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Abstract 

Network models of brain dynamics provide valuable insight into the healthy functioning of the brain 

and how this breaks down in disease. A pertinent example is the use of network models to understand 

seizure generation (ictogenesis) in epilepsy. Recently, computational models have emerged to aid our 

understanding of seizures and to predict the outcome of surgical perturbations to brain networks. Such 

approaches provide the opportunity to quantify the effect of removing regions of tissue from brain 

networks and thereby search for the optimal resection strategy.  

Here, we use computational models to elucidate how sets of nodes contribute to the ictogenicity of 

networks. In small networks we fully elucidate the ictogenicity of all possible sets of nodes and 

demonstrate that the distribution of ictogenicity across sets depends on network topology. However, the 

full elucidation is a combinatorial problem that becomes intractable for large networks. Therefore, we 
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develop a global optimisation approach to search for minimal sets of nodes that contribute significantly 

to ictogenesis. We demonstrate the potential applicability of these methods in practice by identifying 

optimal sets of nodes to resect in networks derived from 20 individuals who underwent resective surgery 

for epilepsy.  
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1. Introduction 

Approximately 30% of people with epilepsy have refractory seizures, i.e. their seizures cannot be 

controlled by medication (Brodie et al., 2013, Chen et al., 2018). In these cases, the surgical removal or 

disconnection of the putative “epileptogenic zone” (EZ), i.e. the region of brain tissue thought to be 

indispensable for the generation of seizures, is a potential therapeutic option that can alleviate seizures 

in many cases (Rosenow and Lüders 2001, Nowell et al., 2014). The epileptogenic zone is currently 

defined retrospectively: diverse information is integrated by clinical teams to define targets for 

resection, and if seizure freedom is achieved after surgery, the EZ is assumed to have been removed 

(Rosenow and Lüders 2001). Unfortunately, post-operative seizure freedom rates are currently sub-

optimal and not everyone who could potentially benefit from surgery is identified as a candidate (De 

Tisi et al., 2011, Engel et al., 2012, Fois et al., 2015, Baud et al., 2018, Engel  2018). In order to improve 

the success of epilepsy surgery and widen its potential usage, a better understanding of the mechanisms 

of seizure generation is required, and improved, quantitative methods to prospectively map the EZ need 

to be developed (Rummel et al., 2015, Goodfellow et al., 2016).  

 

Computational studies of seizure generation in large-scale brain networks with the aim to inform 

epilepsy surgery have recently begun to emerge (Goodfellow et al., 2016, Sinha et al., 2017, Jirsa et al., 

2017, Steimer et al., 2017). In an early such study we introduced a quantitative framework for 

prospectively evaluating the effect that surgical removal of tissue would have (Goodfellow et al., 2016). 

The framework proceeds by first mapping an ictogenic network i.e. a set of brain regions, together with 

connections between them that are important for the generation of seizures. A dynamic model is then 

applied to this network in order to simulate epileptiform dynamics and thereby quantify the seizure 

generating capability of the network. This is captured in a quantity called Brain Network Ictogenicity 

(𝐵𝑁𝐼) that can be measured from simulations of the model (Petkov et al., 2014). Crucially, measuring 

the 𝐵𝑁𝐼 for a network provides a baseline against which the effect of perturbations, such as the removal 

of nodes (which is a proxy for surgery), can be quantified. We recently showed that our model could 

accurately delineate surgeries that resulted in seizure freedom from those that did not (Goodfellow et 

al., 2016). Subsequent studies have added evidence for the potential use of models to guide epilepsy 

surgery (Sinha et al., 2017, Jirsa et al., 2017). Using models to quantify ictogenicity opens up avenues 

for the improvement of pre-surgical mapping. For example, putative resections can be quantitatively 

compared in silico, and resections providing large reductions in ictogenicity (i.e. substantial reduction 

in seizure occurrence) can be sought. This in itself leads to a re-imagining of the concept of the 
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epileptogenic zone for pre-surgical planning: rather than searching for correlates of a region of tissue 

that should render a person seizure free, we can quantify the seizure reducing capabilities of removing 

many alternative sets of nodes in a network prospectively, in silico.  

 

Here, we use a quantity called Set Ictogenicity (𝑆𝐼) (previously introduced as Δ𝐵𝑁𝐼 (Goodfellow et al., 

2016)) to represent the extent to which ictogenicity is reduced when a given set of nodes is removed 

from a network. 𝑆𝐼 can be quantified for any potential set of nodes in a resection using the framework 

described above. Once the effect of removing a set of nodes can be quantified, one can compare the 

effect of removing different sets, and choose the set that would yield the largest reduction in ictogenicity 

(i.e. find the set with largest 𝑆𝐼, which would be designated as a putative EZ). However, to ensure an 

optimal solution is uncovered, one would have to evaluate the 𝑆𝐼 of all possible combinations of sets of 

nodes within a given network. Unfortunately, this is a combinatorial optimisation problem in which the 

number of sets to search through quickly becomes intractable, even for moderately sized networks 

(Hromkovic et al., 2001, Luque et al., 2011). Though in practice constraints on the location of resections 

may exist, alternative strategies to exhaustive searches have to be explored.  For instance, one could use 

heuristics that are quick but do not guarantee finding an optimum (Pearl 1984, Branke et al., 2016). For 

example, previous approaches (Goodfellow et al., 2016, Lopes et al., 2017, Sinha et al., 2017) applied 

heuristics to attempt to identify a set of nodes that optimally reduces the network ictogenicity. However, 

the selection of nodes of that set was solely based on the contribution of single nodes to seizure 

generation. In other application areas, combinatorial problems have previously been approached using 

global non-deterministic search strategies, like simulated annealing (Van_Laarhoven et al., 1987), 

evolution strategies (Beyer et al., 2001), genetic algorithms (Hromkovic et al., 2001, Luque et al., 2011) 

and particle swarm optimisation (Kennedy 2010). The deployment of such approaches to brain networks 

would enable us to gain a deeper insight into the way that ictogenesis is distributed throughout networks 

and facilitate the development of optimal strategies for epilepsy surgery. 

