
The Parkinson’s Disease Mendelian Randomization Research Portal 
 
 

Alastair J Noyce MRCP, PhD1,2,*, Sara Bandres-Ciga PhD3,4,*, Jonggeol Kim BSc3*, Karl 

Heilbron PhD5, Demis Kia BSc2, Gibran Hemani PhD6, Angli Xue BSc7,8, Debbie A Lawlor 

PhD6,9, George Davey Smith MD6,9, Raquel Duran PhD4,10, Ziv Gan-Or MD, PhD11,12,13, 

Cornelis Blauwendraat PhD3, J Raphael Gibbs PhD3, 23andMe Research Team5, 

International Parkinson’s Disease Genomics Consortium (IPDGC), David A Hinds PhD5, Jian 

Yang PhD7,8, Peter Visscher PhD7,8, Jack Cuzick PhD1, Huw Morris FRCP, PhD2, John 

Hardy PhD2, Nicholas W Wood FRCP, PhD2, Mike A Nalls PhD3,15, Andrew B Singleton 

PhD3. 

 
Affiliations: 
 

1. Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary 

University of London, London EC1M 6BQ, UK  

2. Department of Clinical and Movement Neurosciences, University College London, 

Institute of Neurology, London WC1N 1PJ, UK 

3. Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on 

Aging, National Institutes of Health, Bethesda, MD 20892, USA 

4. Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain. 

5. 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA 94041 USA 

6. MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK 

7. Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, 

Australia 

8. Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 

4072, Australia 

9. Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK 

10. Centro de Investigacion Biomedica and Departamento de Fisiologia, Facultad de 

Medicina, Universidad de Granada, Granada, Spain 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604033doi: bioRxiv preprint 

https://doi.org/10.1101/604033
http://creativecommons.org/licenses/by-nd/4.0/


11. Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, 

Canada 

12. Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada 

13. Department of Human Genetics, McGill University, Montreal, Quebec, Canada 

14. Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang 

325027, China 

15. Data Tecnica International, Glen Echo, MD 20812, USA 

*Equal contribution 

 
Running title: PD MR Research Portal 
 
Key words: Mendelian randomization, Parkinson’s disease, risk factor, public resource 
 
 
Corresponding author: Dr Alastair Noyce 

Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London 
School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ 
UK; Tel: +44 (0)207 882 5841; Email: a.noyce@qmul.ac.uk 
 

Word count: 4391   Abstract word count: 253 

 

Funding agencies: This research was supported in part by the Intramural Research 

Program of the National Institutes of Health (National Institute on Aging, National Institute of 

Neurological Disorders and Stroke; project numbers: project numbers 1ZIA-NS003154, Z01-

AG000949-02 and Z01-ES101986. The QMUL Preventive Neurology Unit is funded by the 

Barts Charity: grant reference number MGU0364. George Davey Smith and Debbie Lawlor 

work in the Medical Research Council Integrative Epidemiology Unit at the University of 

Bristol, which is supported by the Medical Research Council (MC_UU_00011/1). University 

College London Hospitals and University College London receive support from the 

Department of Health's National Institute for Health Research (NIHR) Biomedical 

Research Centres (BRC). Debbie Lawlor and Nicholas Wood are NIHR senior 

Investigators. 

 

Financial Disclosures: Mike A. Nalls’ participation is supported by a consulting contract 

between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604033doi: bioRxiv preprint 

https://doi.org/10.1101/604033
http://creativecommons.org/licenses/by-nd/4.0/


USA. As a possible conflict of interest Dr. Nalls also consults for SK Therapeutics Inc, 

Lysosomal Therapeutics Inc, the Michael J. Fox Foundation and Vivid Genomics among 

others. No other disclosures were reported. 

 

 

 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604033doi: bioRxiv preprint 

https://doi.org/10.1101/604033
http://creativecommons.org/licenses/by-nd/4.0/


ABSTRACT 

 

Background 

Mendelian randomization (MR) is a method for exploring observational associations to find 

evidence of causality.  

 

Objective 

To apply MR between multiple risk factors/phenotypic traits (exposures) and Parkinson’s 

disease (PD) in a large, unbiased manner, and to create a public resource for research. 

 

Methods 

We used two-sample MR in which the summary statistics relating to SNPs from genome 

wide association studies (GWASes) of 5,839 exposures curated on MR Base were used to 

assess causal relationships with PD. We selected the highest quality exposure GWASes for 

this report (n=401). For the disease outcome, summary statistics from the largest published 

PD GWAS were used. For each exposure, the causal effect on PD was assessed using the 

inverse variance weighted (IVW) method, followed by a range of sensitivity analyses. We 

used a false discovery rate (FDR) corrected p-value of <0.05 from the IVW analysis to 

prioritize traits of interest.  

