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Abstract:  43 

Macaque monkeys are an important model species for understanding cortical organization of 44 

primates, yet tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse 45 

sequence protocols) and image data preprocessing have lagged behind those developed for humans. 46 

To resolve the structural and functional characteristics of the relatively thin macaque cortex, high 47 

spatial, temporal, and angular resolutions are required while maintaining high signal-to-noise ratio 48 

to ensure good image quality. To address these challenges, we developed a macaque 24-channel 49 

receive coil for 3-T MRI with parallel imaging capabilities. This coil enabled adaptation of the Human 50 

Connectome Project (HCP) image acquisition protocols to the macaque brain. We also adapted HCP 51 

preprocessing methods optimized for the macaque brain, including spatial minimal preprocessing of 52 

structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provided high signal-to-noise 53 

ratio and high efficiency in data acquisition, allowing four- and five-fold acceleration for dMRI and 54 

fMRI, respectively. Automated parcellation of cortex, reconstruction of cortical surface, removal of 55 

artefacts and nuisance signals in fMRI, and distortion correction of dMRI performed well, and the 56 

overall quality of basic neurobiological measures was comparable with those for the HCP. The 57 

resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical 58 

architecture and functional and structural connectivity using advanced methods that have previously 59 

only been available for humans. 60 

 61 

Highlights 62 

 24-channel 3T MR receive coil designed for the smaller macaque brain. 63 

 In vivo macaque imaging protocols adapted according to guidelines from the HCP. 64 

 Parallel imaging yields five- and four-fold acceleration in fMRI and dMRI sampling. 65 

 HCP’s minimal preprocessing and denoising pipelines adapted for macaques. 66 

 The multi-modal MRI data show considerable promise for HCP-style analyses. 67 

  68 
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Introduction 69 

Old World monkeys are an important neuroscientific model for understanding primate 70 

neuroanatomy (Brodmann K., 1905; Felleman and Van Essen, 1991; Van Essen et al., 2001). Macaque 71 

monkeys have provided insights about neurovascular coupling (Goense and Logothetis, 2008), neural 72 

wiring (Markov et al., 2014) and the evolution of the human brain’s functional connectome 73 

(Passingham, 2009; Wang et al., 2012). However, macaques are separated from humans by 25 74 

million years of evolution, and are known to have substantial brain differences despite being 75 

members of the same primate order. Recent imaging studies have revealed substantial 76 

neuroanatomical differences between macaques and humans, for example in language connectivity 77 

or proportion of cortex devoted to lightly myelinated association areas (Donahue et al., 2018; 78 

Glasser et al., 2014; Rilling et al., 2008). At the level of cortical areas, high confidence homologies 79 

(i.e., a common evolutionary origin) have only been firmly established for a modest number of early 80 

sensory and motor areas (Van Essen and Dierker, 2007) but are more challenging to delineate for 81 

higher cognitive regions such as prefrontal cortex (Mars et al., 2018b, 2018a). Improvements to in in 82 

vivo neuroimaging acquisition and preprocessing may help address several outstanding questions: 83 

what is the optimal interspecies registration between macaque and human cerebral cortices? What 84 

are the optimal methods for non-invasively estimating functional and structural connectivity as 85 

assessed by comparison with gold standard invasive tracers in macaques? What brain networks are 86 

shared and which ones are different between macaques and humans?  87 

 88 

Recently, the Human Connectome Project (HCP) developed an improved, integrated approach to 89 

brain imaging acquisition, analysis, and data sharing (Glasser et al., 2016b). The overall goal of this 90 

approach is to increase the sensitivity and precision with which brain imaging studies are conducted 91 

in the hope that this will yield results that are more neurobiologically interpretable and more 92 

accurately comparable across individuals and studies. The HCP-style approach has seven core tenets 93 

(Glasser et al., 2016b): 1) Acquire as much high-quality data from as many subjects as possible. 2) 94 

Acquire data with maximum feasible resolution in space and time 3) Preserve high data quality 95 

throughout preprocessing by removing physical distortions, subject movement within and between 96 

scans, image intensity inhomogeneities, and artefacts and nuisance signals without blurring the data 97 

or altering the neural signals (Andersson et al., 2003; Andersson and Sotiropoulos, 2016; Glasser et 98 

al., 2013, 2016b, 2017; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). 4) Use appropriate 99 

geometrical models—surfaces for the sheet-like cerebral cortex and volumes for globular subcortical 100 

structures (Glasser et al., 2013). 5) Align brain areas across subjects, not cortical folds (Robinson et 101 

al., 2018, 2014). 6) Use a data-driven structurally and functionally sensible parcellation, ideally 102 
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derived from multiple modalities (Glasser et al., 2016a). 7) Share results as data files in neuroimaging 103 

databases such as the Brain Analysis Library of Spatial maps and Atlases (BALSA) database (Van 104 

Essen et al., 2017), not just 3D coordinates. Following the HCP-Style approach leads to dramatic 105 

improvements in spatial localization precision in humans relative to traditional brain imaging 106 

methods (Coalson et al., 2018). Therefore, we sought to bring this improved brain imaging approach 107 

to non-human primate studies. 108 

 109 

Monkey brains present distinct imaging-related challenges relative to human brains. The macaque 110 

brain is 10-fold smaller in weight, and its neocortex is ~25% thinner (average 2.0 mm vs 2.6 mm; 111 

(Donahue et al., 2018; Glasser et al., 2016b)). These facts necessitate increased spatial resolution to 112 

achieve comparable neuroanatomical resolution; however, smaller voxels are associated with 113 

decreased signal-to-noise ratio (SNR). One way to improve SNR is to scan at ultrahigh magnetic field 114 

strength (e.g., 7T). However, 7T scanners are not widely available and in any event pose technical 115 

challenges such as increased B0 and B1 inhomogeneity (Van de Moortele et al., 2009). For 116 

conventional 3T scanners, one key factor to enable high-resolution whole-brain imaging in macaques 117 

is to optimize the multi-channel radiofrequency (RF) receiver coil. Using a coil matched to macaque 118 

head size with a large number of small coil elements can yield improvements in SNR. Multi-channel 119 

signal acquisition using advanced 3T research scanners in humans enables parallel imaging both in 120 

the slice direction (i.e. multiband) (Moeller et al., 2010; Setsompop et al., 2012) and within the slice 121 

plane (generalized auto-calibrating partially parallel acquisitions [GRAPPA]) (Griswold et al., 2002). 122 

Although several studies have devised multichannel receive coils for macaque whole-brain imaging 123 

at 3T (Helms et al., 2013; Janssens et al., 2013, 2013; Khachaturian, 2010) and 7T (Gilbert et al., 124 

2016; Mareyam et al., 1823), they have not to date demonstrated robust whole-brain mapping of 125 

multi-modal MRI measures such as those acquired by HCP. Achieving comparable results in 126 

macaques requires not only higher resolution and SNR but also low geometric distortion and signal 127 

intensity inhomogeneity, and requires optimized hardware, sequences, and post-processing 128 

techniques. 129 

 130 

In this study, we designed and built a 24 channel receive coil with a geometry optimized for parallel 131 

imaging of anesthetized macaque monkeys at 3T. Capitalizing on the accelerated imaging capabilities 132 

of the coil, we adapted HCP-style data acquisition protocols for structural MRI (Glasser et al., 2013), 133 

fMRI (Smith et al., 2013) and diffusion MRI (dMRI) (Sotiropoulos et al., 2013; Uğurbil et al., 2013) to 134 

the small size of the macaque brain, as well as the HCP-style minimal spatial preprocessing and 135 

denoising pipelines (Andersson and Sotiropoulos, 2016; Glasser et al., 2018, 2016a, 2013; Salimi-136 
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Khorshidi et al., 2014, 2014). We generate accurate white and pial cortical surfaces, subcortical 137 

segmentations, myelin maps, and cortical thickness maps from structural MRI, surface aligned fMRI 138 

dense timeseries that have spatial artefacts and nuisance signals removed, resting state functional 139 

networks, and diffusion-based fiber orientation estimates, example tractography connections, and 140 

cortical neurite orientation and dispersion imaging (NODDI) (Zhang et al., 2012). The spatial 141 

resolution of the structural and functional imaging modalities are scaled to the macaque cortical 142 

thickness, thus providing comparable neuroanatomical resolution to HCP-style human imaging and 143 

facilitating comparison of connectomes between macaques and humans. 144 

 145 

Methods and Materials 146 

Experiments were performed using a 3T clinical MRI scanner (MAGNETOM Prisma, Siemens, 147 

Erlangen, Germany) equipped with 80 mT/m gradients (XR 80/200 gradient system with slew rate 148 

200 T/m/s) and a 2-channel B1 transmit array (TimTX TrueForm). The animal experiments were 149 

conducted in accordance with the institutional guidelines for animal experiments and animals were 150 

maintained and handled in accordance with the Guide for the Care and Use of Laboratory Animals of 151 

the Institute of Laboratory Animal Resources (ILAR; Washington, DC, USA). All animal procedures 152 

were approved by the Animal Care and Use Committee of the Kobe Institute of Riken (MA2008-03-153 

11). We also used HCP data as a reference for data quality. The use of HCP data was approved by the 154 

institutional ethical committee (KOBE-IRB-16-24). 155 

 156 

Macaque 24-channel coil 157 

The coil frame geometry was designed using a 3D digital design software (Rhinoceros 5, McNeel, 158 