 

Here we use computational models to study the ictogenicity of sets of nodes within a network. We use 

artificial networks to explore how 𝑆𝐼 varies across sets of nodes within networks of different topologies 

and to characterise the relationship between common graph metrics and 𝑆𝐼. To facilitate the search for 

optimal resections, we develop and validate a genetic algorithm to uncover sets of nodes that optimally 

reduce the ictogenicity of a network. In addition, we apply the methodology to a cohort of 20 people 

who underwent epilepsy surgery. Finally, we discuss the potential benefits of these approaches to both 

enhance our understanding of epilepsy and advance pre-surgical planning in practice.  

 

2. Material and methods 

2.1. Simulation of brain dynamics 

We use a mathematical modelling framework to simulate and predict the outcome of epilepsy 

surgery (Goodfellow et al., 2016). The framework uses intracranial electroencephalographic (iEEG) 

recordings (Fig 1a) to construct functional networks (Fig 1b), where nodes are associated with 

electrodes and edges denote interrelations between the recorded signals. We use a surrogate 

corrected version of mutual information (Rummel et al., 2013, Rummel et al., 2015) that detects 

non-linear dependencies in excess of linear relationships to define weighted edges of the network 

(see Supplementary material, Text S1). We then place a mathematical model on each node (Fig 1c). 
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We use the canonical theta model (Ermentrout et al., 1986, Lopes et al., 2017) which has been 

shown to capture relevant dynamics of neural mass models (Lopes et al., 2017); nodes can display 

transitions between “normal activity” (stable fixed point) and “epileptiform dynamics” (stable limit 

cycle) through a saddle node on invariant circle (SNIC) bifurcation. The dynamics of node 𝑗 (𝑗 =

1, … , 𝑁) is represented by its phase 𝜃𝑗  and obeys  

                            𝜃̇𝑗(𝑡) = (1 − cos 𝜃𝑗(𝑡)) + (1 + cos 𝜃𝑗(𝑡))𝐼𝑗(𝑡)  (1) 

where 𝐼𝑗 (𝑡) is the input current that the node receives from the other nodes in the network, 

𝐼𝑗(𝑡) = 𝐼𝑜 + 𝜉𝑗(𝑡) +  
𝐾

𝑁
 ∑ 𝑎𝑖𝑗[1 − cos(𝜃𝑖(𝑡) − 𝜃𝑖

𝑠(𝑡))]𝑁
𝑖=1 .  (2) 

In Eq. (2) the term 𝐼𝑜 + 𝜉𝑗  is white uncorrelated Gaussian noise with mean 𝐼𝑜 = −1.2  and standard 

deviation 0.6, as used in previous studies (Lopes et al., 2017). 𝑎𝑖𝑗 is the (𝑖, 𝑗)th entry of the adjacency 

matrix (i.e., the weighted correlation matrix of the functional network), 𝐾 is a global scaling factor 

that scales the network interactions compared to the noise, and 𝜃𝑖
𝑠 is the stable fixed point of node 

𝑖 ( 𝜃𝑖̇ = 0 at 𝜉𝑖 = 𝐾 = 0). For the integration of Eq. (1) we use the Euler-Maruyama method with 

step size 0.01. 

 

      

Fig. 1. Schematic representation of the mathematical framework. From intracranial recordings (a) we 

construct a functional network (b). We then place a mathematical model on each node (c), simulate signals 

from the model (d) and calculate Brain Network Ictogenicity (e). Then perturbations are applied to the 

network by removing individual nodes (f) or set of nodes (i). Using the simulated signals from the perturbed 

networks (panels (g) and (j)), Node Ictogenicity (𝑁𝐼) and Set Ictogenicity (𝑆𝐼) are calculated for all possible 

combinations of resected nodes (panels (h), and (k), respectively). Finally, for every number of resected nodes 

the set that contributes most to the seizure generation is the one with the maximum 𝑆𝐼 (h, k, l). Panel (l) 

illustrates the 𝑆𝐼 of the most ictogenic sets split out by resection size.  

 

2.2. Quantification of ictogenicity 

The theta model enables us to simulate brain dynamics on a network (Fig 1d). Low amplitude 

signals correspond to “normal activity” whilst high amplitude signals represent “epileptiform 
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dynamics” (Lopes et al., 2017). We use the quantity Brain Network Ictogenicity (𝐵𝑁𝐼) (Petkov et 

al., 2014, Goodfellow et al., 2016) to quantify the propensity of the network to generate seizures. 

In practice,  𝐵𝑁𝐼 measures the average time that each node spends in epileptiform dynamics (𝑡𝑖 , 𝑖 =

1, … , 𝑁) over a sufficiently long computational time (we use 4 × 106 time steps),  

𝐵𝑁𝐼 =  
1

𝑁
 ∑

𝑡𝑖

𝑇

𝑁
𝑖=1 . (3) 

𝐵𝑁𝐼 varies between zero (all nodes display “normal activity” all the time) and one (all nodes show 

“seizure activity” all the time). The changes in 𝐵𝑁𝐼 upon removal of individual nodes or set of 

nodes allow us to quantify their ictogenicity. Here, removal of nodes is implemented by setting all 

incoming and outgoing connections from and to other nodes to zero (Figs 1i-k). To measure the 

impact of removing a set of nodes on 𝐵𝑁𝐼, we define Set Ictogenicity (𝑆𝐼) as 

𝑆𝐼𝑋 =  
𝐵𝑁𝛪(0)−𝐵𝑁𝐼(𝑋)

𝐵𝑁𝐼(0)    (4) 

 

where 𝐵𝑁𝐼(0) is a reference value for the unperturbed network, and 𝐵𝑁𝐼(𝑋) denotes the 𝐵𝑁𝐼 value 

after the removal of all n nodes in the subset 𝑋 = {𝑥1, . . , 𝑥𝑛}. We tune the parameter 𝐾 in the model 

such that 𝐵𝑁𝐼(0) equals 0.5 (Goodfellow et al., 2016, Lopes et al., 2017) which means that on 

average the network spends half of the computational time in epileptiform dynamics. We consider 

this value as a useful reference because it enables us to study the result of network perturbations 

more efficiently (a realistic value of 𝐵𝑁𝐼(0) would be much smaller, and changes of 𝐵𝑁𝐼 upon node 

removals would be more difficult to measure). Note that for 𝑛 = 1 in Eq. (4), 𝑆𝐼𝑋 is equivalent to 

the Node Ictogenicity (𝑁𝐼), previously introduced in Goodfellow et al., (Goodfellow et al., 2016), 

which measures the effect of removing a single node in 𝐵𝑁𝐼 (Figs 1f-h). 𝑆𝐼𝑋  is a succinct term for 

Δ𝐵𝑁𝐼, which was introduced in Goodfellow et al., (Goodfellow et al., 2016). Larger 𝑆𝐼𝑋  values 

denote greater contribution of the considered set 𝑋 to seizure generation. 𝑆𝐼𝑋  takes a value of one 

when the removed set of nodes leads to elimination of epileptiform dynamics, whilst zero or 

negative values denote that removing those nodes did not reduce the network ictogenicity. In this 

study, we set all negative 𝑆𝐼𝑋 values to zero. More details about the calculation of 𝐵𝑁𝐼 and 𝑆𝐼 are 

given in Supplementary material, Text S2. 