 

Results 

We observed evidence for causal associations between twelve exposures and risk of PD. Of 

these, nine were causal effects related to increasing adiposity and decreasing risk of PD. 

The remaining top exposures that affected PD risk were tea drinking, time spent watching 

television and forced vital capacity, but the latter two appeared to be biased by violations of 

underlying MR assumptions.  

 

Discussion 
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We present a new platform which offers MR analyses for a total of 5,839 GWASes versus 

the largest PD GWASes available (https://pdgenetics.shinyapps.io/pdgenetics/). Alongside, 

we report further evidence to support a causal role for adiposity on lowering the risk of PD. 
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INTRODUCTION 

The risk factors and determinants of Parkinson’s disease (PD) remain incompletely 

understood. While monogenic forms are responsible for approximately 5% of PD, the vast 

majority of disease is considered to be sporadic and due to a number of genetic and non-

genetic risk factors 1. Approximately one third of the genomic liability in PD risk has been 

explained by common genetic variants uncovered by current genome-wide association 

studies (GWAS) 2,3. Total heritability estimates are estimated to be roughly 22-27%, meaning 

that a substantial proportion of genetic risk is still to be discovered 4,5. The remainder of PD 

risk likely comes from environmental factors 4, 5, aging 6, 7, and stochastic events occuring in 

an unpredictable and non-modifiable manner 8. 

Mendelian randomization (MR) is an epidemiological method that can be used to provide 

support for causality between a modifiable exposure/risk factor/phenotypic trait (henceforth 

collectively termed exposure) and a disease outcome 9. Put simply, genetic variants (usually 

single nucleotide polymorphisms or SNPs) that explain variation in an exposure can be used 

as proxies to determine how a change in that exposure might influence a disease outcome. 

A ratio of the genetically-estimated change in an exposure and the genetically-estimated 

change in the outcome using the same individual SNP is calculated and then pooled across 

all SNPs that are independently associated with the exposure trait of interest. The pooled 

ratio (usually a Wald ratio) is an estimate of change in the outcome for a given change in the 

exposure, as long as certain instrumental variable (IV) assumptions are upheld (see 

Supplemental Material). 

A common approach to MR involves the use of summary statistics from published GWASes 

of exposures and the summary statistics of a GWAS of an outcome to determine causal 

estimates; an approach known as two-sample MR. Recently, the summary statistics from 

GWAS for a large range of exposures have been curated in MR Base 

(http://www.mrbase.org), which enables targeted (hypothesis-driven) exploration of causal 

associations or hypothesis-generating approaches to MR 10. Many MR studies are 

underpowered, either as a consequence of relative low samples sizes or the small amount of 
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variation in an exposure trait which is explained by common genetic variation. We have 

undertaken a high-throughput approach to two-sample MR for a large range of exposures 

and PD. The principal goal was to provide a resource for the research community to add 

causal insights to associations arising from traditional epidemiological approaches and to 

support pursuit of new interventions to reduce risk of PD. 

 

METHODS 

Exposure data 

MR Base is an online resource which, at the time of the analysis, contained summary results 

from 7,956 GWASes across multiple exposures, encompassing a wide range of 

physiological characteristics and disease phenotypes. MR Base was accessed on 14th 

January 2019. Each exposure was tested separately to determine if it altered risk of PD. All 

analyses were performed using the R package TwoSampleMR (version 3.2.2; 

https://github.com/MRCIEU/TwoSampleMR). The instrumental variables used for each 

binary exposure consisted of the per-allele log-odds ratio (or the beta estimate for 

continuous exposure traits) and standard errors for all independent SNPs reaching genome-

wide significance. 

We used the following stringent criteria for any exposure GWAS to be included in our 

analysis: (i) the GWAS had to report SNPs with p-values less than 5.0x10-8 for their 

association with a given exposure; (ii) these SNPs or their proxies (linkage disequilibrium R2 

value >= 0.8) had to be present in both the exposure and outcome (PD) datasets; (iii) these 

SNPs were independent signals that were generated through a process called ‘clumping’. In 

order to ‘clump’, index SNPs were identified by ranking exposure associations from the 

smallest to largest p-value (but still with a cutoff value of p=5x10−8). Clumped SNPs were 

those in linkage disequilibrium (LD) with index SNPs (R2 threshold of 0.001) or within 10,000 

kb physical distance. Hence, each index SNP represented a number of clumped SNPs that 

were all associated with or near to the index SNP, and the index SNPs were all independent 
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of one another (according to the stringent parameters defined here). A total of 5,839 