Seattle, USA) to closely fit the head geometry of the animal with largest head dimensions (anterior 159 

posterior 109 mm, left-right 99 mm, superior-inferior 84 mm) (Fig. 1A) in our macaque head MRI 160 

database. The database included structural scans of 133 individual subjects from three macaque 161 

species (Macaca fuscata, N=4; Macaca fascicularis, N=122; Macaca mulatta, N=7). The largest 162 

animal’s MRI data was used to delineate the contour of the head surface and imported into the 3D 163 

digital design software where the inner surface of the coil was designed to closely fit the surface of 164 

the head (Fig. 1A). Next, 16 pentagonal and 8 hexagonal elements were configured over the surface 165 

(Fig. 1B), resembling a soccer-ball coil design (Wiggins et al., 2006). These elements were arranged in 166 

three quasi-horizontal arrays to maximize parallel encoding power of multiband EPI sequences for 167 

animals placed in the supine position and axial slices. The inner body of the device was constructed 168 

using a 3D printer (M200, Zortrax, Olsztyn, Poland) (Fig. 1C), and the coil elements were arranged 169 

over its external surface. Initially the coil elements were wired using a thin copper foil-plate (width 5 170 
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mm); however, because the plate elements markedly interfered with B1 transmission (data not 171 

shown), the coil elements were rewired using thin coaxial copper cables (Fig. 1D, cable diameter 0.7 172 

mm; cable loop maximum mean diameter 48.6 ± 8.7 mm) (Wiggins et al., 2009), which substantially 173 

reduced interference with B1 transmission. The elements were arranged to continuously (critically) 174 

overlap each other to reduce coupling between nearest-neighbor coils (Roemer et al., 1990), and 175 

those in the caudal-posterior part were designed to have relatively larger diameter (35% larger in 176 

maximum diameter) to increase sensitivity to distant brain regions (e.g. cerebellum) while reducing 177 

sensitivity to closer regions (e.g. occipital cortex). The two elements placed over the eyes were also 178 

relatively large in diameter to allow video recording of eyes and eyelids for monitoring depth of 179 

anesthesia. In addition, capacitors were arranged vertically against the surface of the coil frame to 180 

reduce interaction with B1-transmission (Fig. 1D). Fig. 1E shows the circuits, which followed a 181 

standard design (Wiggins et al., 2006) consisting of diode detuning trap, cable trap and bias T 182 

connected to low input-impedance preamplifiers (Siemens Healthcare, Erlangen, Germany). The 183 

completed coil is shown in Fig. 1F. 184 

 
Figure 1 The design and development of macaque 24-channel receive-only coil. (A) Design of coil geometry and (B) 

element locations. (C) Outlook of element alignment on a 3D print. (D) Coil with final element arrangements. (D) 
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Schematic of a coil element circuit. (E) Coil circuitry. (F) Coil outlook with animal holder attached to the gantry of the 

MRI scanner. (G) Macaque head phantom. 

 185 

Coil Evaluation 186 

Coil elements were assessed for the ratio of loaded to unloaded quality factor Q, nearest-neighbor 187 

coupling, and active detuning. Element coupling was also estimated with gradient off-line noise 188 

correlation measurements. Two phantoms (NaCl 0.9%, gadolinium 0.1 mM) were designed and 189 

prepared using a 3D printer: one to closely match the inner-surface of the coil (Fig. 1G) used for B1 190 

quality evaluation and the other to match to a typical macaque brain size used for geometry-191 

dependent noise amplification. B1-transmission was assessed with a vendor provided flip-angle 192 

sequence. B1-receive field was estimated using a gradient-echo sequence and by calculating the 193 

signal ratio between 24-channel and body receive coils. Finally, geometry-dependent noise 194 

amplification due to parallel imaging was evaluated using gradient-echo imaging and GeneRalized 195 

Autocalibrating Partial Parallel Acquisition (GRAPPA) (Griswold et al., 2002) in-plane acceleration 196 

factors of 2, 3 and 4. 197 

 198 

Data Acquisition Strategy – Resolution and Contrast Considerations 199 

To improve comparability of macaque and human brains, our data acquisition strategy sought to 200 

obtain data following methodologies introduced by the HCP (3T protocols) (Glasser et al., 2016b, 201 

2013; Smith et al., 2013; Sotiropoulos et al., 2013; Uğurbil et al., 2013). To accurately model the 202 

cortical pial and white matter surfaces, structural imaging spatial resolution target (0.5 mm isotropic 203 

in macaques, equivalent to 0.8mm in humans) was based on preliminary evaluations of macaque 204 

cortical thickness (Glasser et al., 2014) and corresponds to approximately half of the minimum 205 

cortical thickness in the cortex, which is ≈1 mm in macaques (Donahue et al., 2018) and 1.6 mm in 206 

humans (Glasser et al., 2016b). Tissue contrast (grey and white matter and CSF) associated imaging 207 

parameters (e.g. inversion time, flip angle, repetition time and echo-time) were experimentally 208 

adjusted to produce robust surface estimation within the FreeSurfer pipelines, in conjunction with 209 

maximizing intracortical T1w/T2w (myelin-related) contrast. The fMRI spatial resolution selection 210 

(1.25 mm) was based on preliminary evaluations of the 5th (low) percentile of cortical thickness, a 211 

similar strategy in humans by the HCP (resolution of 2 mm) (Glasser et al., 2016b). The temporal 212 

sampling rate (TR=0.75 sec) was maximized according to tSNR (see below) which was close to the 213 

human protocol (0.72 sec; Smith et al., 2013). For dMRI, the smallest spatial resolution within the 214 

practical limitation of the SNR was chosen using the same b-value scheme (b = 1000, 2000 and 3000 215 

s/mm2) as in the HCP (Sotiropoulos et al., 2013) with 500 directions (more than the 270 in the HCP). 216 

Pilot studies for each modality included assessments for varying spatial resolution, flip-angle, RF 217 
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transmission power, pulse length, inversion time (TI), fat suppression, multiband acceleration factor, 218 

in-plane acceleration factor, repetition time (TR), echo-time (TE), echo-spacing, spectral width, 219 

phase encoding direction, phase partial Fourier, phase oversampling, image resolution and diffusion 220 

directions. 221 

 222 

Structural Acquisition Protocol 223 

T1w images were acquired using a 3D Magnetization Prepared Rapid Acquisition Gradient Echo 224 

(MPRAGE) (Mugler and Brookeman, 1990) sequence (0.5 mm isotropic, FOV=128x128x112 mm, 225 

matrix=256×256 slices per slab=224, coronal orientation, readout direction of inferior (I) to superior 226 

(S), phase oversampling=15%, averages=3, TR=2200 ms, TE=2.2 ms, TI=900 ms, flip-angle=8.3°, 227 

bandwidth=270 Hz/pixel, no fat suppression, GRAPPA=2, turbo factor=224 and pre-scan 228 

normalization). The value of TI (900 ms) was selected based on the contrast between white and grey 229 

matter and SNR. T2w images were acquired using a Sampling Perfection with Application optimized 230 

Contrast using different angle Evolutions (SPACE) sequence (Mugler et al., 2000) (0.5 mm isotropic, 231 

FOV=128x128x112mm, matrix=256×256, slice per slab=224, coronal orientation, readout direction I 232 

to S, phase oversampling=15%, TR=3200 ms, TE=562 ms, bandwidth=723 Hz/pixel, no fat 233 

suppression, GRAPPA=2, turbo factor=314, echo train length=1201 ms and pre-scan normalization). 234 

The total acquisition time for structural scans was 22 min (17 min for T1w and 5 min for T2w). 235 

 236 

Functional Acquisition Protocol 237 

To reduce susceptibility induced geometric distortions and signal loss, the data was acquired in LR 238 

and RL directions. Functional scans were acquired using gradient-echo EPI (FOV=95x95 mm, 239 

matrix=76×76, 1.25 mm isotropic, interleaved slice order, and number of slices=50 covering the 240 

whole brain). 241 

 242 

An empirical estimate of the effect of multiband slice acceleration factor on fMRI tSNR was obtained 243 

by a procedure similar to that used by the HCP (Smith et al., 2013). Briefly, simultaneous slice 244 

excitation enables a multiband factor fold reduction in the TR and subsequent incomplete T1-245 

recovery leads to a reduction in the optimal (Ernst) flip angle and thus in tSNR. However, as more 246 

data volumes can be acquired in a matched time window, a more relevant estimate for the data 247 

quality can be calculated by multiplying the tSNR with a square root of acquired data timepoints. 248 

Therefore, tSNR was estimated with a matched image acquisition time (10 min) using a range of 249 

multiband factors (1, 3, 5, 6 and 8), minimum excitation and refocus RF-pulse lengths (with constant 250 
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spectral width), TRs (3850, 1300, 840, 680 and 530 ms), corresponding (blood) Ernst angles (86, 65, 251 

55, 51 and 45°) and a fixed bandwidth (1370 Hz/pixel). 252 

 253 

These trials led us to select the imaging parameters (multiband factor=5, TR=755 ms, number of 254 

slices=45, flip-angle=55°, TE=30 ms, bandwidth=1370 Hz/pixel and echo spacing=0.95 ms and pre-255 

scan normalization) for the fMRI data acquisition. To maintain the temporal autocorrelation 256 

structure of the data, long continuous runs were used (single-run scan time 51 min, 4096 frames, RL 257 

and LR directions resulting in a total acquisition time of 102 min). 258 

 259 

Field-Map Acquisition Protocol 260 

The B0 field-map was estimated using a pair of spin-echo EPI images with opposite phase encoding 261 

directions (Andersson et al., 2003) (LR and RL directions, FOV=95x95 mm, 1.25 mm isotropic 262 

resolution, axial orientation, slices=45, interleaved data acquisition, TE=46.2 ms, 6/8 phase partial 263 