 

2.3. Exemplar networks and topological properties 

In order to explore and understand the effect of perturbations in different network structures, we 

first study 𝑆𝐼 in exemplar networks. We consider both directed and undirected artificial networks 

with random and “scale-free” (i.e. generated by the Barabasi-Albert algorithm (Barabasi 1999) and 

the static model (Goh et al., 2001)) topologies, comprising 20 and 40 nodes. We also note that in 

contrast to the weighted functional networks inferred from patient data (see section: Patient 

information and data), we used binary artificial networks for simplicity. We further consider 

common graph theory measures such as the degree, betweenness centrality, clustering coefficient 

and eigenvector centrality (Newmann 2007, Rubinov and Sporns 2010) to study how 𝑆𝐼 relates to 

these topological properties (eigenvector centrality was only computed for undirected networks, 

because it is undefined for directed networks).  

 

2.4. Resection strategies 
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In a network of 𝑁 nodes there are (𝑁
𝑛

) distinct subsets of size 𝑛. Therefore, in order to evaluate how 

𝑆𝐼 is distributed within a network of size 𝑁, and to definitively identify the set with the highest 𝑆𝐼, 

one could use an exhaustive (or brute-force) search, which would require ∑ (𝑁
𝑛

)𝑁
𝑛=1  calculations. 

We use such an approach herein to calculate the ‘ground truth’ distribution of SI. For networks of 

size relevant for the study of the brain, the brute-force approach quickly becomes intractable. For 

example, a 40-node network exhaustive search would require 240 − 1 ≈ 1012 calculations. We 

therefore need to develop computationally tractable methods for studying SI. Previous studies 

(Goodfellow et al., 2016, Lopes et al., 2017) have used heuristic methods based on recursively 

adding a single node to build up an optimal set. One method, which we refer to as ‘simple ordering’ 

(Goodfellow et al., 2016) calculates  𝑁𝐼𝑋 for all possible single node removals (i.e. 𝑁 initial 

calculations). Nodes are ranked according to their 𝑁𝐼𝑋 values and added sequentially to the set. 

Each time a new node is added, the 𝑆𝐼 of the new set is calculated, with termination when 𝑆𝐼 is 

greater than 0.99. An extension to this method, which we refer to as ‘recurrent ordering’ recalculates 

the distribution of 𝑁𝐼 after the removal of each node to ensure that in every iteration the node with 

the highest 𝑁𝐼 of the perturbed network is added.   

In addition to these heuristics, we test a resection strategy based on optimising 𝑆𝐼 with a genetic 

algorithm. Genetic algorithms are stochastic search methods based on mimicking natural selection, 

in which an evolving population of candidate problem solutions is used to find an optimal solution 

(Avramidis and Akman 2017, Luque 2011, Zhou et al., 2011). A typical genetic algorithm (GA) 

starts with a population that comprises candidate solutions (called individuals). Each individual is 

evaluated by a fitness (objective) function which quantifies how successfully the individual solves 

the problem. Based on the fitness scores, the genetic algorithm creates a new population of 

individuals by performing a number of stochastic genetic operations (i.e. crossover, mutation, 

selection), and keeps the best solutions generated (those that minimize the objective function). This 

process continues for multiple iterations (called generations) until convergence to an optimum 

solution is achieved. Multi-objective genetic algorithms (MOGAs) optimise the given problem for 

more than one objective function, returning Pareto optimal solution sets which represent the optimal 

trade-off between the objectives (Zhou et al., 2011, Avramidis and Akman 2017). Here, we use the 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002, Avramidis and Akman 

2017). Particularly, we use the implementation of the algorithm included in the MATLAB Global 

Optimisation Toolbox (version R2017b) and follow the optimisation protocol from Avramidis et 

al., (Avramidis and Akman 2017). Given that our purpose is to find the smallest set with the largest 

𝑆𝐼, we use two objective functions that minimize the number of nodes removed as well as the 

quantity 1 − 𝑆𝐼. After multiple generations, the algorithm returns optimal sets of nodes with 

different resection sizes. Due to the stochastic nature of the genetic algorithm, we execute eight 

independent runs in each case utilizing the convergence metrics from Avramidis et al., (Avramidis 

and Akman 2017 and references therein) to assess whether the algorithm is robust and reliable at 

identifying optimal sets. In short, the convergence metrics evaluate the spread of the optimal sets 

in the two-dimensional plane of the objective functions. For efficiency, we set the genetic algorithm 

to discard sets of nodes larger than half of the network size by attributing them arbitrarily large 

objective values. 

All the aforementioned search methods were evaluated on 20-node networks. In 40-node networks 

we did not use the “ground truth” strategy, given that it is computationally intractable to calculate 

Set Ictogenicity for 240 − 1 ≈  1012 sets.  We therefore introduce in this case an additional 

approach: a ‘random search’ heuristic which picks at random a sample of sets of nodes for every 

resection size and takes as a solution the set with the maximum 𝑆𝐼. For comparison purposes, we 
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consider a sample size equal to the number of sets evaluated by the genetic algorithm across all 

generations. The number of samples per resection size was considered proportional to the logarithm 

of all possible sets of the respective size. This enabled a denser sampling at small resection sizes 

where the optimum solution is expected to be found.  