GWASes surpassed these criteria and were tested against the outcome. Then, we further 

expanded our filtering approach as follows: (iv) in order to use MR sensitivity analyses 

designed to identify pleiotropy, each GWAS had to include a minimum of ten associated 

SNPs; (v) the number of cases was > 250 for GWASes of a binary exposure or > 250 

individuals for GWASes of a continuous exposure; and (vi) both the exposure and the 

outcome data were drawn from European populations. A total of 401 traits met our filtering 

criteria (7% of 5,839), consisting of 175 published GWASes and 226 unpublished GWASes 

from UK Biobank (UKB; www.ukbiobank.ac.uk). For UKB GWASes, some of the exposures 

are reported in an ordinal fashion, but treated as continuous when calculating betas for the 

effect allele at each SNP. This means that some of the effect estimates that arise are difficult 

to interpret quantitatively, both in the GWAS and in the subsequent MR analysis. 

 

Outcome data 

Summary statistics from the largest, published PD GWAS meta-analysis involving 26,035 

PD cases and 403,190 controls of European ancestry were used as the outcome data for the 

primary analysis 11. In this study there were 7,909,453 genotyped and imputed SNPs tested 

for association with PD with a mean allele frequency (MAF) > 3%. Recruitment and 

genotyping quality control procedures were described in the original report 11.  

A newer PD GWAS includes a total of 37,688 cases, 1,417,791 controls and 18,618 ‘proxy 

cases’ from UKB (individuals that reported having a parent with PD) 2. However, there is 

substantial overlap in control subjects between each of the UKB exposures and the Nalls et 

al., 2019 meta-analysis, which can in turn lead to bias in causal effect estimates. For this 

reason, we repeated the analyses using only 5,851 clinically-diagnosed PD cases and 5,866 

matched controls as the outcome, after excluding UKB samples and self-reported PD cases 

and controls. Finally, we used an earlier PD GWAS that included 13,708 cases and 95,282 

controls as the outcome 12. 
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Mendelian randomization analyses 

Harmonization was undertaken to rule out strand mismatches and to ensure alignment of 

SNP effect sizes. Within each exposure GWAS, Wald ratios were calculated for each 

extracted SNP by dividing the per-allele log-odds ratio (or beta) of that variant in the PD 

GWAS data by the log-odds ratio (or beta) of the same variant in the exposure data. 

First, the inverse-variance weighted (IVW) method was implemented to examine the 

relationship between the individual exposures and PD. In this method, the Wald ratio for 

each SNP was weighted according to its inverse variance and the effect estimates were 

meta-analysed using random effects. This approach is equivalent to plotting SNP-

exposure/SNP-outcome associations on scatter plot and fitting a regression line (inverse-

variance weighted regression), which is constrained to pass through the origin. The slope of 

the linear regression represents the pooled-effect estimate of the individual SNP Wald ratios 

13. For the purpose of demonstrating the use of this new platform, we used an false 

discovery rate (FDR) adjusted p-value of <0.05 to define exposures of interest as showing 

potential evidence of a causal effect. The IVW estimate is valid when the three core 

assumptions that underpin MR are upheld (see Supplemental Material). However, 

simulation studies show that up to 90% of MR analysis may be affected by pleiotropy, which 

in turn may bias the IVW estimate 14. Effects of pleiotropy for each analysis were studied by 

first looking for evidence of heterogeneity in the individual SNP Wald ratios and then 

undertaking a range of sensitivity analyses, each with different underlying assumptions. 

Heterogeneity in the IVW estimates was tested using the Cochran’s Q test, quantified using 

the I2 statistic, and displayed in forest plots. Heterogeneity in the IVW estimate may indicate 

that alternative pathways exist from some of the SNPs to the outcome (known as horizontal 

pleiotropy), which can violate the third MR assumption 15, but as long as overall 

heterogeneity is balanced it does not necessarily bias the pooled IVW estimate 16. After 

calculation of the IVW estimates, three sensitivity analyses were applied to evaluate the core 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604033doi: bioRxiv preprint 

https://doi.org/10.1101/604033
http://creativecommons.org/licenses/by-nd/4.0/


assumptions of MR and which rely on instruments containing multiple SNPs (in this case a 

minimum of 10 SNPs per exposure phenotype) 17.  