Fourier, bandwidth=1370 Hz/pixel, echo spacing=0.95 ms, fat suppression and pre-scan 264 

normalization). The B1 transmit field-map was obtained using vendor provided flip-angle sequence 265 

(Siemens, B1-map) (FOV=128x128x58mm, gap=2 mm, gaps acquired in a separate run, 2 mm 266 

isotropic, TR=10 s, target flip-angle=90°). 267 

 268 

Diffusion Acquisition Protocol 269 

Diffusion scans were acquired with a 2D spin-echo EPI Stejskal-Tanner sequence (Stejskal and 270 

Tanner, 1965), utilizing monopolar gradient scheme and gradient pre-emphasis to reduce eddy 271 

currents. The monopolar gradients allowed decreased TE and significantly improved SNR without 272 

significant degradation due to eddy currents (in part due to the correction for eddy currents in post 273 

processing) (Andersson et al., 2003). The diffusion scheme contained three shells with b-values of 274 

1000, 2000 and 3000 s/mm2 (diffusion time=26.5 ms, gradient duration=17.8 ms and amplitude=69.7 275 

T/m),in accordance with the HCP (Sotiropoulos et al., 2013), but the number of direction (ND) was 276 

increased to 500 uniformly distributed over the sphere, as compared with that in the HCP (ND=270). 277 

Furthermore, 52 b=0 s/mm2 volumes were evenly distributed across the diffusion scheme to reduce 278 

CSF pulsation related uncertainty in the b=0 s/mm2 image signal intensity. In contrast to the HCP, we 279 

used GRAPPA (acceleration factor= 2) to reduce image distortions and accelerate the sequence in 280 

plane with a more recent version of the multiband sequence than was available for the original 281 

young adult HCP (Uğurbil et al., 2013). To correct for geometric distortions, the diffusion scheme 282 

was obtained using two scans with reversed phase encoding directions (LR and RL) and different 283 

number and directions of diffusion gradient (252 and 248) (Andersson and Sotiropoulos, 2016). The 284 
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following imaging parameters were applied: FOV=90 mm, matrix=100×100, 0.9 mm isotropic 285 

resolution, number of slices=60, interleaved slice acquisition, multiband factor=2, GRAPPA= 2, 286 

TR=3400 ms, flip-angle=90, TE=73 ms, 6/8 phase partial Fourier, echo spacing=1.12 ms, 287 

bandwidth=1086 Hz/pixel, pre-scan normalization on and fat suppression using gradient reversal 288 

technique (Gomori et al., 1988). Total acquisition time was 30 min, during which frequency drift was 289 

small (≈0.5 Hz/min). By applying slice and in-plane accelerations (2×2), the acquisition time was 290 

reduced by more than 3-fold than without acceleration. However, the shortest possible TR was not 291 

used, in order to preserve SNR (to allow near-complete longitudinal magnetization recovery). 292 

 293 

Animal experiments 294 

Macaque monkeys (mean 5380 g, range 3030–8850 g) were initially sedated with intramuscular 295 

injection of dexmedetomidine (4.5 µg/kg) and ketamine (6 mg/kg). A catheter was inserted into the 296 

caudal artery for blood-gas sampling, and tracheal intubation was performed for steady controlled 297 

ventilation using an anesthetic ventilator (Cato, Drager, Germany). End-tidal carbon dioxide was 298 

monitored and used to adjust ventilation rate (0.2 to 0.3 Hz) and end-tidal volume. After the animal 299 

was fixed in an animal holder, anesthesia was maintained using intravenous dexmedetomidine (4.5 300 

µg/kg/hr) and 0.6 % isoflurane via a calibrated vaporizer with a mixture of air 0.75 L/min and O2 0.1 301 

L/min. Rectal temperature (1030, SA Instruments Inc., NY, USA) and peripheral oxygen saturation 302 

and heart rate (7500FO, NONIN Medical Inc., MN, USA) were monitored throughout experiments. 303 

For diffusion imaging the level of isoflurane was increased to 1.0 % to reduce potential eye and head 304 

motion artefacts. 305 

 306 

Data analysis 307 

Data analysis utilized a version of the HCP pipelines with some customized specifically for use with 308 

non-human primates including structural (PreFreeSurfer, FreeSurferNHP (instead of FreeSurfer) and 309 

PostFreeSurfer), functional (fMRIVolume, fMRISurface) and diffusion preprocessing 310 

(DiffusionPreprocessing) (Donahue et al., 2016; Glasser et al., 2013). These NHPHCP pipelines 311 

requires FMRB’s Software Library (FSL) v6.0.1, FreeSurfer v5.3.0-HCP and Connectome Workbench 312 

v1.3.2 (https://www.humanconnectome.org/software/get-connectome-workbench) and are 313 

available at https://github.com/Washington-University/NHPPipelines. 314 

 315 

Structural Image Processing 316 

Preprocessing began with the PreFreeSurfer pipeline, in which structural T1w and T2w images were 317 

registered into an anterior-posterior commissural (AC-PC) alignment using a rigid body 318 
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transformation, non-brain structures were removed, T2w and T1w images were aligned using 319 

boundary based registration (Greve and Fischl, 2009), and corrected for signal intensity 320 

inhomogeneity using B1- bias field estimate. Next, data was transformed into a standard “Yerkes19” 321 

macaque atlas (Donahue et al., 2018, 2016) by 12-parameter affine and nonlinear volume 322 

registration using FLIRT and FNIRT FSL tools (Jenkinson et al., 2002). 323 

 324 

Then, the FreeSurferNHP pipeline reconstructed the cortical surfaces using FreeSurfer v5.3.0-HCP 325 

(Fischl, 2012). This process included conversion of data in AC-PC space to a ‘fake’ space with 1-mm 326 

isotropic resolution in volume with a matrix of 256 in all directions, intensity correction, 327 

segmentation of the brain into cortex and subcortical structures, reconstruction of the white and 328 

pial surfaces and estimation of cortical folding maps and thickness. The intensity correction was 329 

performed using FMRIB’s Automated Segmentation Tool (FAST) (Zhang et al., 2001) followed by 330 

scaling the whole brain intensity by a species-specific factor (=80). This process significantly 331 

improved white and grey contrast particularly in the anterior temporal lobe as well as white surface 332 

estimation, an effect that may be associated with the so-called ‘anterior temporal lobe problem’ in 333 

pediatric brains, potentially due to less myelination in these white matter areas. We also improved 334 

the subcortical parcellation training dataset for the macaque brain, and trained for 21 subcortical 335 

structures: brainstem plus bilateral accumbens, amygdala, caudate, claustrum (which is not a part of 336 

the default structures for human FreeSurfer), cerebellum, diencephalon, hippocampus, pallidum, 337 

putamen, and thalamus (Fischl et al., 2002). The training dataset for brain mask extraction was also 338 

created. After parcellating the cortical and subcortical structures with these training datasets using 339 

the T1w image, the claustrum was treated as putamen, so that subsequent white surface estimation 340 

accurately estimates the white surface beneath the insular cortex, as shown in the Results. The pial 341 

surface was estimated using the T2w image to help exclude dura and blood vessels, similar to the 342 

HCP pipeline (Glasser et al., 2013). We modified this procedure by applying an optimized value of 343 

maximal cortical thickness (=10mm in ‘fake’ space, 5mm in real space like the FreeSurfer default). 344 

The surface and volume data in ‘fake’ space was transformed back into the native AC-PC space, and 345 

cortical thickness was recalculated in the animals’ real physical space.  346 

 347 

The PostFreeSurfer pipeline transformed anatomical volumes and cortical surfaces into the Yerkes19 348 

standard space, performed surface registration using folding information via MSMSulc (Robinson et 349 

al., 2014, 2018), generated the mid-thickness surface (by averaging the white and pial surfaces), 350 

generated inflated and very inflated surfaces, as well as the myelin map from the T1w/T2w ratio on 351 

the mid-thickness surface. The volume to surface mapping of the T1w/T2w ratio was done using a 352 
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‘myelin-style’ mapping (Glasser and Van Essen, 2011), in which a cortical ribbon mask and a metric 353 

of cortical thickness were used, weighting voxels closer to the midthickness surface. Voxel weighting 354 

was done with a gaussian kernel of 2 mm FWHM, corresponding to the mean cortical thickness of 355 

macaque (see below). The surface models and data were resampled to a high-resolution 164k mesh 356 

(per hemisphere), as well as lower resolution meshes (32k and 10k) for processing diffusion and 357 

functional MRI data, respectively. 358 

 359 

Functional Data Processing 360 

Data were motion corrected, corrected for geometric distortions using spin echo field-map 361 

correction with TOPUP (Andersson et al., 2003), registered to the structural images using the single-362 

band reference image and BBR (Greve and Fischl, 2009), normalized to grand 4D mean (=10000) and 363 

masked (Andersson et al., 2003; Gonzalez-Castillo et al., 2013; Smith et al., 2013). Intensity bias field 364 

correction was not done because the functional data were acquired with the pre-scan normalize 365 

filter on. The cerebral cortical grey matter voxels were mapped to the surface with the partial-366 

volume weighted ribbon-constrained volume to surface mapping algorithm and voxels having large 367 

deviations from the local neighborhood voxels’ coefficient of variation excluded. Data was minimally 368 

smoothed at 1.25mm FWHM using geodesic Gaussian surface smoothing algorithm with vertex area 369 

correction and resampled according to the folding-based registration (MSMSulc) to a standard mesh 370 

in which the vertex numbers correspond to neuroanatomically matched locations across subjects. 371 