 

2.5. Comparison between resection strategies that are based on Node and Set Ictogenicity 

The ground truth is the only strategy that guarantees the detection of the most ictogenic set, because 

it is the only one that has access to the 𝑆𝐼 of all sets of nodes (Figs 1h, k, l). Thus, for the 20-node 

networks we compare all strategies to the optimum solution found from the ground truth. In order 

to evaluate how close a given solution is to the highest 𝑆𝐼 observed in the ground truth, we compute 

the Δ𝑆𝐼, 

Δ𝑆𝐼 = 𝑆𝐼𝐺𝑇 − 𝑆𝐼𝑆  

where 𝑆𝐼𝐺𝑇 is the highest 𝑆𝐼 observed in the ground truth and 𝑆𝐼𝑆 is the 𝑆𝐼 of the optimum solution 

detected by a strategy 𝑆 (for a given resection size). Our aim is to find a strategy that may find 𝑆𝐼𝐺𝑇 

(Δ𝑆𝐼 = 0) while avoiding the inefficient and exhaustive search performed in the ground truth. 

 In the case of 40-node networks, we cannot calculate the ground truth and therefore we use the 

solution from the genetic algorithm (𝑆𝐼𝐺𝐴) as a reference to compare with other strategies, 

Δ𝑆𝐼 = 𝑆𝐼𝐺𝐴 − 𝑆𝐼𝑠 . 

Note that in this case the Δ𝑆𝐼 could be negative, because the genetic algorithm might be 

outperformed by another strategy. 

 

2.6. Patient information and data 

We analyse intracranial electroencephalographic recordings from 20 patients (15 female, 5male; 

median age 31 years, IQR 16 years, range 10-66 years) who underwent presurgical monitoring at 

Inselspital Bern. 13 of them were free from disabling seizures and auras for at least one year after 

surgery (Engel I), whereas the remaining 7 did not show worthwhile improvement (Engel IV). 

Before and after surgery, high resolution MRI images were acquired, as well as post-implantation 

CT images in order to identify the position of the implanted electrodes and the exact location of the 

resected brain tissue. Further details about this procedure can be found in Rummel et al., (Rummel 

et al., 2015). An experienced epileptologist/electroencephalographer (K.S.) visually inspected all 

the recordings and identified the onset and termination of a representative seizure as well as any 

channels that had to be removed from the analysis due to the presence of permanent artefacts (<5% 

of channels). All signals were down-sampled to a sampling rate of 512 Hz, re-referenced against 

the median of all the artefact-free channels and band-pass filtered (forward and backward filtering 

to minimize phase distortion) between 0.5 and 150 Hz using a fourth-order Butterworth filter. All 

the patients gave written informed consent that their imaging and EEG data might be used for 

research purposes, and retrospective data analysis has been approved by the ethics committee of the 

Canton of Bern/Switzerland.   

 

3. Results 
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The results section is arranged as follows. In order to better understand how sets of nodes within 

networks contribute to ictogenicity, we first study how 𝑆𝐼 is distributed across subnetworks of different 

sizes in artificially generated scale-free and random networks. We subsequently assess the relationship 

between 𝑆𝐼 and common graph theory metrics and test to what extent these metrics can predict the 

optimal set. We then apply a genetic algorithm and heuristics to the problem of finding the optimal set 

before finally testing the genetic algorithm on patient data.  

3.1. Set Ictogenicity in different network topologies 

In a network of size 𝑁, for a given subset (collection) of 𝑛 nodes, 𝑋 =  {𝑥1, . . , 𝑥𝑛}, where 𝑛 < 𝑁, 

we use 𝑆𝐼𝑋 to quantify the reduction in ictogenicity that is achieved by removing all nodes in 𝑋 

from the network. To gain insight into how seizures arise in networks, we first seek to uncover what 

the relationship is between the obtained reduction in ictogenicity (𝑆𝐼𝑋) and the number of nodes 

that are removed (𝑛), and how this depends on network topology. For computational tractability we 

initially study 20-node artificially generated networks, considering the removal of up to ten nodes 

(i.e. up to half of the network). This network size is tractable for analysis using a brute-force 

approach and is relevant in the clinical context, where iEEG implantation schemes for some people 

may comprise around 20 electrodes, and investigations of standard clinical scalp EEG typically 

yields 19 channels.  

Figs 2a, b, e and f demonstrate how 𝑆𝐼 is distributed in exemplar directed and undirected networks 

with scale-free and random topologies. We observe that the variance in 𝑆𝐼 is larger in the directed 

scale-free networks (Fig 2a) compared to random (Figs 2b and f) and undirected scale-free (Fig 2e) 

networks. Fig 2a shows that in the directed scale-free networks we studied, 𝑆𝐼 can take values 

between zero and one, depending on the set that is removed. Approximately 10% of sets do not 

reduce ictogenicity when removed. A further 20% completely eliminates epileptiform dynamics 

when removed, but the effect of the remaining sets is distributed approximately uniformly across 

𝑆𝐼 values. In contrast, Figs 2b, e and f demonstrate that the 𝑆𝐼 distribution of random and scale-free 

undirected networks is more concentrated at high values, with very few sets having no effect on 

ictogenicity.  

In Figs 2c, d, g and h 𝑆𝐼 is broken down by resection size. In all networks studied, the average 𝑆𝐼 

increases as the size of the resected set increases. However, in the scale-free directed networks (Fig 

2c) we studied, the relationship between resection size and average 𝑆𝐼 is approximately linear, and 

in random (Figs 2d and h) and undirected scale-free networks (Fig 2h), large average 𝑆𝐼 values are 

reached more readily for small set (resection) sizes. Furthermore, whilst in the directed scale-free 

networks we studied there are few sets with very large 𝑆𝐼, in random and undirected scale-free 

networks there are instead few low 𝑆𝐼 values. We observe that typically, small resections have on 

average greater impact (i.e. higher 𝑆𝐼) in random networks, compared to equivalent resections in 

directed scale-free networks.  
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Fig. 2. The distribution of Set Ictogenicity (𝑆𝐼) depends on network topology and resection size. Panels (a) 

and (b) display the average 𝑆𝐼 distribution for ten directed artificial scale-free (a) and random (b) networks, 

respectively. Error bars denote the standard error across the ten network realizations. Panels (c) and (d) show 

𝑆𝐼 distributions split out by resection size (i.e. number of nodes removed) for the networks of panels (a) and 

(b), respectively. Panels (e)-(h) are similar to panels (a)-(d), but for undirected networks. Parameters: network 

size 𝑁 = 20; in the directed networks the in and out degree is 2, whilst in the undirected the mean degree is 

2; scale-free degree distribution exponent γ = 3.  