MR-Egger was used to demonstrate evidence of a net unbalanced horizontal pleiotropic 

effect which might bias the IVW estimate. With MR-Egger, the regression line fitted to the 

data is not constrained to pass through the origin and a non-zero intercept indicates whether 

there is a net horizontal pleiotropic effect which may bias the IVW estimate 18. The weighted 

median (WM) MR method gives consistent effect estimates under the assumption that no 

more than 50% of the weight of the MR effect estimate comes from invalid (e.g. pleiotropic) 

SNPs, where weight is determined by the strength of their association with the exposure 19. 

Finally, IVW radial analysis was performed as a complementary method to account for SNPs 

acting as heterogeneous outliers and to determine the effect of resulting bias on the IVW 

estimate 16. 

 

Exploring directionality, single SNP effects and reverse causality 

For effect estimate directionality, odds ratios were scaled on a standard deviation increase in 

genetic risk for the exposure from that population mean. We evaluated the possibility that the 

overall estimate was driven by a single SNP using leave-one-out (LOO) analyses for each of 

the phenotypic traits associated with PD. Finally, we tested for reverse causation by using 

SNPs tagging the independent loci described in the latest PD GWAS as exposure 

instrumental variables, and exposure GWASes as the outcomes. Note that this analysis 

measures the causal effect of genetic liability towards PD on each of the exposure traits 

included in the main analysis, which is independent of PD actually occurring (in a case-

control setting such as this). 
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RESULTS 

The PD MR portal is hosted at https://pdgenetics.shinyapps.io/pdgenetics. Users can search 

for evidence that PD is causally affected by a broad range of exposures from 5,839 

GWASes. Here, we explore some of the top results from our filtered analysis of 401 

exposures to assist users in understanding how to interpret these data (see Figure 1 for 

flowchart of analysis). To our knowledge, there are no previous reports where a large-scale 

approach has been implemented to explore the causal contribution of multiple exposures to 

PD risk. Such approaches require appropriate multiple testing correction in order to avoid 

false-positive associations, which we have undertaken. That noted, at present most MR 

analyses are not sufficiently well-powered to detect truly causal associations after correcting 

for multiple testing, hence context should be applied when weighing the evidence for 

causality.  

Of the 401 exposures that we included in this report, we found twelve exposures with 

potentially causal effects on PD (i.e. IWV FDR-adjusted p-values <0.05) (see Table 1 and 

Figure S1 for forest plots displaying individual SNP-level estimates and pooled estimates). 

Of these exposures, eight were measures of adiposity that implied an inverse causal effect 

of increase adiposity and a lowering of PD risk. Four additional exposure traits met the FDR-

adjusted p-value threshold for a possible causal effect: time spent watching television 

(inverse), tea drinking (positive), forced vital capacity (FVC; positive) and impedance of the 

right leg (positive). In each case, to explore the possibility that results were biased due to the 

violation of core MR assumptions, we looked for heterogeneity in the individual Wald ratios 

and performed the three additional MR sensitivity analyses: MR-Egger, WM and radial IVW 

(see Table 2). 

The eight adiposity GWASes all contained >200 SNPs and were highly correlated with one 

another. The strongest causal effects were observed for arm fat percentage which was 

measured quantitatively using tissue impedance 
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(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23119). A unit increase in arm fat 

percentage (right and left) yielded a pooled odds ratio of 0.65 (95% CI 0.54-0.79, FDR 

adjusted p=0.005) and a pooled odds ratio of 0.66 (95% CI 0.54-0.79, FDR adjusted p=0.01) 

respectively. Although the individual Wald ratios showed significant heterogeneity (arm fat 

percentage (right) Q=314.8, p=7.01x10-6; arm fat percentage (left) Q=399.38, p=3.93x10-11), 

the sensitivity analyses did not suggest significant bias in the causal effect estimate from the 

IVW analysis (see Table 2). In general, all effect estimates for the adiposity traits supported 

a protective effect of increased adiposity on risk of PD (ORs ranged between 0.62 and 0.77) 

(see Table 1 and Table 2).  

Another body composition exposure called ‘impedance of right leg’ surpassed the IVW FDR-

adjusted p-value threshold. As described above, impedance is the method by which 

percentage fat is calculated, with higher impedance indicative of higher fat percentage 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23107). Given the results for adiposity, we 

expected that a unit change in impedance would result in a causal lowering of PD risk. In 

contrast to the results for adiposity, the impedance exposure trait gave rise to an IVW OR 

1.25 (95% CI 1.10-1.42, FDR adjusted p=0.032). There was significant heterogeneity in the 

individual Wald ratios (Q=428.4, p=7.25x10-7), but the sensitivity analyses did not suggest 

bias in the IVW effect estimate (see Table 2). We sought to explain why the direction of 

effect for impedance was different to that for percentage fat, when it was expected that it 

should be the same. Genetic correlations between impedance and percentage fat were run 

(see Table S1), and in all cases the genetic association between the two traits was negative. 