The subcortical grey matter voxels were processed in the volume using 1.25mm FWHM subcortical 372 

parcel-constrained smoothing and resampling. Altogether, these processes transformed the 373 

functional data into a standard set of greyordinates (~10,000 [10k] vertices per hemisphere and 374 

~22,000 subcortical voxels) using the Connectivity Informatics Technology Initiative (CIFTI) format 375 

(Glasser et al., 2013). 376 

 377 

Structured temporal noise arising from imaging artefacts, motion and physiological noise was 378 

reduced using a NHP version of multiple-run implementation of FMRIB’s ICA-based X-noisefier (FIX) 379 

(“multi-run sICA + FIX”) (Glasser et al., 2018; Griffanti et al., 2017, 2014; Salimi-Khorshidi et al., 380 

2014). Principal component analysis (PCA) was applied to segregate data into structured and 381 

unstructured sub-spaces and detect the dimensionality of the structured subspace based on 382 

comparison of the data eigenspectrum with a null data eigenspectrum (a Wishart distribution). The 383 

structured subspace was decomposed into statistically independent components using spatial ICA 384 

and the resulting components were manually classified as “signal” or “noise”, based on their spatial 385 

distribution and temporal properties (N=30) (Griffanti et al., 2017, 2014; McKeown et al., 1998). The 386 
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FIX classifier was then trained on this manual classification and the performance level was 387 

characterized in terms of true positive rate (TPR) and true negative rate (TNR). A total of 186 spatio-388 

temporal features were extracted including species-specific vein maps in the standard space and 389 

were used for training/classification. The performance of classifier was evaluated by leave-one-out 390 

(LOO) accuracy testing for a range of thresholds. The de-noising procedure included linear trend 391 

removal, aggressively regressing out 24 movement parameters, which included 6 parameters of rigid 392 

transformation, 6 corresponding derivatives and 12 squares of these parameters, and non-393 

aggressively regressing out the noise components (Griffanti et al., 2014). Finally, unstructured noise 394 

was attenuated using a Wishart filter (Glasser et al., 2016a) prior to dense connectome analyses. 395 

 396 

Information about different categories of fMRI fluctuations were provided by HCP RestingStateStats 397 

(Marcus et al., 2013) adapted for monkey. In brief, RestingStateStats quantifies total fMRI variance 398 

(prior to any preprocessing) into six categories: high-pass filter, motion, artefacts and nuisance 399 

signals (by FIX classification), unstructured noise (by PCA, see above), neural blood oxygenation level 400 

dependent (BOLD) fluctuations (by FIX classification), and FIX-cleaned mean global timeseries. The 401 

fractional contribution of each category was calculated by dividing by the total fMRI variance. 402 

 403 

Diffusion data processing 404 

Following the HCP pipeline (Sotiropoulos et al., 2013), the diffusion data was normalized for mean 405 

intensity of the b=0 volume, corrected for distortion using a spin-echo field-map (i.e. a pair of b=0 406 

volumes acquired in opposite phase), and for eddy-currents and motion using TOPUP and EDDY 407 

(Andersson et al., 2003; Andersson and Sotiropoulos, 2016). The images were then registered to the 408 

T1w structural image using the undistorted b=0 volume and a 6-DOF boundary-based registration 409 

(Greve and Fischl, 2009), transformed into 0.9 mm structural volume AC-PC space (spline 410 

interpolation), and masked with a brain mask. The diffusion gradient vectors were rotated according 411 

to the rotational information of the rigid transformation matrix from the b=0 to T1w volume. The 412 

quality of the diffusion data was assessed using ‘eddyqc’ in FSL (Andersson and Sotiropoulos, 2015; 413 

Bastiani et al., 2019). Summary quality metrics consists of SNR calculated for the b=0 images by 414 

average intensity divided by standard deviation of b=0 volumes (n=52), and for each b-value with 415 

diffusion angular CNR, i.e. the ratio between the standard deviation of the signal predicted by eddy 416 

using a Gaussian Process and the standard deviation of the residuals. 417 

 418 

Fiber orientation estimation was performed with a model-based parametric deconvolution approach 419 

to estimate three crossing fibers per voxel using ‘bedpostx_gpu’ in FSL (Behrens et al., 2007; 420 
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Hernández et al., 2013; Hernandez-Fernandez et al., 2018) with a burn in period of 3000 and a 421 

zeppelin deconvolution kernel (Jbabdi et al., 2012; Sotiropoulos et al., 2016). The uncertainty in the 422 

estimated fiber orientations in white matter voxels was compared with the respective uncertainty 423 

obtained when using HCP data, for each of three crossing fibers (orientations sorted based on 424 

identified volume fraction). Probabilistic tractography was performed on the fiber orientation 425 

estimates using FSL’s ‘probtrackx2_gpu’ algorithm (Hernandez-Fernandez et al., 2018) to generate 426 

dense diffusion connectomes (Donahue et al., 2016). In brief, we used vertices in the white matter 427 

surface and voxels in the subcortical grey matter as a seed of tracking. Streamlines were allowed to 428 

propagate within subcortical regions, but they were terminated on exit (Smith et al., 2012). The pial 429 

surface and a curvature threshold of 90 degrees were used as stopping criteria. The brain mask 430 

calculated in FreeSurfer was used for a waypoint mask through which paths were kept. The step 431 

length was set to 0.23 mm, one fourth of voxel size, and the maximum path length to 200 mm. The 432 

calculated dense connectomes were created by counting the number of streamlines that terminal on 433 

voxels within the seed regions and normalizing by the total number of generated streamlines. These 434 

dense connectomes were parcellated using the M132 cortical areas (Markov et al., 2014) to reduce 435 

gyral bias and the parcellated connectome matrices were fractionally scaled, symmetrized, and log10-436 

transformed (Donahue et al., 2016). The quality of the dMRI data and the success of the tracking 437 

algorithm were evaluated with respect to quantitative retrograde tracer data by correlating log10-438 

transformed tractography with the corresponding log10-scaled fraction of labeled neurons in a 439 

source area relative to the total number of label neurons extrinsic to the injected area (Donahue et 440 

al., 2016; Markov et al., 2014). Cortico-cortical pathways that did not exhibit connectivity in the 441 

retrograde tracer were excluded from the analysis. 442 

 443 

Neurite orientation dispersion and density imaging (NODDI) was used to evaluate tissue 444 

microstructure associated with neurite composition (a collective term referring to both dendrites 445 

and axons) (Zhang et al., 2012). Briefly, NODDI models three compartments (intra-cellular, extra-446 

cellular and CSF) each with different diffusion properties (stick-tensor-ball model), where the 447 

diffusion motion in the intra-cellular compartment is assumed to be restricted to within neurites 448 

(stick), while that in the extra-cellular compartment is assumed to be a combination of Gaussian 449 

anisotropic (tensor) hindered by the presence of neurites, and Gaussian isotropic (ball) in CSF. The 450 

model includes two a priori assumed parameters of intrinsic axial diffusivity 1.1 µm2/ms optimized 451 

for grey matter in human (Fukutomi et al., 2018), and isotropic diffusivity 3.0 µm2/ms (Zhang et al., 452 

2012), as well as four unknown parameters (intra-cellular volume fraction, concentration parameter 453 

of Watson distribution (K), mean orientation of Watson distribution (µ) and isotropic volume fraction 454 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/602979doi: bioRxiv preprint 

https://doi.org/10.1101/602979


 15

(Viso). The estimated parameters of orientation dispersion index (ODI) and neurite density index 455 

(NDI), as well as diffusion tensor parameters of fractional anisotropy (FA) and mean diffusivity (MD), 456 

were mapped onto the cortical surface using an algorithm weighted towards the cortical mid-457 

thickness (Fukutomi et al., 2018).  458 
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Results 459 

Coil performance 460 

Coil bench tests showed that the unloaded/loaded Q ratio of the individual coil elements were 461 

approximately 215/75=2.9. This relatively low Q-ratio results from the small degree of loading and 462 

small electromagnetic flux due to the small diameter of the coil elements. Decoupling between 463 

adjacent elements was less than -20 dB indicating low mutual inductance between the elements. 464 

This produced noise correlation coefficients averaging 0.084 (interquartile range 0.02 and 0.126) 465 

with a maximum of 0.395 (see correlation matrix Fig. 2A). High noise correlation was largely 466 

constrained to the nearest neighbor elements (see Fig. 1B for element geometry, see also 467 

Supplementary Fig. S1 for coil channel-specific noise correlation maps). 468 

 469 

The inverse g-factor map, a measure of coil element separation, illustrates geometry dependent 470 

signal intensity variation due to parallel image reconstruction used for dMRI (Fig. 2C). A reduction 471 

factor of two yields an average inverse g-ratio slightly larger than unity (1/g=1.03 ± 0.07; values 472 

reported throughout text as mean ± s.d. unless otherwise specified), indicating a small noise 473 

cancellation attributable to low element noise correlation and parallel image reconstruction. 474 

However, larger reduction factors (R=3 and 4) yield substantial degradation of signal intensity 475 

depending on geometry (Fig. 2C, D), suggesting that a maximum GRAPPA of 2 is practical for this coil. 476 

 
Figure 2. Macaque 24-channel coil performance and geometry. (A) Noise correlation matrix. (B) Coil element 

arrangement and labeling flattened into a 2D representation. (C) Inverse geometry (1/g)-factor maps using gradient 
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echo imaging with generalized autocalibrating partially parallel acquisitions (GRAPPA) reduction factors (R=2, 3 and 4) in 

LR-direction used for diffusion MRI (see later). (D) The boxplot shows 1/g-factor with respect to reduction factor. While 

geometric distortions are small with acceleration factor of 2 (1/g=1.03±0.07), further reduction yields large signal 

degradations. Geometric distortions were evaluated using a phantom whose contour was matched to the average 

macaque brain. 