 

3.2. Set Ictogenicity and graph theory measures 

Fig 2 demonstrated that 𝑆𝐼 depends on network topology. To further understand this relationship, 

we investigated to what extent 𝑆𝐼 is related to common graph theoretic properties of nodes inside 

the sets selected for removal. We thus computed the Spearman’s rank correlation between 𝑆𝐼 and 

the average degree, average betweenness centrality and average clustering coefficient of removed 

sets in directed scale-free and random networks. Fig 3 shows that 𝑆𝐼 is correlated with average 

degree and average betweenness centrality (median correlation larger than 0.6 for most resection 

sizes, see Figs 3a and b), but not with the average clustering coefficient in both scale-free and 
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random networks (directed and undirected, see Fig S3 for the latter). Analysing different resection 

sizes we see that there are differences in correlation between directed scale-free networks and the 

other topologies we studied. In random networks, for example, the correlation between 𝑆𝐼 and 

average degree and betweenness centrality is high for small resection sizes but decreases for larger 

resections (Figs 3d and e). In contrast, correlation between degree and 𝑆𝐼 increases with resection 

size for directed scale-free networks (Fig 3a) and is relatively flat for betweenness centrality (Fig 

3b). The low correlation for large resection sizes in random networks, particularly for betweenness 

centrality, is likely to be a consequence of the fact that most large sets have the same 𝑆𝐼 in random 

networks, as found in Fig 2d. Therefore, 𝑆𝐼 would be independent from measures of the constituent 

nodes.  

 

 

Fig. 3. Absolute Spearman’s correlation (𝜌) between 𝑆𝐼 and average graph theory measures of the nodes in 

removed sets. Panels (a)-(c) correspond to scale-free directed networks while panels (d)-(f) represent random 

directed networks. Each column shows 𝜌 between 𝑆𝐼 and a different network measure: (a) and (d) average 

degree; (b) and (e) average betweenness centrality; and (c) and (f) average clustering coefficient of removed 

nodes. Ten network realizations were considered per network topology, hence the 10 dots for each resection 

size (i.e. number of nodes removed). The blue line represents the median across the network realizations and 

the shaded area displays the median absolute deviation. The parameters were the same as in Fig 2.  

3.3. Identifying optimal resections 
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Having explored properties of 𝑆𝐼 distributions, we now turn to the problem of finding the set that 

optimally reduces ictogenicity upon removal, which is analogous to identifying the optimal 

resection in epilepsy surgery. Fig 3 demonstrated that the average degree and average betweenness 

centrality of removed sets are correlated with 𝑆𝐼. This implies that these graph theory measures 

may potentially be used to find the sets with highest 𝑆𝐼. We sought to test this by asking whether 

sets that produce maximum reductions in average degree or average betweenness centrality also 

produce maximal 𝑆𝐼 values. In order to identify maximal 𝑆𝐼 values, we calculated 𝑆𝐼 for all possible 

subsets of artificial networks with 20 nodes, which we refer to as the ground truth. Note that for a 

given network and resection size, there may exist multiple sets that produce maximal reductions in 

average degree or average betweenness centrality. We therefore calculated the average difference 

between the maximum 𝑆𝐼 (ground truth) and the 𝑆𝐼 of each set that yields maximum reduction 

average degree and betweenness centrality (Δ𝑆𝐼). We henceforth denote sets that yield maximal 

reduction in average degree and average betweenness centrality as 𝑆𝐼𝑑𝑒𝑔  and 𝑆𝐼𝑏𝑒𝑡 , respectively.  

 

 

Fig. 4. Difference between the 𝑆𝐼 value of the most ictogenic set as identified from the ground truth and the 

average 𝑆𝐼 of the sets which caused a maximal reduction in average degree (panels (a) and (c)), and average 

betweenness centrality (panels (b) and (d)), i.e. Δ𝑆𝐼, as a function of resection size. Error bars denote the 

standard deviation of the Δ𝑆𝐼 values across the different sets that yield the maximal reduction in average 

degree or betweenness centrality when removed. The blue curve describes the median of the Δ𝑆𝐼 values across 

10 network realizations (black dots) and the shaded area their median absolute deviation (the dots are slightly 
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shifted in the x-axis for better visualization). Panels (a) and (b) correspond to scale-free directed networks, 

whilst panels (c) and (d) to random directed networks. The dashed line denotes the average Δ𝑆𝐼 between the 

𝑆𝐼 of the ground truth most ictogenic set and the 𝑆𝐼 of all other possible sets (also averaged over the 10 

network realizations). Parameters are the same as in Fig 2. 

 

Fig 4 shows the results of this analysis for directed scale-free (Figs 4a and c) and random (Figs 4b 

and d) networks. We observe that in both scale-free and random directed networks, sets 

corresponding to 𝑆𝐼𝑑𝑒𝑔   and 𝑆𝐼𝑏𝑒𝑡   can yield 𝑆𝐼 values close to the optimal 𝑆𝐼 as defined by the 

ground truth (i.e. Δ𝑆𝐼 = 0). In addition, the  𝑆𝐼𝑑𝑒𝑔  and 𝑆𝐼𝑏𝑒𝑡    sets  always have lower Δ𝑆𝐼 than the 

average 𝑆𝐼 from sets of the same size, which indicates that the reduction in average degree and 

average betweenness centrality are useful ways to find optimal sets (see the dashed line in the figure 

which represents the average Δ𝑆𝐼 of every possible set of nodes). We also find that Δ𝑆𝐼 gets smaller 

with increasing resection sizes, which is a consequence of how the distribution of 𝑆𝐼 changes with 

the resection size (i.e. as the number of nodes removed becomes large, 𝑆𝐼 becomes large in general, 

see Fig 2). However, we also observe that sets producing the same reduction in average degree or 

average betweenness centrality may have different 𝑆𝐼 values, as shown by the large error bars in 

Figs 4a and b. This means that information regarding the degree or centrality alone is insufficient 

to identify the actual optimal set, since we would need further information to identify which of the 

sets corresponding to 𝑆𝐼𝑑𝑒𝑔   and 𝑆𝐼𝑏𝑒𝑡   would have highest 𝑆𝐼. Furthermore, Δ𝑆𝐼 may be quite large 

for some realizations of directed scale-free networks (see the existence of outliers in Figs 4a and b). 