The ‘tea drinking’ exposure was captured by an instrument containing 35 SNPs. The IVW 

OR was 1.74 (95% CI 1.26-2.39, FDR adjusted p=0.025) and there was no significant 

heterogeneity in the individual Wald ratios (Q=41.3, p=0.181). The three sensitivity analysis 

did not imply bias in the IVW estimate. Of note, coffee intake was not causally associated 

with increased risk of PD (OR 1.37, p=0.197), but similar to the ‘tea drinking’ exposure, the 
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direction of the effect was also not consistent with the widely-accepted negative 

observational effect. 

‘Time spent watching television’ was inversely linked to PD risk in the IVW analysis (OR 

0.46, FDR adjusted p=0.013), suggesting that more time spent watching television caused a 

lower risk of PD. However, the MR Egger sensitivity analysis gave a very different pooled 

effect estimate (OR 0.85, p=0.870) suggesting that the IVW result may have been biased by 

directional pleiotropy. The intercept term can be used to test for net directional pleiotropy 

(here it was -0.007, p=0.542), but this test is generally underpowered. The difference in the 

slope from the IVW analysis and the MR Egger analysis is shown graphically in Figure S2 

and suggests that, in the presence of directional pleiotropy, the IVW effect for ‘time spent 

watching television’ may be overestimated. From the other scatter and forest plots, it is clear 

that for the adiposity traits, that the slope (or magnitude of effect) the MR Egger regression is 

greater than the IVW slope (effect), which suggests that in the presence of directional 

pleiotropy the IVW may be underestimated. 

‘Forced vital capacity’ also showed a positive causal effect on PD risk that was similarly 

observed in the sensitivity analyses (see Table 1 and Table 2). However, the effects 

appeared to be largely driven by two specific SNPs that are known to be pleiotropic for PD 

(see below). 

The LOO analysis showed that none of the results described for the twelve exposures were 

being driven by a single SNP in each of the instruments (Table S2). The most precisely 

estimated Wald ratio for most of the adiposity exposures (7/8) came from a single SNP in the 

FTO gene (rs11642015), but dropping this SNP from the analyses did not affect the overall 

results. Similarly, the most precisely estimated Wald ratio in the impedance instrument was 

for a different SNP in the FTO gene (rs62048402), but again dropping this SNP did not affect 

the overall results. Importantly, and in support of the observations relating to negative 

genetic correlation between percentage fat and impedance described above, the direction of 
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the Wald ratio for the FTO SNP in adiposity exposures was negative and for impedance was 

positive.  

For tea drinking, the two Wald ratios with the greatest influence on the pooled effect 

estimates came from SNPs rs4410790 and rs2472297, which are located in the AHR and 

CYP1A2 gene loci respectively, and are known to be strongly associated with caffeine-

consumption behaviours 20. Leaving either SNP out from the analysis did not change the 

overall result, but the pooled effect estimate weakened when rs4410790 (AHR) was 

removed (the OR 1.74 changed to 1.61). In the ‘forced vital capacity’ analysis SNPs 

rs1991556 and rs13146142 were most precisely estimated and appeared to influence the 

magnitude of the causal effect. Closer examination revealed that rs1991556 is in the MAPT 

locus and rs13146142 is the LCORL locus, and both are known to be associated with PD, 

likely biasing the causal effect of FVC on PD 12,2 .  

The reverse causation analyses revealed no clear evidence that a liability towards PD was 

causally linked with any of the twelve exposures, but this analysis was restricted to only 18 

of the 43 PD GWAS significant hits and may have been underpowered to detect reverse 

causal effects (Table S3). 

Of interest, the next seven exposures with the strongest associations in the IVW analysis, 

but not surpassing the FDR adjusted p-value threshold, were four adiposity traits (all 

showing a negative causal effect), current tobacco smoking (negative causal effect), 

increased alcohol intake (negative causal effect), and increased education (having a college 

or university degree; positive causal effect). The FDR adjusted p-values for each of these 

were <0.1 and unadjusted p-values were all <0.004. 

Finally, we used clinically diagnosed cases (and controls) from the 2019 PD GWAS dataset 

as the outcome (Table S4). Given the smaller sample size, none of the MR analyses 

surpassed an FDR adjusted p-value, but the top hit was for a marker of adiposity (hip 

circumference). When an even earlier iteration of the PD GWAS was used (~13.5k cases 
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and ~95k controls)12, there were 11 exposures that surpassed the FDR-adjusted p-value 

threshold and all 11 were related to adiposity (Table S5). 