 477 

Macaque Data Quality Evaluation 478 

Structural bias-field corrected T1w and T2w weighted images acquired at 500-µm resolution are 479 

shown in Fig. 3A and B for an exemplar single subject. Note the good SNR and contrast of the white 480 

matter to grey matter (and to CSF) throughout the brain. 481 

 482 

Flip-angle maps indicate that the transmission was slightly higher in subcortical regions compared to 483 

cortical structures (Fig. 3C), as expected. However, the surface map (Fig. 3D) indicates that the RF 484 

transmission was relatively uniform over the cortical surface (86.6° ± 2.3) (see also Supplementary 485 

Fig. S2A for phantom data). Thus, signal intensity and contrast variations at macaque cortical surface 486 

attributable to RF-transmission inhomogeneity are modest. 487 

 488 

B0 volume (Fig. 3E) and surface (Fig. 3F) maps show inhomogeneities, particularly in and near air 489 

cavities adjacent to the cerebellum and inferior temporal cortex. These inhomogeneities cause signal 490 

intensity loss and spatial distortion in gradient-echo EPI images. Representative tSNR volume (Fig. 491 

3G) and surface (Fig. 3H) maps, acquired with EPI at 1.25 mm isotropic resolution, provide a 492 

quantitative estimate for the data quality. The mean FIX-cleaned tSNR in the macaque brain was 493 

51.6 ± 25.6 overall, 67.5 ± 23.7 in the cortical ribbon and 37.3 ± 14.1 in subcortical regions. These 494 

macaque tSNR values are higher than the HCP data: the FIX-cleaned tSNR in an exemplar HCP 495 

subject was 38.1 ± 15.1 in the whole brain, 43.0 ± 15.2 in the cortical ribbon, and 30.7 ± 10.8 in 496 

subcortical regions (Supplementary Fig. S3 and Table S1). However, a relatively low cortical tSNR in 497 

lateral occipito-temporal cortex was notable in macaque data (Fig. 3H), which is mainly attributable 498 

to a large B0 dephasing effect (Fig. 3F). 499 
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Figure 3. Data quality assessment of structural and functional MRI. Axial slices acquired with 500 µm isotropic resolution 
(A) T1-weighted MPRAGE and (B) T2-weighted SPACE. Flip-angle (C) axial and (D) surface maps. The values indicate the 
difference between experimental and nominal flip-angle (90°) in units of degree. B0 (E) axial and (F) surface field-maps. 
Unit radian per second. White and black lines (in E and G, respectively) outline the pial surface. Temporal signal-to-noise 
ratio (tSNR) (G) axial and (H) surface maps of FIX-cleaned fMRI. The tSNR map was acquired using multiband 2D-EPI 
sequence (TR=0.755s, TE=30ms, MBF=5, isotropic resolution=1.25mm). Data at https://balsa.wustl.edu/Z44X3 

500 

501 

Single-Subject Cortical Architecture in Three Macaque Species 502 

FreeSurfer automated segmentation of cortical and subcortical structures using our NHPHCP 503 

structural pipeline was reliable across the subjects (Supplementary Fig. S4B), and benefited from 504 

additional signal intensity normalization (Supplementary Fig. S4A, see also Supplementary Fig. S2A 505 

and S2B for B1-transmit and receive fields, respectively). Inspection of pial and white matter surface 506 

contours indicates that the automatic segmentation generally followed the contrast boundaries of 507 
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the T1w image (Supplementary Fig. S4C) and the T2w image (Supplementary Fig. S4D) appropriately, 508 

including in challenging thin heavily myelinated regions such as early visual and somatosensory 509 

cortex. The subcortical structures including claustrum, pallidum, putamen, were automatically and 510 

accurately segmented by the improved subcortical atlas (Supplementary Fig. S4B). The newly added 511 

intensity normalization improved the problematic estimation of the white matter surface in the 512 

anterior temporal lobe (Supplementary Fig. S5A right), which was not achieved using the default 513 

intensity bias field correction (Supplementary Fig. S5A left). The claustrum parcellation strategy also 514 

improved the white matter surface just beneath the insular cortex (Supplementary Fig. S5B, right), 515 

which often resulted in ‘claustrum invagination’ of the white surface by the default FreeSurfer 516 

(Supplementary Fig. S5B left). The claustrum parcellation also improved myelin contrast in the 517 

anterior insular area (see next paragraph).  518 

 519 

Fig. 4 shows representative cortical surface mapping for three macaque species: Japanese rhesus 520 

monkey (M. fuscata), rhesus monkey (M. mulatta) and crab-eating monkey (M. fascicularis), as well 521 

as for average of three species (N=12, consisting of N=4 for each species). Although the brain size 522 

and surface area were different across species and individuals, we successfully achieved cortical and 523 

subcortical parcellation by applying the same Gaussian Classifier Atlas (GCA) and obtained the 524 

surface estimation on gyral and sulcal formations (Fig. 4A-H), myelin contrast (Fig.4I-L), which were 525 

comparable across species. The total cortical surface area per hemisphere (excluding the non-526 

cortical ‘medial wall’) ranged from 8,093 to 12,897 mm2 with an average of 10,052 ± 1,584 mm2 527 

(number of hemispheres=24). The average myelin map (Fig. 4L) showed relatively high values in 528 

primary visual, sensorimotor and auditory regions and in the “MT+” complex, whereas association 529 

areas show relatively low values. These results for myelin maps are in good agreement with each 530 

other and with published group average macaque maps (Donahue et al., 2018; Glasser et al., 2014; 531 

Glasser and Van Essen, 2011). However, the myelin level in anterior insular cortex tended to be low 532 

relative to these earlier maps (Glasser et al., 2014); we consider the present maps likely to be more 533 

accurate since this region of agranular insular cortex is very lightly myelinated (Mesulam and 534 

Mufson, 1982). Our maps likely benefitted from improved segmentation between claustrum and 535 

insular cortex, as described above. 536 

 537 

Cortical thickness maps were reasonably consistent across three macaque species (Fig. 4M-P). Most 538 

of frontal, anterior insular and temporal cortices are relatively thick, whereas most of visual and 539 

parietal cortices are relatively thin. Histograms indicate the distribution of cortical thickness (Fig.4Q-540 

T). Average cortical thickness across species was 2.1 ± 0.54 (median 2.0, N=12). The (lower) fifth 541 
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percentile of the cortical thickness, evaluated from species average, was 1.38 mm. These estimates 542 

indicate that utilizing rfMRI isotropic resolution of 1.25 mm (≈ 2 mm3) can capture voxels mainly 543 

within the cortical sheet, with modest partial volume effects. 544 

 545 

Figure 4. Cortical surface mapping of three widely studied macaque monkeys. Japanese rhesus (Macaca fuscata, N=1), 

rhesus (Macaca mulatta, N=1), and crab-eating monkey (Macaca fascicularis, N=1) and average maps across the species 

(N=12; N=4 for each species). (A, B, C, D) Pial surface. (E, F, G, H) Curvature and (I, J, K, L) bias-corrected myelin maps 
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shown on very inflated cortical surface. Cortical thickness (M, N, O, P) maps and (Q, R, S, T) histograms. Data at 

https://balsa.wustl.edu/VjjZV 

 546 

Data quality of resting-state fMRI 547 

 548 

To estimate the optimum multiband factor in fMRI, we determined the relationship between tSNR x 549 

sqrt(timepoints) and multiband acceleration factor (Fig. 5A) and found that tSNR x sqrt (timepoints) 550 

increases up to a factor of 5, then decreases. This pattern was more evident after the data was 551 

processed using ICA-based artefact removal algorithm FIX, which yielded approximately 25% 552 

improvement in tSNR. In the cortical ribbon, denoised tSNR x sqrt (timepoints) is clearly highest at 553 

MBF=5 (Fig. 5B). 554 

 

Figure 5. Optimization of fMRI multiband acceleration. (A) Relationship between temporal signal-to-noise ratio (tSNR) 

multiplied by a square-root of acquired time-points and multiband factor (MBF). Acquisition times are matched in the 

data points (each scan 10 minutes, N=1). The boxplot shows distributions of tSNR in the greyordinates (a total of 26k) 

for FIX-uncleaned (green) and FIX-cleaned data (blue). (B) Cortical surface presentation of FIX cleaned tSNR × sqrt 

(#timepoints) vs multiband factor. Note that MBF=5 produces the highest tSNR. 