In contrast, in random directed networks average degree and average betweenness centrality more 

accurately identify sets with optimal 𝑆𝐼 (see Fig 4c and d), particularly at larger resections (which 

is to be expected given that most sets yield 𝑆𝐼 close to the highest at large resection sizes 

independent of their constituent nodes). Results for undirected networks are shown in Fig S4 where 

we also explored whether sets that produce maximum reduction in eigenvector centrality also 

produce maximal 𝑆𝐼 values. We also performed this analysis for clustering coefficient and found 

found that the corresponding Δ𝑆𝐼 values were very large which means that clustering coefficient 

was not able to identify the optimal set as defined by the ground truth.  

3.4. Alternative strategies for the identification of the most ictogenic sets 

Fig 4 showed that graph theory measures may often be used to identify the most ictogenic set. 

However, they may not be reliable for certain network realizations, particularly in directed scale-

free networks. Therefore, to find the set of nodes with maximal ictogenicity we should calculate 𝑆𝐼. 

However, calculating the 𝑆𝐼 for all possible sets is challenging computationally due to the large 

number of possible sets, particularly in large networks. Therefore, in order to study larger networks, 

and to find optimal resections in general for practical applications, efficient methods are required 

to find sets with optimal 𝑆𝐼. Here, we study two previously used heuristics, along with the NSGA-

II genetic algorithm (Deb et al., 2002, Avramidis and Akman 2017). The heuristics we use are the 

simple ordering and recurrent ordering methods, which are based on the contribution of individual 

nodes to seizure generation. In contrast to building pseudo-optimal sets recursively, the genetic 

algorithm makes stochastic searches in the space of all possible sets of nodes using natural selection 

criteria.   

In Fig 5 we compare these methods against the ground truth in 20-node directed networks. We find 

that whilst both simple and recurrent ordering are able to identify solutions close to the highest 𝑆𝐼, 

the genetic algorithm is the only approach that uncovers the optimal solution in all cases (the red 

line overlaps with the green line in Fig 5c, and Δ𝑆𝐼 = 0 in panels (f) and (i)). We further observe 
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that in general the recurrent ordering provides better solutions than the simple ordering. These 

strategies performed differently for different network topologies, with scale-free directed networks 

being less amenable to the heuristic approaches than random networks (see the higher Δ𝑆𝐼 values 

in panels (d) and (e) compared to (g) and (h)). In undirected networks we observe similar results, 

though in this case both the genetic algorithm and the recurrent ordering strategy are able to find 

the sets with highest 𝑆𝐼 (see Fig S5). We note that the genetic algorithm and the recurrent ordering 

approaches perform better than the heuristics based on graph theory measures (compare, for 

example, Figs 5e and h with Fig 4), further motivating the benefit of calculating 𝑆𝐼. For all 

considered network topologies of this study, we ensured that the genetic algorithm converged across 

multiple independent realizations. The 𝑆𝐼 values of the optimal sets across multiple runs as well as 

the convergence metrics for exemplar networks can be found in Supplementary material (Figs S1 

and S2). 

 

Fig. 5. The genetic algorithm is the only resection strategy that identifies the most ictogenic set in all 

considered networks. Ground truth is compared with simple ordering (first column), recurrent ordering 

(second column) and the genetic algorithm (third column). Panels (a)-(c) display 𝑆𝐼 values over the number 

of resected nodes in an exemplar artificial 20-node scale-free directed network, where the green lines 

represent the ground truth (i.e. the most ictogenic sets), whilst the blue, orange, and red lines display the 𝑆𝐼 

of the sets found by each of the search strategies. The second and third rows show the Δ𝑆𝐼 between the 𝑆𝐼 

value of the ground truth and the set identified by each search strategy in scale-free and random directed 

networks, respectively. The dashed line represents the average 𝑆𝐼 (or Δ𝑆𝐼) of all possible combinations of 

nodes for each resection size and serve as a reference for comparison. The dots in panels (d)-(i) correspond 
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to 𝛥𝑆𝐼 values obtained for 10 different network realizations, the solid lines depict the median of 𝛥𝑆𝐼 values, 

and the shaded area represents the median absolute deviation. Parameters were the same as in Fig 2. 

Additionally, the genetic algorithm was run for 100 generations with a population size of 200.  

The analysis above showed that the genetic algorithm can identify sets with the largest 𝑆𝐼 in all of 

the 20-node networks considered. In addition, the recurrent ordering strategy also found solutions 

relatively close to the optimum 𝑆𝐼 (see Fig 5e and h). Therefore, we sought to explore whether these 

optimisation strategies may also achieve good performances on larger 40-node networks. For these 

larger networks, we restricted our analysis to directed scale-free networks given that they proved to 

be the more difficult to approach in our analysis of 20-node networks. As explained in Methods, 

we do not compute the ground truth in 40-node networks, since the number of all possible sets of 

nodes is too large. Instead, we use the genetic algorithm as a proxy for the ground truth and compare 

this to the simple and recurrent ordering heuristics. In addition, we employed a random search 

heuristic that searches through a solution space whose size is equal to the one of the genetic 

algorithm in order to test the uplift in performance of the latter compared to a stratified random 

approach.  

Fig 6 shows that in the 40-node scale-free directed networks we studied, the genetic algorithm 

clearly outperforms all the other strategies. Note that in this figure Δ𝑆𝐼 > 0 means that the genetic 

algorithm finds solutions with larger SI than the other approaches. We find that the uplift in 

performance of the genetic algorithm has a maximum at around sets of size 10 and then decreases 

for larger sets. This is due to larger resections being more likely to have 𝑆𝐼 = 1, as observed in our 

study of 20-node networks. This is further supported by the V-shaped dashed guideline curves 

corresponding to random removals which decrease for resection sizes larger than 15. In contrast, in 

undirected networks all approaches detect similar 𝑆𝐼 solutions (see Fig S6).   

 

Fig 6. The genetic algorithm outperforms both simple and recurrent ordering as well as the random search 

heuristic in 40-node scale-free directed networks.  𝛥𝑆𝐼 denotes the difference between the 𝑆𝐼 value of the 

optimal set as detected by the genetic algorithm and the 𝑆𝐼 solution found by (a) simple ordering, (b) recurrent 
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ordering, and (c) random search across different resection sizes. The solid lines depict the median of the dots 

which correspond to the 𝛥𝑆𝐼 values across 10 network realisations, whilst the shaded area illustrates the 

median absolute deviation. The dashed line represents the difference between the optimal set as detected by 

the genetic algorithm and the average of 20,000 random sets for each resection size (for resections up to three 

nodes, we considered all possible sets, since there were fewer than 20,000). Parameters: mean in and out 

degree equal 4; population size 200, number of generations equal 150.  