 

Discussion 

Here we present the PD MR research portal, hosted at 

https://pdgenetics.shinyapps.io/pdgenetics/ . We envisage this being a valuable and evolving 

resource for the global research community, which will be updated as new data emerge. It 

should be used to provide evidence to support, and over time, evidence against, causality 

when undertaking observational studies or pursuing interventions aimed at reducing the risk 

of PD (hypothesis-driven research). Clearly there are too many associations presented in the 

portal to explore each one in detail. So, for the purpose of demonstrating the use of the tool, 

we undertook a data-driven approach to identify those exposures with the strongest causal 

signals (FDR adjusted IVW p-value <0.05).  

We have previously reported an inverse causal association between BMI and risk of PD - a 

genetically-estimated 5kg/m2 higher BMI was associated with a reduced risk of PD (IVW 

OR=0.82) 21. Here we found further evidence to support an inverse relationship between 

increased adiposity and PD, given that eight of the top twelve exposures were measures of 

adiposity. These exposures were objectively and quantitatively ascertained and each GWAS 

in question identified >200 SNPs that were associated with increased adiposity. The results 

of the IVW analyses and all sensitivity analyses were broadly consistent, and effect across 

all traits was consistent with there being a protective effect of higher BMI and/or higher 

percentage fat on PD. Impedance gave rise to a causal effect opposite to that of increasing 

adiposity, which was initially unexpected. We have no reason to be believe that the scale 

upon which SNPs were associated with impedance was inverted. However, the difference in 

the direction of effect may be because the equation that links percentage fat and impedance 
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requires adjustment for height and weight, which would not have been done routinely in the 

impedance GWAS 22. 

Of note, although BMI specifically was not one of the top twelve exposures, the causal effect 

of BMI on PD was also negative in this analysis (OR 0.81; p=0.037) using the same BMI 

instrument that we have previously published about 21,23. In that earlier analysis, we included 

simulations that indicated the protective effect was unlikely to be explained by survival bias 

(that is, people with higher BMI dying of other diseases before they would usually be 

diagnosed with PD). The relationship between BMI and adiposity with PD clearly warrants 

further study. It is not clear at what point across the BMI scale protection against PD is 

conveyed since all we have observed is an averaged linear association between BMI (and 

other markers of adiposity) and PD. 

Tea drinking emerged as being causally linked to PD in that genetically-estimated tea 

drinking status appeared to increase the risk of PD. This result was largely unexpected 

because the observational study associations between caffeine-containing drinks (both 

coffee and tea) have almost always suggested a negative association between caffeine and 

PD 4,24. This has meant that caffeine has been explored as a potentially therapeutic option 

for PD 25. It is not clear what would account for observing consistently negative observational 

associations between caffeine and PD, and a potentially detrimental effects of caffeine on 

PD in MR analyses, but the effect for coffee drinking in this analysis was also not in favour of 

a true protective effect. The remaining two exposures (time spent watching television and 

forced vital capacity) that appeared to be causally-linked to PD should be regarded with 

additional caution. Television watching appeared to fail in one of the sensitivity analyses and 

the effect of forced vital capacity appeared to be largely driven by two SNPs that are known 

to be associated with PD. 

Data sharing restrictions relating to some of the data in PD GWASes meant that the full 

summary statistics cannot be released to libraries such as MR Base and the presentation of 
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the results in the PD MR portal has been tailored to suit our specific aims. Alongside a 

standard method used to pool ratio estimates from individual SNPs (the IVW method), we 

also demonstrated the use of three sensitivity analyses that provide more valid estimates 

when core instrumental variable assumptions have been violated (namely the MR-Egger, 

WM and radial methods) 19,16. These methods will allow researchers to further appraise the 

validity of the instruments presented and whether IVW estimates may be biased. In the 

current version of the portal, we have provided the opportunity of undertaking analyses with 

three different PD outcome datasets. There was little qualitative difference in the ‘top MR 

hits’ across the three iterations of the PD outcome data, particularly when comparing the 

larger datasets. The portal also contains a huge number of exposures that have been 

curated by MR Base. However, as highlighted in this report and in a warning message in the 

portal, we advise caution with the interpretation of results for exposure traits that do not 

surpass considered filtering criteria (for our criteria this was 5,438 out of 5,839 or 93% of 

exposures). These included GWASes for which the case numbers were small and the 

number of variants in the exposure instruments was too few to permit the use of the 

sensitivity analyses. 