 555 

The resting-state fMRI runs were analyzed using multi-run sICA + FIX. The resulting sICA components 556 

(a total of number of components: 124 ± 29 for each animal, N=30) were manually classified as noise 557 

(on average 100 ± 23 components per animal) or signal (24 ± 9 components per animal). The manual 558 

classification worked well to train FIX, and the classification accuracy achieved reasonably high 559 

performance (Table 1). The LOO accuracy testing showed that mean TPR and TNR ranged between 560 

96.9-99.9% and 95.1-99.6%, respectively, depending on the choice of threshold. A threshold of 20 was 561 

used for classification, which resulted in mean TPR and TNR of 99.0% and 98.8%. 562 

 563 

Table 1. FIX classification accuracy tested by leave-one-out (LOO) in thirty anesthetized macaque 564 
data. Abbreviations: TPR=true positive rate of signal components and TNR=true negative rate of true 565 
artefact components. 566 
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FIX threshold 1 2 5 10 20 30 40 50 
TPR (mean) 99.9 99.9 99.7 99.6 99.0 98.3 97.4 96.9 
TNR (mean) 95.1 96.1 97.4 98.2 98.8 99.0 99.3 99.6 
TPR (median) 100 100 100 100 100 100 100 100 
TNR (median) 96.1 96.4 97.8 98.6 98.9 99.1 99.6 100 

 567 

Using RestingStateStats in HCP Pipeline (Glasser et al., 2018; Marcus et al., 2013), the variance in 568 

macaque resting-state fMRI runs was divided into six categories. Fig. 6 shows their relative 569 

contributions to the total signal variance (38,400 ± 13,000, N=20, see also Table S2). Relative 570 

variance estimations in descending order were unstructured noise (70.0 ± 4.8%), high-pass filtered 571 

noise (15.3 ± 4.5 %), structured noise (i.e. artefacts and nuisance signals, 6.0 ± 1.5%), (neural) BOLD 572 

fluctuations (4.1 ± 2.3%), motion (2.9 ± 1.3%), and FIX-denoised global signal timeseries (1.0 ± 0.7%). 573 

In comparison to HCP, unstructured noise accounted for a slightly larger portion in macaque (Fig. 6), 574 

which mainly originates from subcortical structures (see Supplementary Fig. S6 for spatial 575 

distribution of the variance categories). Furthermore, the relative BOLD contribution was smaller in 576 

macaque (4.1%) in comparison to HCP (7.7 ± 2.6%). Taken together, the contrast-to-noise ratio 577 

(CNR), defined as ratio between BOLD and unstructured signal, was smaller in macaque (0.21 ± 0.07) 578 

than in HCP (0.37 ± 0.08), which may be due to reduced BOLD signals in the anesthetized state (see 579 

section Resting-state fMRI in Discussion). 580 

 

 
Figure 6. Classification of resting-state fMRI variance and their relative contributions of the total variance in macaque 

(N=20) and the human connectome project (HCP, N=20). The variances were computed using a development version of 

the Resting State Stats HCP pipeline. Abbreviations: struct noise=structured noise (scanner artefacts and nuisance signals 

etc.), BOLD=’neural’ blood oxygen level dependent signal, MGT=FIX-cleaned mean greyordinate timeseries. 

 581 

One useful way to inspect the data quality is to visualize global (and semiglobal) artefacts in a 2-582 

dimensional heatmap with time on x-axis and parcel (M132) timeseries on y-axis (i.e. greyplot) 583 
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(Glasser et al., 2018; Power, 2016; Power et al., 2014). Comparison of a representative greyplot prior 584 

to any preprocessing (Supplementary Fig. S7A) and after preprocessing (Supplementary Fig. S7B) 585 

demonstrated that preprocessing reduced structured artefacts. The mean global timeseries (MGT) 586 

also demonstrate that FIX reduced the global signal variance, which in humans is primarily related to 587 

respiration after movement artefacts have been removed by sICA+FIX. MGT power spectrum 588 

(Supplementary Fig. S7C) revealed distinct peaks within the ventilation frequency range (0.25 to 0.30 589 

Hz). Preprocessing effectively attenuated ventilation artefacts, but only partially attenuated the low 590 

frequency, more likely neural, fluctuations (<0.1 Hz). Across subjects, the MGT variance was 2,230 ± 591 

1,530 prior to preprocessing and 170 ± 110 after preprocessing (Supplementary Fig. S7D, N=20). 592 

There appears to be relatively less global physiological noise in the macaque data relative to the 593 

human data (Glasser et al., 2018; Power, 2016), perhaps because the animals’ respiration was 594 

externally controlled by the respirator. 595 

 596 

Figure 7 shows a representative resting-state network (RSN) component and seed-based 597 

connectivity obtained in a single monkey. Data was from two 51-min fMRI scans, preprocessed for 598 

correction of motion, distortion, inhomogeneity, and denoising with multi-run FIX as described 599 

earlier. The dense timeseries was further reduced in random noise using Wishart filtering (Glasser et 600 

al., 2016a) and was used for seed-based dense connectivity by computing the full correlation. The 601 

example RSN component (Fig. 7A) extended positive connectivity over posterior parietal cortex 602 

(areas 7A, DP, LIP), precuneus (areas 23, 31), temporo-occipital areas (MST, PGa) and prefrontal 603 

cortex (areas 46d, 8b). Temporal properties of this component included low frequency fluctuations, 604 

less than 0.2 Hz, which are typical of RSNs. A similar functional connectivity pattern was found using 605 

a single greyordinate seed placed over the area 7A (Fig. 7B). Both the RSN signal components (a total 606 

of 32 signals) and the dense functional connectome can be interactively viewed in Connectome 607 

Workbench after downloading data from the BALSA database (https://balsa.wustl.edu/3ggwG). 608 

Overall, these results demonstrate that our experimental setup enables robust functional 609 

connectivity detection and analysis. 610 

 611 
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Figure 7. Representative macaque resting-state functional connectivity in a single subject. (A) An example resting-state 

network (RSN) obtained in spatial ICA, which shows positive connectivity over posterior parietal cortex (areas 7A, DP, 

LIP), precuneus (areas 23, 31), temporo-occipital areas (MST, PGa) and prefrontal cortex (areas 46d, 8b, as defined in 

M132 atlas). Timeseries and frequency of this component (lower panels) exhibited pronounced low-frequency 

oscillations. (B) Exemplar functional connectivity seeded from a single greyordinate in the area 7A (white circle). Spatial 

distribution of connectivity resembled to that of the component in (A), as well as timeseries and frequency of the seed 

signal (lower panels). Data was from two 51-min fMRI scans (subject N=1), preprocessed for correction of motion, 

distortion, inhomogeneity, and denoising with multi-run FIX. The dense timeseries was further reduced in random noise 

by Wishart filter and used for seed-based dense connectivity (Pearson’s correlation). Other components classified into 

signal or noise, and dense connectivity seeded from other vertices can be interactively viewed using Workbench using 

data at https://balsa.wustl.edu/3ggwG 

 612 

Diffusion MRI 613 

Following the HCP paradigm, we used reversed left-right phase-encoding directions in dMRI 614 

acquisition to reduce TE, TR and distortion and to increase SNR and angular CNR. An example of 615 

image distortion and correction (axial and coronal views) is shown in Supplementary Fig. S8. Image 616 

distortions are large near regions with large B0 inhomogeneity (i.e. temporal lobe, see Fig. 3E, F). 617 

Nonetheless, distortion correction was accurate, albeit with some signal drop-out and degraded SNR 618 

in these regions. Mean motion absolute displacement during 30-min acquisition was 0.36 ± 0.07 mm 619 

(N=10), ensuring little interaction between head motion, eddy-currents and changes in static 620 

magnetic field. In contrast to HCP at 3T (Uğurbil et al., 2013), we used simultaneous MB and GRAPPA 621 

acceleration to reduce distortions. Inspection of temporal stability of the dMRI acquisition did not 622 
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reveal pronounced structural artefacts around the ventricles and basal slices (Supplementary Fig. 623 

S9), thus indicating that simultaneous MB and GRAPPA accelerations did not substantially interact 624 

with physiological noise (Uğurbil et al., 2013). The dMRI quality assurance measures were similar 625 

between this study and the HCP (Fig. 8). Average SNR (whole brain) was 11.6 ± 1.4 in macaque 626 

(N=10) and 9.4 ± 0.9 in the HCP (N=10) (Fig. 8A). Exemplar subject data are compared in 627 

Supplementary Fig. S10 and Supplementary Table S3. The CNR slightly increased towards higher b-628 

values and was similar across the studies (Fig. 8B). In white matter, three crossing fibers voxels 629 

(selected by thresholding at 0.05 of third fiber’s volume fraction) were detected in 59% ± 7% and 630 

57% ± 4% of voxels in macaque and the HCP, respectively (Fig 9D). Finally, the dispersion 631 

uncertainties of 1st, 2nd and 3rd fiber orientations these voxels exhibited were also similar across the 632 

studies (Fig 9E). 633 

 634 

 
Figure 8. Comparison of dMRI quality measures between macaque and the HCP (blue and red bars, respectively; N=10). 

Plots show whole brain SNR (A) and CNR across b-values 1000, 2000 and 3000 (B), as well as three-crossing fiber ratio 

(C) and dispersion uncertainties (in degree) of 1st, 2nd and 3rd fiber orientations in the white matter voxels (D). Overall, 

the quality measures were comparable across the studies. 