3.5. Identifying optimal resections in patient data  

Our analysis of artificial networks demonstrates that the genetic algorithm is a good strategy for 

identifying sets of nodes with the largest 𝑆𝐼. We therefore sought to test the application of the 

genetic algorithm to networks inferred from a cohort of 20 people with pharmacoresistant epilepsy 

who underwent resective surgery (see Material and methods). Using iEEG recordings, we 

constructed a functional network for each patient (see Supplementary material, Text S1) and used 

the genetic algorithm to identify the most ictogenic sets. Here, the network nodes correspond to 

iEEG channels, which in turn represent the brain tissue in the vicinity of the electrodes. Following 

(Goodfellow at al. 2016) we defined the optimal set as the smallest set for which the 𝑆𝐼 exceeds 

0.99. Note that as described in the Methods section, we executed multiple independent runs of the 

genetic algorithm, which is inherently stochastic, in order to obtain robust results. We observed that 

across the independent realizations we could obtain multiple optimal sets for a given patient (i.e. 

different sets of nodes with the same size and 𝑆𝐼 value).  

In order to test the validity of predictions of the model, we compared them to the actual resections 

the patients underwent, and whether they were rendered seizure free as a result. Since the algorithm 

yielded multiple potential resections we calculated the overlap between the actual resected tissue 

and each of the optimal sets. Fig 7 shows the largest overlap per patient, with individuals grouped 

by postsurgical outcome. We found significantly larger overlaps for individuals who had good 

postsurgical outcome (Engel I) compared to those who had poor outcome (Engel IV) (see Fig 7a). 

In addition, we found that three out of the seven patients with poor post-surgery outcome presented 

zero overlap, meaning that our methods suggested completely different resections compared to 

those that were performed. We also compared the actual resected tissue with equal size random sets 

of nodes and found that in all cases the overlap with the random sets was lower than that predicted 

by our methods. The only exceptions were again the three cases with zero overlap with our 

predictions. Using the overlap as a classifier we found a sensitivity of 0.92, a specificity of 0.71, 

and an area under the curve (AUC) of 0.87 (see Fig 7b), which suggests our methods are reliable 

for classifying into outcome classes at the individual level. Interestingly, using graph theory 

measures alone Engel class I and IV patients could not be separated (Fig S7). However, we found 

that if 𝑆𝐼 and the genetic algorithm are used to calculate the optimal size of the resection as a first 

step, eigenvector centrality and strength were able to separate the two groups well, whereas 

betweenness centrality could not (Fig S8). 
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Fig 7. The percentage overlap between actual resections and model predictions is higher for patients with 

good outcome compared to those who had poor postsurgical outcome (one-sided Wilcoxon rank sum test 𝑝 =

0.003). (a) Percentage overlap versus patient surgical outcome grouped by Engel class (filled triangles). The 

unfilled triangles correspond to an average overlap between actual resections and equal-size random 

resections (100 random samples, and the error bars denote the standard error). (b) Receiver operating 

characteristic (ROC) analysis for Engel I (seizure free patients) versus Engel IV (non-seizure free patients) 

using the percentage overlap as the classifier. Parameter setting for the genetic algorithm: population size 

equal 200 and number of generations equal 150.  

 

For illustrative purposes, Fig 8 demonstrates the functional network of an Engel IV patient with 

two alternative optimal sets revealed by the genetic algorithm (Fig 8a and b). Here we demonstrate 

a further advantage of the genetic algorithm: it facilitates the avoidance of removing a certain node 

or nodes. This can be done by setting the objective function to a high value if the node(s) that should 

be avoided appear in a solution during the execution of the algorithm.  Here, we avoid the selection 

of a highly ictogenic node (Fig 8c) and consequently the genetic algorithm substitutes it with 

another one. This constrained strategy of the genetic algorithm may be clinically valuable given 

that there may exist network nodes that cannot be removed due to their overlap with eloquent cortex, 

blood vessels or other anatomically indispensable areas.  
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Fig 8. The genetic algorithm suggests multiple optimal sets and may further provide alternative sets under 

given restrictions. Each panel illustrates the functional network of an Engel IV patient as inferred from 

surrogate corrected mutual information. For illustrative reasons we only display the largest connected 

component of the network and connections characterized by correlations larger than 0.09. Nodes in red denote 

the optimal set as predicted by the genetic algorithm. Panels (a) and (b) exemplify two different 

(unconstrained) optimal sets. Panel (c) shows an additional alternative optimal set when constraining the 

genetic algorithm to avoid selecting the node within the black box. The actual clinical resection comprised 

four nodes which were not part of the displayed network component. Parameters are the same as in Fig 7.  

 

4. Conclusions 

In this study we used computational modelling and evolutionary optimisation to understand how sets 

of nodes within a network contribute to its seizure generating capability (i.e. its ictogenicity). To do this 

we used a quantity called Set Ictogenicity (𝑆𝐼), which is a model-based quantification of the effect that 

removing a set of nodes has on the capability of a network to transition between healthy and epileptiform 

dynamics. We demonstrated that the way in which 𝑆𝐼 varies for different sets of nodes depends upon 

network topology. Whilst in exemplar 20-node random directed networks most sets of nodes have 

similar and large 𝑆𝐼, in exemplar directed networks generated using the Barabasi-Albert model (i.e. 

“scale-free” networks), we observed a V-shaped distribution of 𝑆𝐼. In the latter case, most sets do not 

yield a large reduction in ictogenicity when removed from the network. This difference is in part 

explained by the observed high correlation between 𝑆𝐼 and degree: since nodes in scale-free networks 

have higher degree variability, this leads to higher 𝑆𝐼 variability across sets of nodes. We further 

observed that 𝑆𝐼 is correlated with betweenness centrality. These results build upon our previous 

findings in Ref. (Lopes et al., 2017), where we analysed the correlation between graph theory measures 
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and the Node Ictogenicity (which is the reduction in ictogenicity obtained by removing a single node). 

Our results add further evidence that targeting hubs, which would be sets of nodes with high average 

degree and betweenness centrality, is likely to be a good strategy for epilepsy surgery (Van Diessen et 

al., 2013, Zubler et al., 2015, Stam 2016, Lopes et al., 2017).  

