendritic Precursor (MDP) populations, Hematopoietic Stem Cell (HSC) in cycle 

versus HSC), both down-sampled and complete ICGS2 selectively identified Common 

Lymphoid Progenitors (CLP) and Lymphoid-primed multipotent progenitors (LMPP) not 
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identified by the other algorithms.  ICGS2 further found additional granularity in the original 

annotated presumptive Multi-Lineage progenitor (Multi-Lin) cells (Fig. 2c-g). This delineation is 

supported by unique gene expression present in these additional Multi-Lin subsets, with skewed 

granulocytic, MDP or HSC gene expression. Visualization of these subsets in the software 

SPRING ordered these three Multi-Lin populations groups along separate connected 

trajectories further supporting the validity of these predictions (Fig. 2h).  

 

ICGS2 uniquely identifies novel subpopulations in ultra large datasets with minimal 
donor effects 
We next compared the performance of ICGS2 in the complete HCA dataset against other 

approaches compatible with ultra-large scRNA-Seq datasets. For datasets of >25,000, Louvain 

clustering is performed with minimum resolution to down-sample the data to around 10,000 cells 

and construct the graph, PageRank then is applied to identify the top 2,500 representative cells.  

This step is optional to improve the performance of graph construction for the sampling. As with 

the CD34+ restricted dataset, we compared the percentage of the cells sampled for each of the 

author provided labels for the 2% of cells sampled by this procedure. On average, 10% of cells 

in populations with less than 1,000 cells were selected from by this method and 3% for 

populations with more than a thousand cells. At least 6 representative cells per cell cluster were 

selected by this down-sampling method for all 35 previously defined bone marrow cell 

populations (Fig. 3a). To compare its ability to detect cell populations, ICGS2 was again 

evaluated relative to Seurat (v2.3), Monocle3 and Scanpy, which have previously shown to 

effectively handle large datasets. While runtime on this dataset ranged from 15 minutes 

(Scanpy) to 6 hours (Seurat), ICGS2 proved to be the most memory efficient method, while 

remaining relative fast (2 hours) (Table 1). We attempted to run SC3, however, this approach 

reached its memory limit with 256GB of RAM (estimate k-step). BigScale was excluded from 

evaluation as it is currently compatible only with Windows operating systems (Matlab license 

required). To assess the contribution of donor driven effects in the clusters obtained, Seurat was 

also run using the canonical correlation analysis option (Multi-CCA) with the different donors 

considered as different datasets. When comparing these different methods, ICGS2 was found to 

have the greatest ARI for the 35 prior assigned cell-populations (Fig. 3b). In addition, as we 

predicted, ICGS2 identified clusters were the least confounded by donor effects, including those 

identified by Seurat Multi-CCA (Fig. 3c). In addition to the previously described bone marrow 

cell populations, ICGS2 uniquely identified distinctive additional subtypes of T-cells, 

Erythroblasts and Dendritic cells (DC) which were not previously identified nor identified by the 
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other approaches. For example, each DC cell cluster was found to expresses unique marker 

genes with established roles in functionally distinct DC subsets (plasmacytoid, maturing CD1c+, 

CD1c+ and CD8+) (Fig. 3f-i) 27, 28, 29, 30, 31. It is important to note that all approaches tested failed 

to sufficiently define all of the discrete CD34+ progenitor cell populations in the entire HCA 

dataset that were clearly resolved from the independent analysis of these cells, suggesting that 

these methods are far from perfect. Nonetheless, ICGS2 not only outperformed these other 

approaches, but identifies unique cell populations that align to prior knowledge. 
 
DISCUSSION 
 
As scRNA-Seq approaches continue to increase in the depth of cells captured and molecules 

measured, more accurate approaches are required to identify rare and subtly distinct cell 

populations associated unique gene expression programs. Here we present an improved and 

highly scalable version of ICGS, that can be applied to extremely large scRNA-Seq datasets to 

delineate subtly distinct and rare cell populations. We use a hybrid approach that combines 

accurate methods for cluster determination and cell classification, in combination with new 

algorithms for intelligent single-cell down-sampling. NMF has been shown to improve the 

detection of sub-populations from diverse datasets, due to its ability to identify interpretable 

parts from high dimensional datasets 32. Using this refined workflow, we demonstrate improved 

performance over a large spectrum of existing approaches, across different datasets of varying 

complexity and size.  Importantly, the use of iterative gene correlation and guide-gene selection 

appears to significantly minimize the impact of donor effects in the context of the first HCA 

release of human transcriptome variation, without directly considering such effects. This 

approach further uniquely identifies additional cell populations in bone marrow that decompose 

multiple prior defined cell-types associated with biologically informative markers (Multi-Lin, T-

cells, Erythroblasts and Dendritic cells).  

ICGS2 is fundamentally distinct from alternative approaches, in terms of its basic 

strategy to identify heterogeneity. Standard methods for variable gene selection (dispersion, 

PCA) are inherently more susceptible to initial transcriptional noise, batch and donor effects, 

however, ICGS selects variable genes through a rigorous pairwise correlation strategy over 

multiple rounds of iteration, with a focus on the selection of transcription factors as guide-genes. 