 635 

Figure 9 shows M132 parcellated cortical maps of MD (Fig. 9A), FA (Fig. 9B), NDI (Fig. 9C) and ODI 636 

(Fig. 9D) (N=6). The MD is low in the primary motor (F1) and premotor cortices (such as F2, F4, F5), 637 

and primary sensory cortices including somatosensory (areas 3, 1, 2), visual (V1) and auditory 638 

cortices including core, as well as intraparietal sulcus area (Fig. 9A), whereas the NDI is high in all of 639 
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these areas. MD and NDI were strongly anti-correlated (R=-0.75, p<0.001). The ODI was high in the 640 

periphery of the V1, somatosensory area 1, auditory cortices including core (Fig. 9D) and 641 

intermediate in MT and other higher visual areas. The FA was higher in the frontal and anterior 642 

temporal cortices and strongly anti-correlated with ODI (R=-0.86, p<0.001). These results are 643 

comparable with those observed in the HCP (Fukutomi et al., 2018). The structural connectivity 644 

patterns extracted from diffusion tractography (DT) were also parcellated and explored with respect 645 

to the published quantitative retrograde tracer data (Fig. 9E, F) (Markov et al., 2014). Comparison 646 

between parcellated DT (pDT) seed from area L-F5 and tracer data seeded from area F5 showed a 647 

relatively good correlation (R=0.70, p<0.001, for non-zero tracer connections: N=72). However, 648 

fidelity of pDT decreased for weak long-distance connections (e.g. false positive connection to MT 649 

and MST and false negative connections to V2, V3, TEpd and TEpv), as reported previously (Donahue 650 

et al., 2016). 651 

 652 

 
Figure 9. Representative diffusion magnetic resonance imaging (dMRI) applications. Parcellated cortical surface 

distributions of mean diffusivity (MD) (A) and fractional anisotropy (FA) (B) calculated in diffusion tensor model, and 

neurite density index (NDI) and (C) orientation dispersion index (ODI) (D) calculated in NODDI (see main text; N=6). (E) 

Parcellated diffusion tractography (N=1, ID=A18031601) seed from left premotor area, F5 (blue color) and (F) the 

quantitative ground-truth derived from retrograde tracer injected into F5. Note the correspondence between 

tractography and tracer connectivities (see main text for details). Data at https://balsa.wustl.edu/zppXg 

 653 

  654 
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Discussion 655 

Here, we have presented an adaptation of the HCP’s approach to multimodal MRI acquisition, 656 

preprocessing, and analysis to the macaque, using the combination of a custom-made 24-channel 657 

receive-coil, high-resolution parallel imaging, and the HCP-NHP preprocessing and analysis pipelines. 658 

This approach yields robust estimates of cortical thickness, myelin content, and functional and 659 

diffusion measures. Importantly, since the presented protocols used share similar strengths to the 660 

HCP image acquisition, and the data is stored in a common geometrical framework system (‘CIFTI 661 

greyordinates’), we anticipate that it will facilitate direct multi-modal comparisons with an 662 

unprecedented accuracy between macaque and human connectomes. To enable other groups to do 663 

HCP-Style analyses in the macaque, this 24-channel macaque coil is available (via Rogue Research; 664 

production: Takashima Seisakusho Co. Ltd., Tokyo, Japan) and the data acquisition protocols are 665 

freely available from our website (www.nitrc.org/TBA), enabling other investigators to adapt, 666 

compare and make the best use of the parallel imaging capabilities of the coil. The HCP-NHP analysis 667 

pipelines are also available on github along with the HCP-Style macaque specific FIX training files 668 

(https://github.com/Washington-University/NHPPipelines). 669 

 670 

Coil Design 671 

Our multichannel receive coil, fabricated to closely fit a large macaque head (Fig. 1A) will allow 672 

routine imaging of macaque monkeys of different species with a range of lateral muscles and head 673 

sizes. The close proximity of the coil to the head allows high SNR in the brain with further SNR gains 674 

in the cortex produced by the small size of the elements (Fig. 1) (Janssens et al., 2013; Wiggins et al., 675 

2006). This design allowed acquisition of both T1w and T2w structural whole-brain image acquisition 676 

with a 0.5mm isotropic resolution in 22 minutes (Fig. 3a, b). In conjunction with homogeneous RF 677 

transmission (Fig. 3C, D), these two features enabled automatic and robust subcortical 678 

segmentations and reconstructions of pial and white matter surfaces (Supplementary Fig. S4).  679 

 680 

Twenty-four receive elements were arranged so as to optimize efficiency of spatial encoding capability 681 

in the axial slice direction (Fig. 1B, D). This geometrical arrangement yields a relatively small noise 682 

correlation coefficient (0.084), which is smaller than in previous macaque multi-channel coil designs 683 

such as 0.12 in a 24-channel (Gilbert et al., 2016) and 0.22 in a 22-channel (Janssens et al., 2013). Our 684 

coil design together with slice and in-plane accelerated imaging allowed up to five-fold and two-by-685 

two (MB-by-GRAPPA) accelerations for fMRI and dMRI, respectively. Moreover, this substantially 686 

improved the imaging data quality through increased efficiency in accumulation of data volumes 687 

(rfMRI: over 8000 volumes; and dMRI: 500 diffusion directions, all acquired in a single session in a 688 
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period of 140 minutes). Taken together, our 24-channel coil highlights the benefit of accelerated 689 

imaging achieved through the geometrical arrangement and low noise correlation of the coil elements. 690 

 691 

Resting-state fMRI 692 

To accurately map BOLD signals onto the cortical sheet, the image resolution (1.25 mm isotropic) 693 

was matched with 5th percentile of cortical thickness (Fig. 4N, O, P) to reduce the partial volume 694 

effects from white matter and CSF signals (Glasser et al., 2013), following the HCP data acquisition 695 

strategy at 3T (resolution 2 mm, the 5th percentile of human cortical thickness (Glasser et al., 2013)). 696 

The reduction from an isotropic volume of 2 mm to 1.25 mm, however, incurs a 4-fold SNR penalty. 697 

Nonetheless, tSNR of fMRI in macaque (Fig. 3G, H) is superior to that in the HCP acquired with 698 

comparable imaging parameters (Supplementary Fig. S3, Table S1). This tSNR gain may be primarily 699 

attributed to the close proximity to the animal and small diameter of the receive coil elements, with 700 

an additional gain from relatively small bandwidth. This illustrates the power of parallel imaging to 701 

overcome a physical size difference of a factor of twelve (macaque and human brain volumes are 702 

approximately 100 cm3 and 1200 cm3, respectively). 703 

 704 

While informative, tSNR is not an explicit measure of fMRI sensitivity to blood flow changes induced 705 

by neural activity. It is well known that variation of fMRI signal is a mixture of nuisance (e.g. motion 706 

and respiration) and neural BOLD components. To obtain insight into the content of our fMRI signals, 707 

we categorized different signal sources and found that neural BOLD signal explains approximately 708 

4.1% of the total fMRI variance (in data grand mean scaled to 10,000; corresponding to 773 ± 438 in 709 

absolute variance) in anesthetized macaque resting-state (Fig. 6). In HCP fMRI data (awake-state), 710 

neural BOLD signal explains approximately 7.7% of total variance (corresponding to 4158 ± 1594 in 711 

absolute variance (Glasser et al., 2018; Marcus et al., 2013)). Because the image acquisition 712 

protocols and image qualities are similar across the studies (Supplementary Fig. S3), we speculate 713 

that the lower BOLD neural signal in our macaque data may be due to, 1) attenuated thalamo-714 

cortical and cortico-cortical synchronization in the anesthetized state, and/or 2) a ceiling effect of 715 

signals due to relatively high blood flow, oxygen extraction rate, and saturation in anesthetized 716 

macaque brain (Kudomi et al., 2005). This issue may be overcome with widely used contrast agents 717 

(i.e. MION) and cerebral blood volume weighted fMRI (Mandeville et al., 1998) to boost CNR. 718 

Nonetheless, the relatively small contribution of neural BOLD signal to the total variance highlights 719 

the critical importance of post-processing to clean up nuisance signals to obtain functional 720 

connectivity estimates that are neurobiologically meaningful. ICA-based FIX denoising has been 721 

established to be very successful at removing non-random time-varying spatially specific artefacts 722 
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(e.g. movement, vascular and cerebrospinal fluid pulsation or scanning artefacts) in the human 723 

resting-state fMRI (Griffanti et al., 2017, 2014; Salimi-Khorshidi et al., 2014; Smith et al., 2013). Here, 724 

we demonstrated that FIX is also very successful reducing such artefacts (6.0% of total variance, Fig. 725 

6) with over 98% classification accuracy (threshold at 20, Table 1) in the macaque resting-state fMRI. 726 

The relative global mean variance and its reduction in macaque (1.5% before cleanup and 1.0% after 727 

cleanup) is smaller in comparison to the HCP (3.2% before cleanup and 2.2% after cleanup) (Glasser 728 

et al., 2018). This smaller global signal variance in anesthetized macaques can be attributed to more 729 

stable global blood flow because respirations and pCO2 were regulated by mechanical ventilation 730 

(Birn et al., 2006). The majority of the signal variance, however, is unstructured noise (>60%), in 731 

particular at subcortical regions that are distant from the coil elements (Supplementary Fig. S6), 732 

which can be effectively reduced using parcellation and/or Wishart filtering (Fig. 8B) (Glasser et al., 733 