 

Limitations 

Here we have presented a hypothesis-free approach using two-sample MR to study causal 

associations between PD and a range of exposures. In most instances, the variation in a 

given exposure that is explained by genome-wide significant GWAS signals is small (i.e 

0.5%-8%), meaning that sample sizes often need to be extremely large to detect causal 

effects using this design. The resulting p-values that arise from MR hypothesis tests are 

often not small and in the various sensitivity analyses, often border on or exceed nominal 

statistical significance. Given the approach, traditional methods of adjusting for multiple 

comparisons (i.e. Bonferroni or false discovery rate correction) render many potentially 
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causal associations obsolete and limit the conclusions that one can draw. While we have 

observed further evidence to support the role of increased adiposity on lower risk of PD, in 

general we recommend using this tool to confirm or add to evidence to associations 

identified in observational studies or towards a particular intervention. In any MR analysis, it 

is generally recommended that emphasis should be placed on the confidence intervals and 

consistency of point estimates across the IVW estimate and the sensitivity analyses, rather 

than just the p-values per se. In addition, we recommend the calculation of F-statistics for 

determining instrument strength and post-hoc power calculations, particularly in the instance 

of null results 26. This is particularly important when making claims of no evidence to support 

a causal association (such as in some of the reverse causation analyses presented in this 

manuscript). These additions and others are planned for future versions of the portal. 

It is important to remember that for all analyses presented here, the outcome is ‘risk of PD’ 

because the outcome data come from a GWAS of PD cases versus controls. In order to 

make causal inferences about the effect of various exposures on disease progression, one 

would need to have an outcome GWAS of PD progression. As mentioned in the Methods, an 

important source of bias in MR studies can occur when there is overlap in the control groups 

in the exposure and outcome data. For this reason, all UK Biobank data was removed from 

the outcome PD GWAS summary statistics. 

In summary, we present a new portal for use by the research community that will help 

assess causality where observational associations exist and prioritize (or de-prioritize) 

interventions aimed at reducing risk of PD overall. We think that it will be of value and will 

continue to evolve over time. 
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FIGURE LEGENDS 

Figure 1. Flowchart of analysis 

The PD MR Research Portal is an interactive tool where the user can explore causal 

associations across multiple traits. (1) The inclusion criteria used includes (i) GWASes with 

at least two associated SNPs with p-values less than 5.0x10-8, (ii) SNPs present in both the 

exposure and outcomes (Chang et al., 2017 as the primary analysis, Nalls et al., 2019 with 

only clinically diagnosed cases and Nalls et al., 2014) datasets or when not present their 

linkage-disequilibrium proxies (R2 value >= 0.8); and, (iii) independent SNPs (R2 < 0.001 

with any other associated SNP within 10 Mb), considered as the most stringent clumping 

threshold used when performing MR analyses; (B) A total of 5,839 GWASes surpassed this 

criteria and were tested against the 3 outcomes. Then, we further expanded our filtering 

approach as follows: (iv) each GWAS had to include a minimum of 10 associated SNPs in 

order to use MR sensitivity analyses designed to identify pleiotropy, (v) the number of cases 

had to be > 250 for each GWAS of a given binary exposure or > 250 individuals for each 

GWAS of a given continuous trait; and (vi) the exposure and the outcome datasets were 

drawn from European populations. A total of 401 traits surpassed our filtering approach 

consisting of 175 published GWASes and 226 unpublished GWASes from UK Biobank 

(UKB; www.ukbiobank.ac.uk);  
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Table 1. Mendelian randomization analyses of exposures with IVW FDR < 0.05 vs Chang et al., 2017 

 

 IVW MR Egger Weighted Median Radial IVW 

Exposure no. of SNPs beta se p-value FDR beta se p-value beta se p-value beta se p-value 

Arm fat percentage (right) || id:UKB-a:282 214 -0.431 0.098 1.10E-05 0.005 -0.657 0.324 0.044 -0.372 0.143 0.009 -0.454 0.079 3.35E-08 

Arm fat percentage (left) || id:UKB-a:286 233 -0.417 0.103 4.94E-05 0.010 -0.790 0.333 0.018 -0.201 0.137 0.143 -0.434 0.077 5.41E-08 

Arm fat mass (right) || id:UKB-a:283 248 -0.276 0.072 1.32E-04 0.011 -0.305 0.218 0.164 -0.299 0.100 0.003 -0.271 0.056 2.44E-06 

Leg fat percentage (right) || id:UKB-a:274 228 -0.482 0.126 1.33E-04 0.011 -0.944 0.479 0.050 -0.436 0.158 0.006 -0.465 0.096 2.54E-06 