However, we demonstrated that although sets of nodes that induce maximum reduction in average 

degree or centrality typically have high 𝑆𝐼, they are not necessarily sets with the highest SI. We therefore 

developed a global optimisation framework that can be deployed in general to find the optimal resection, 

given a network structure. Epilepsy surgery relies on the identification of brain regions that are 

responsible for the emergence of epileptiform activity, but wherever possible mitigating effects on 

normal brain function. We therefore studied two objectives: the 𝑆𝐼 and the size of the resection, using 

a multi-objective genetic algorithm. Genetic algorithms are optimisation methods based upon the 

process of evolution and natural selection. They have been widely applied in neuroscience (Whitley et 

al., 1990, Nevado-Holgado et al., 2012, Avramidis and Akman 2017, Wang et al., 2018) and it has been 

shown that they are a valuable tool to solve combinatorial type computational problems (Hromkovic et 

al 2010, Luque et al., 2011). Here, we showed that in small networks our genetic algorithm was able to 

find minimal sets with highest ictogenicity. In larger networks, we compared the genetic algorithm with 

other heuristic approaches and demonstrated that the genetic algorithm was always at least as good or 

better than these heuristics at finding the sets with highest ictogenicity.  

Brain networks may be studied at different spatial and temporal scales using different data modalities 

(Bassett et al., 2017). In the context of epilepsy surgery, most studies have focused on large-scale brain 

networks inferred from iEEG (Khambhati et al., 2015, Bartolomei et al., 2017) and MRI (Proix et al., 

2017, Taylor et al., 2018). Network topology has been shown to evolve during seizures (Kramer et al., 

2010, Lehnertz et al., 2014), with structures changing from random to more regular in seizures and back 

to more random after seizure termination (Schindler et al., 2008). Furthermore, it has been shown that 

hubs may play a crucial role in the generation of seizures (Wilke et al., 2011, Varotto et al., 2012, Lopes 

et al., 2017). That is why here we studied both random and scale-free networks to build understanding 

about the epileptic brain. We found that the 𝑆𝐼 distribution varies in networks with different topologies 

and is more heterogeneous in directed scale-free networks compared to directed random networks. The 

framework we introduced is flexible and can be applied to smaller spatial scales, e.g. neuronal networks 

or smaller sized regions of interest in whole brain models (Stead et al., 2010, Smith et al., 2016). At the 

smaller scale, these methods could shed light on, for example, why hubs of granule cells in the dentate 

gyrus are responsible for the emergence of seizures after brain injury (Morgan et al., 2008). Use of these 

methods combined with experimental testing of perturbations, for example using optogenetics (Chow 

et al., 2013), could open up new avenues for targeted treatment for seizures (McGovern et al., 2016).    

 

We demonstrated the potential applicability of the genetic algorithm by applying it to functional brain 

networks derived from iEEG recordings from 20 patients who had undergone epilepsy surgery. We 

found that the model-derived optimal set had larger overlap with actual resections in the case of patients 

who were ultimately seizure free. This is in line with previous studies that have used computational 

models and heuristic approaches, based on properties of individual nodes, to test potential alternative 

resections (Goodfellow et al., 2016, Sinha et al., 2017, Lopes et al., 2017). Furthermore, our framework 

achieved a classification performance comparable to recent studies that used machine learning and 

quantitative EEG methods (Müller et al 2018). Depending on the way in which ictogenic networks are 

constructed, it is possible that in epilepsy surgery multiple nodes from the brain network are removed. 

We therefore here aimed to identify the indispensable brain region for seizure generation by considering 
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the ictogenicity of sets of nodes. A particular advantage of the genetic algorithm that we demonstrated 

is that it naturally suggests multiple optimal sets that suppress the epileptiform activity of the network, 

due to the random nature of the search. These are alternative sets that give rise to optimal 𝑆𝐼 (see Figs 

8a and b). Furthermore, there are natural ways to implement constraints, for example on nodes that 

should not be removed because they are essential for healthy brain function (Fig 8c).  

There are a number of caveats to the approaches we outlined. We validated the approach by measuring 

the overlap of the optimal set with actual resections, taking into account postoperative seizure freedom. 

Although the results of Fig 7 give confidence that the collection of nodes identified in the analysis were 

in fact ictogenic, it does not provide validation that the entire set itself is the optimal resection. In order 

to test this further, we propose to work with experimental systems, whereby alternative resections can 

be performed (Sheybani et al., 2018). We note that a large overlap between the model suggestion and 

the actual resected tissue was found in 2 cases in which outcome was Engel IV. I In addition, in one 

Engel class I patient the overlap was small, see Fig 7a.  Our approach assumes the existence of an 

ictogenic network and it has been shown that even focal epilepsies may involve in the seizure generation 

mechanism widespread brain regions (Spencer 2002, Richardson 2012, Bartolomei et al., 2017, Besson 

et al., 2017). However, the electrodes are implanted in a designated brain region and the functional 

network that is inferred from them might not reflect the ictogenic network. Therefore, the initial 

placement of iEEG electrodes may be key here, and recent work has aimed to use modelling to uncover 

cases for which an alternative implantation scheme may be required (Lopes et al., 2017). Future work 

should also aim to aid clinicians with regards to electrode implantation and to integrate different data 

modalities so that predictions may be more robust. We further note that although 𝑆𝐼 can be used to 

compare different resections, their actual values can be difficult to interpret. Linking 𝐵𝑁𝐼 and 𝑆𝐼 to the 

rate of occurrence of epileptiform discharges in humans and experimental models will be an important 

avenue for future work that can aid the refinement of model predictions. We also note that the genetic 

algorithm is computationally more expensive than the other heuristics (see Supplementary material, 

Text S3), however, it may be further optimized in the future by making use of parallelisation and GPUs 

(Avramidis et al., 2017), for example. 

In conclusion we presented a computational approach that quantifies the contribution of brain regions 

to seizure generation. Our approach enhances the understanding of how perturbations in brain networks 

may lead to seizure freedom. It allows multiple surgical strategies to be tested in silico in order to find 

the optimal set that reduces the network ictogenicity. In addition, the genetic algorithm that we deployed 

finds the optimal trade-off between the size of the resected tissue and the reduction in network 

ictogenicity. Our results show promise that the computational approaches introduced herein have the 

potential to be incorporated into surgery decision pipelines in practice. 
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