As previously demonstrated, this approach is more likely to identify transitional states which 

include mixed-lineage progenitors, weekly defined by unique gene expression 6, 13, 21, 33, 34, 35. 

ICGS2 extends the ability of ICGS to further define rare and common transcriptionally distinct 
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populations, including multi-lineage cell populations from the human cell atlas, independent of 

donor effects. Because the software automatically identifies the most appropriate number of 

clusters, it can be simultaneously applied to many datasets, without the requirement for the user 

to specify. 

The potential applications of this approach are broad, which include emerging large-

scale whole-organism atlases, where AltAnalyze provides additional advantages beyond the 

ICGS2 algorithm itself. These benefits include imbedded methods to predict cell-type identify 

based on existing cell-specific gene-set references (gene set enrichment, cellHarmony), 

pathway enrichment analysis and display of protein-protein and transcriptional regulatory 

network relationships among genes differentially expressed between similar populations 

(NetPerspective algorithm) 13. Importantly, this workflow is accessible by both knowledgeable 

single-cell data analysts as well as conventional biologists without such expertise, through 

accessible command-line and graphical user interfaces.  An important caveat of this approach is 

that it is dependent on the presence of coordinate gene expression patterns in which the 

underlying data is not so sparse that initially correlated genes can be identified. To address this 

challenge, this tool further includes the ability for users to designate the number of clusters 

when initial heterogeneity is only weakly detected. While the parameters of ICGS2 and other 

methods (e.g., SC3, Seurat) can be modified to identify additional subtypes, in the future, we 

hope to optimize our approach to optionally find maximal heterogeneity at the lowest resolution 

(sub-clustering). Through similar uses of ICGS2, we anticipate the discovery novel biologically 

informative cell populations that can guide our understanding of cellular diversity on complex 

organisms, including exceedingly rare populations that underlie disease phenotypes. 
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Figure Legends 
 

Figure 1. Performance of ICGS2 against diverse alternative unsupervised scRNA-Seq 
algorithms.  a) Overview of the ICGS2 workflow for single cell RNA-Seq population prediction. 

These steps include: 1) PageRank-Down-sampling (optional), 2) feature selection (ICGS), 3) 

dimension reduction (Sparse-NMF), 4) cluster refinement/exclusion (“fitness”) and 5) cluster 

assignments (Linear-SVM). b) Comparison of ICGS2 to previously evaluated algorithms to 

detect prior defined cell populations from distinct “silver” standard datasets of varying size and 

complexity using the Adjusted Rand Index (ARI). Specific algorithms evaluated, with specific 

versions of these tools indicated.  

 

Figure 2. Delineation of discrete and transitioning populations in bone marrow 
progenitors. a) Detection of prior-defined Human Cell Atlas (HCA)(n=11,568) bone marrow 

progenitor (BMP) clusters using ICGS2 and ICGS2-DS (down-sampled) compared to Seurat 

2.3, Scanpy, SC3 1.8 and Monocle 2 and 3. To maximize the ARI score for each approach, if 

multiple clusters were predicted for a single reference cluster (Hay et al.), these clusters were 

combined prior to scoring. b) Frequency of PageRank down-sampled cells out of the total 

number of previously defined BMP clusters (n=18). The total number of cells in each cell 

population are shown to the right of the plot. Visualization of cell cluster assignments using the 

software SPRING of: c) prior-defined HCA BMP clusters, d) ICGS2 using down-sampling 

(ICGS2-DS), e) Seurat v2.3, f) SC3, and g) Scanpy. h) Spring visualization of novel multi-

lineage populations identified uniquely by ICGS2.  

 

Figure 3: Identification of rare and novel cell populations from ultra large scRNA-Seq 
data. a) The frequency of PageRank down-sampled Bone Marrow cells from the Human Cell 

Atlas (HCA) project (n=100,514) are shown relative to the total number of cell prior to sampling 

for the prior defined cell-populations (n=35). The total number of cells in each cell population are 

shown to the right of the plot with the number of sampled samples in brackets. b) Comparison of 

prior-defined Bone Marrow clusters (ARI scores) using ICGS2-DS (down-sampled), Seurat v2.3, 

Seurat CCA, Monocle 3 and Scanpy. c) Comparison of the different algorithms in detecting 

donor biased Bone Marrow clusters (aka batch effects). Z-enrichment scores are calculated for 

each of the eight Bone Marrow donors against each cell cluster identified by the evaluated 

algorithm. A high z-score indicates an enrichment in cells in a specific cluster and a specific 

donor. Clusters enriched in cells from individual Bone Marrow donors indicated by high z-scores 
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are visualized as outliers (circles) in the box-plots. d-e) UMAP visualization of clusters for prior-

defined Bone Marrow HCA scRNA-Seq clusters by Hay et al. and by ICGS2 with down-

sampling. f-i) 4 ICGS2 identified novel dendritic cell populations visualized using the top ranked 

ICGS2 gene marker. 

 

Application 
Maximum 

Memory Usage 
Processing 

Time 
ICGS2 10.4 GB 121.2 min 
Scanpy 33.9 GB 14.9 min 

Monocle3 170.4 GB 81.3 min 
Seurat 160.1 GB 355.1 min 

 
Table 1: Computational benchmarking of ICGS2 relative to alternative approaches. 
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