Whole body fat mass || id:UKB-a:265 258 -0.269 0.070 1.35E-04 0.011 -0.362 0.220 0.102 -0.241 0.102 0.018 -0.281 0.056 7.95E-07 

Arm fat mass (left) || id:UKB-a:287 248 -0.279 0.074 1.58E-04 0.011 -0.492 0.222 0.027 -0.307 0.105 0.004 -0.288 0.056 6.07E-07 

Trunk fat mass || id:UKB-a:291 257 -0.259 0.070 2.10E-04 0.012 -0.438 0.227 0.055 -0.256 0.094 0.007 -0.255 0.054 4.37E-06 

Time spent watching television (TV) || id:UKB-b:5192 104 -0.775 0.211 2.40E-04 0.013 -0.166 1.016 0.870 -0.586 0.234 0.012 -0.772 0.156 2.81E-06 

Trunk fat percentage || id:UKB-a:290 216 -0.307 0.085 3.20E-04 0.015 -0.554 0.307 0.073 -0.217 0.111 0.050 -0.325 0.066 1.49E-06 

Forced vital capacity (FVC) Best measure || id:UKB-a:232 179 0.441 0.128 5.80E-04 0.024 0.940 0.381 0.015 0.241 0.123 0.050 0.455 0.075 6.27E-09 

Tea intake || id:UKB-b:6066 35 0.554 0.163 6.58E-04 0.025 0.710 0.334 0.041 0.543 0.223 0.015 0.570 0.143 2.97E-04 

Impedance of leg (right) || id:UKB-a:270 294 0.220 0.066 9.17E-04 0.032 0.212 0.189 0.263 0.315 0.091 0.001 0.233 0.054 2.14E-05 

 
id, specific code attributed to each trait by MR Base; se, standard error; No. of SNPs, number of SNPs; MR, Mendelian randomization; NA: not applicable due to limited no. of SNPs, IVW; Inverse Variance Weighted 

 

Table 2. Heterogeneity, horizontal pleiotropy and directionality analyses for exposures with FDR < 0.05 vs Chang et al. 2017 

 
 Horizontal pleiotropy Heterogeneity 

Directionality 
Exposure egger intercept se pvalue MREgger_Q MREgger_Q_df MREgger_pvalue IVW_Q IVW_Q_df IVW_pvalue 

Arm fat percentage (right) || id:UKB-a:282 3.684E-03 0.005 0.466 314.024 212 6.521E-06 314.816 213 7.006E-06 - 

Arm fat percentage (left) || id:UKB-a:286 5.959E-03 0.005 0.239 399.388 231 3.926E-11 401.794 232 3.090E-11 - 

Arm fat mass (right) || id:UKB-a:283 6.229E-04 0.004 0.887 394.669 246 5.351E-09 394.701 247 6.786E-09 - 

Leg fat percentage (right) || id:UKB-a:274 5.925E-03 0.006 0.319 374.029 226 2.108E-09 375.682 227 1.951E-09 - 

Whole body fat mass || id:UKB-a:265 1.975E-03 0.004 0.656 399.929 256 2.122E-08 400.239 257 2.523E-08 - 

Arm fat mass (left) || id:UKB-a:287 4.548E-03 0.004 0.309 408.501 246 3.374E-10 410.229 247 3.076E-10 - 

Trunk fat mass || id:UKB-a:291 3.900E-03 0.005 0.408 412.287 256 2.001E-09 411.179 255 1.942E-09 - 

Time spent watching television (TV) || id:UKB-b:5192 -7.167E-03 0.012 0.542 186.037 102 7.452E-07 186.721 103 8.687E-07 - 

Trunk fat percentage || id:UKB-a:290 4.814E-03 0.006 0.405 352.411 214 7.667E-09 353.559 215 7.863E-09 - 

Forced vital capacity (FVC) Best measure || id:UKB-a:232 -9.804E-03 0.007 0.166 497.966 177 2.655E-32 503.407 178 7.621E-33 + 

Tea intake || id:UKB-b:6066 -3.608E-03 0.007 0.596 40.971 33 1.605E-01 41.327 34 1.811E-01 + 

Impedance of leg (right) || id:UKB-a:270 1.645E-04 0.004 0.965 427.081 292 4.081E-07 427.084 293 4.972E-07 + 

 
id, specific code attributed to each trait by MR Base; se, standard error; No. of SNPs, number of SNPs; MR, Mendelian randomization; Q: Cochran's Q test estimates, Q: Cochran's Q test degree freedom 
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