2016b). 734 

 735 

The advantages of our experimental methodology was further demonstrated by the capability to 736 

identify an average (across sessions/animals) of 21 ± 9 signal (neural) components at 3T (Fig. 5, for 737 

exemplar signal components see Fig. 5 in BALSA). A previous report using group-ICA from six 738 

anesthetized macaques at 7T identified 11 RSNs (Hutchison et al., 2011). Our preliminary results 739 

replicate several of these RSNs. Taken together, from the data quality perspective, the 24-channel 740 

coil yields macaque rfMRI data that can be accurately and sensitively mapped onto cortical sheet 741 

and is comparable in quality with the HCP rfMRI data, whereas from the physiology perspective, we 742 

must be cautious when making inferences because of the potential effects of anesthesia on both 743 

neural activity and neurovascular coupling. We will explore this topic in future work on a specialized 744 

coil for awake monkey imaging. 745 

 746 

While scaling the fMRI resolution with respect to the cortical thickness is a minimum requirement to 747 

accurately localize BOLD signal within the cortical sheet, another important factor is the size of 748 

functional imaging voxels relative to the area of the cortical surface for identifying sharp gradient 749 

ridges in FC (Glasser et al., 2016a). We found that macaque cortical grey matter surface area is 750 

≈10,100 mm2 per hemisphere, which is close to previous estimates of 11,900 mm2 (Chaplin et al., 751 

2013) and 9,600 mm2 (Donahue et al., 2018). Given that one cortical hemisphere is expected to 752 

contain 130-140 cortical areas (Van Essen et al., 2011), an average parcel corresponds to an 753 

approximate area of 70 mm2 or 70 greyordinates (in our standard 10k greyordinate per hemisphere 754 

space for the macaque with 1.25mm average spacing between greyordinates). In comparison, each 755 

human cortical hemisphere has an approximate area of 88,200 mm2, about is 9-fold larger than in 756 
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macaque. Since it has 180 cortical areas (Glasser et al., 2016a), an average human cortical parcel 757 

corresponds to an area of 490 mm2 or ≈160 greyordinates (in the HCP standard 32k greyordinates 758 

per hemisphere space for humans). This suggests that identifying clear gradient ridges in FC can be 759 

more reliably assessed in the HCP in comparison to our macaque setup, which can be attributed to 760 

higher number of greyordinates and 9-fold larger cortical area in humans than in macaques. Viewed 761 

from another perspective, since macaque cortex contains 0.85 billion neurons per hemisphere 762 

(Herculano-Houzel et al., 2007), a single greyordinate (in 10k space) samples about 85,000 neurons 763 

on average. In comparison, since human cortex contain 8.2 billion neurons per hemisphere (Azevedo 764 

et al., 2009), so a single HCP greyordinate (in 32k space) samples an average of 270,000 neurons, 765 

about three-fold greater than in the macaque. Taken together, while the expected number of 766 

greyordinates per cortical area is larger in the human (due to 9-fold larger cortical area of the human 767 

brain), our HCP-style approach for the macaque samples fewer neurons per greyordinate (due to the 768 

4-fold smaller voxel volume). 769 

 770 

Diffusion MRI 771 

Spatial resolution is among the most important factors for resolving crossing fiber architecture 772 

(Donahue et al., 2016) and microstructural properties such as cortical radial anisotropy (Fan et al., 773 

2017; Sotiropoulos et al., 2016). The ratio between the voxel size and macaque white matter volume 774 

for the presented dMRI protocol (0.73 mm3 / 23.000 mm3 ≈ 3 x 10-5) approximately matches 2.5 mm 775 

isotropic resolution in the human white matter (16 mm3 / 500.000 mm3 ≈ 3 x 10-5) but is an order of 776 

magnitude larger than in the HCP (1.95 mm3 / 500.000 mm3  ≈ 4 x 10-6), although a more precise 777 

comparison would require investigations on features such as radii of curvature, tract and blade 778 

thickness. Smaller voxel size could aid in distinguishing challenging fiber pathways, however, under 779 

our experimental conditions further reduction was impractical due to gradient power and SNR 780 

limitations. 781 

 782 

To mitigate this limitation, our strategy was to acquire data with exceptionally high angular 783 

resolution (500 directions) capitalizing on two-by-two acceleration (out-of-plane MB and in-plane 784 

GRAPPA) enabled by the multichannel array coil. The effect of this strategy was shown in the 785 

comparable sensitivity to 3rd crossing fibers between species (Fig. 8), despite the resolution 786 

limitation in macaque. A recent ex vivo macaque study used high-quality, high-field magnetic field 787 

(4.7T), long data acquisition (≈27 h) postmortem and gadolinium enhanced diffusion scans to 788 

demonstrate a relatively good correspondence between probabilistic tractography and quantitative 789 

retrograde tracer (R=0.55-0.60) (Donahue et al., 2016). Here, we replicated a part of those results 790 
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(Fig. 8E, F), thus, augmenting the findings of Donahue and colleagues to in vivo applications that are 791 

within practical time limitations (≈30 min). Taken together, these results suggest that the ‘HCP’-style 792 

dMRI data acquisition protocols are well positioned to produce quantitative tractography measures 793 

that are neuroanatomically meaningful. 794 

 795 

The high spatial resolution with respect to cortical thickness enabled us to carry out cortical surface 796 

mapping of neurite properties and to provide preliminary evidence for nonuniformity in the 797 

composition and distribution of neurites in macaque cerebral cortex (Fig. 9C, D). Neurite properties 798 

are considered important because the density of neurites constitute basic building units (axons and 799 

dendrites) of neuronal networks, while ODI provides an indicator of the heterogeneity of neurite 800 

fiber orientations, a ratio between tangential and radial fibers (Fukutomi et al., 2018). We found that 801 

NDI was highest in V1 and higher than average in other visual representation areas (V2, V3, V4, and 802 

MT), somatosensory (1, 2, 3 and A1), motor (M1) and granular prefrontal (Fig. 9C), cortical 803 

distributions resembled those of myelin contrast (Fig. 4L). ODI was high in early somatosensory, 804 

auditory and visual cortices (Fig. 9D). Together, these results are in good agreement with the HCP 805 

data (Fukutomi et al., 2018). 806 

 807 

Towards Improved Macaque Connectomes and Cross-species Connectome Comparisons 808 

The construction of a high-quality connectome requires anatomically accurate definitions of parcels 809 

that represent a biologically meaningful partition of brain areas based on their function, 810 

architecture, connectivity, and topography (Felleman and Van Essen, 1991; Glasser et al., 2016a; Van 811 

Essen and Glasser, 2018). Comparison between transitions in multimodal neuroimaging contrasts, 812 

such as MT myelination (Fig. 4C) and functional connectivity (Fig. 8A, E), are particularly suggestive 813 

of brain area boundaries (Glasser et al., 2016a). Therefore, the approach to data collection and 814 

analysis presented here provides macaque data that may aid in multi-modal parcellation of the 815 

macaque and generation of structural and functional connectomes (Glasser et al., 2016b), though a 816 

robust delineation of cortical areas into functionally distinct areas will assuredly require analysis of a 817 

more extensive dataset. 818 

 819 

These HCP-style macaque data also provide an attractive substrate for multi-modal registration 820 

across species—in particular, macaques and humans. Just as myelin maps and resting state networks 821 

are used to register across human subjects (Robinson et al., 2018, 2014), they could be used to 822 

register the cerebral cortex between group averages of humans and macaques. This would allow 823 

direct comparisons between human and macaque structural and functional connectivity (Mars et al., 824 
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2018b). That said, we expect that the gains for cross-individual registration with areal features in the 825 

macaque will be less than those in humans simply because folding patterns and the relationships 826 

between folds and areas are less variable in macaques than they are in humans. Additionally, this 827 

approach to macaque imaging acquisition and analysis can be used to form structural and functional 828 

connectomes in the macaque for comparison with invasively measured tracer datasets (Donahue et 829 

al., 2016; Glasser et al., 2016b). Such validation analyses will help to determine the optimal methods 830 

for forming structural and functional connectomes in human studies (Jbabdi et al., 2013), where a 831 

direct comparison with a gold standard is not available. Future work will also explore cross-species 832 

comparisons between macaques and marmosets imaged using specialized hardware and an HCP-833 

style approach. These acquisition and analysis methods can also be applied to study disease models 834 

in primate species where controlled and invasive methods can be used to investigate causality and 835 

plasticity of structural and functional connectomes and their importance in shaping primate 836 

behavior. 837 

 838 

Conclusions 839 

A 24-channel phased-array coil for 3T was constructed and optimized for in vivo parallel imaging of 840 

macaque monkey brain. The coil provided high SNR whole-brain coverage and allowed parallel 841 

imaging with high speed acquisition by a five-fold and four-fold increase in functional and diffusion 842 

MRI, respectively. The data acquisition strategy in combination with the HCP-NHP minimal 843 

preprocessing pipelines enabled robust mapping of structural and functional properties onto surface 844 

of the cortex. The presented protocols can be acquired within a single imaging session and represent 845 

compelling advance in identifying multi-modal cortical topology and structural and functional 846 

connectomes in the macaque. Overall, this study demonstrates that MRI studies in animals may 847 

benefit from adapting the methodologies introduced by the HCP. 848 

 849 

Notes 850 

Data of figures and supplementary figures are available at https://balsa.wustl.edu/study/show/LPDP 851 

Supplementary Information is available in the online version of the paper. 852 
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