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Background

Influenza viruses are associated with a significant global public health burden. The segmented RNA
genome of influenza changes continually due to mutation, and the accumulation of these changes within
the antigenic recognition sites of haemagglutinin (HA) and neuraminidase (NA) in turn leads to annual
epidemics. Influenza A is also zoonotic, allowing for exchange of segments between human and non-
human viruses, resulting in new strains with pandemic potential. These processes necessitate a global
surveillance system for influenza monitoring. To this end, whole-genome sequencing (WGS) has begun
to emerge as a useful tool. However, due to the diversity and mutability of the influenza genome, and
noise in short-read data, bioinformatics processing can present challenges.

Results

Conventional mapping approaches can be insufficient when a sub-optimal reference strain is chosen. For
short-read datasets simulated from influenza H1N1 HA sequences, read recovery after single-reference
mapping was routinely as low as 90% for human-origin influenza sequences, and often lower than 10% for
those from avian hosts. To this end, we developed a de Bruijn Graph (DBG)-based classifier of influenza
WGS datasets: VAPOR. In real data benchmarking using 257 WGS read sets with corresponding de
novo assemblies, VAPOR provided classifications for all samples with a mean of >99.8% identity to
assembled contigs. This resulted in an increase in the number of mapped reads by 6.8% on average, up
to a maximum of 13.3%. Additionally, using simulations, we demonstrate that classification from reads
may be applied to detection of reassorted strains.

Conclusions

VAPOR has potential to simplify bioinformatics pipelines for surveillance, providing a novel method
for detection of influenza strains of human and non-human origin directly from reads, minimization
of potential data loss and bias associated with conventional mapping, and allowing visualization of
alignments that would otherwise require slow de novo assembly. Whilst with expertise and time these
pitfalls can largely be avoided, with pre-classification they are remedied in a single step. Furthermore,
our algorithm could be adapted in future to surveillance of other RNA viruses. VAPOR is available at
https://github.com/connor-lab/vapor.
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Introduction

Influenza viruses are enveloped, single-stranded, segmented negative-sense RNA viruses of the family
Orthomyxoviridae. Influenza A and B have 8 genome segments encoding major structural and non-
structural proteins, with major antigenic recognition sites within the two spike proteins haemagglutinin
(HA) and neuraminidase (NA). Influenza replication in the host cell occurs by means of a viral encoded
polymerase that lacks proof-reading capability, leading to frequent point mutations. Accumulation of
these point mutations within the antigenic recognition sites of HA and NA can result in host immune
evasion, thereby causing annual seasonal epidemics[1] [2]. Current estimates suggest that seasonal in-
fluenza A and B cause 4-5 million severe infections [3] in humans with approximately 291,000 to 645,000
[4] deaths per year globally.

Whilst influenza B remains largely a human pathogen, influenza type A is a zoonotic virus infecting a
wide range of avian and other non-human species. To date 18 haemagglutinin and 11 neuraminidase
types have been recognised, with a reservoir for the majority within birds[5]. These viruses have the
capability to reassort leading to the emergence of new strains [6]. Should these include new HA and
NA proteins, pandemic viruses can emerge that completely evade the host response leading to global
epidemics of often high morbidity and mortality in both non-human and human hosts.

Influenza viruses therefore represent pathogens of major importance. In response, global laboratory and
epidemiology networks have been established and managed by the World health Organisation (WHO)
to monitor this constantly evolving viral landscape. The aim of these networks is to provide an early
warning system for the emergence of seasonal viruses that respond less well to vaccination and to detect
viruses with pandemic potential.

Whole genome sequencing (WGS) has been used to study the influenza virus genome for over a decade,
and is emerging as an important tool in research and surveillance[7][8][9][10]. Protocols have been devel-
oped [11][12] that facilitate routine monitoring of isolates by public health organizations, as well as the
study of transmission events [10][13]. Two important data sharing resources exist to this end; the NCBI
Influenza Virus Resource (NIVR) [14], and the Global Initiative on Sharing All Influenza Data (GISAID)
[15], wherein over a hundred thousand influenza genome segment sequences can be found at the time
of writing, from isolates sequenced across the globe. Whilst methodologies exist involving passage of
isolates, sequencing can be performed directly from clinical swabs with single-reaction genomic reverse
transcription polymerase chain reaction (RT-PCR) [16][12]. Furthermore, bioinformatics pipelines have
begun to be developed for efficient processing of this data [17][18].

Despite the increasing application of Next-Generation Sequencing (NGS) to influenza, the pitfalls as-
sociated with current mapping approaches have not been explored in depth. Influenza virus de novo
assembly also poses additional challenges due to biological population complexity and additional error
resulting from RT-PCR[19][20]. Firstly, we aim to provide evidence that current mapping approaches
can, due to diversity of influenza genome sequences, routinely result in a large number of unmapped
reads. In turn, this can potentially result in data loss and bias in sequences that are subsequently
recovered, analyzed, and submitted to public databases. This has been previously noted in study of
human immunodeficiency virus (HIV) [21]. Whilst alternatives, such as read classification by mapping
to a large database of influenza sequences [22] and subsequent de novo assembly can help to resolve
this issue, such pipelines are often complex, slow, and require expertise that is not necessarily available
in routine surveillance. Secondly, even if bioinformatics pipelines are chosen judiciously, sequences of
zoonotic origin may fail to be identified, resulting in a dataset that appears to be low coverage, missing
segments, or missing potential future pandemic reassortments. Furthermore, even with recent assembly
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programs, misassembly can occur [21].

We aim to show that this problem can be resolved by classification of isolates from reads prior to
analysis by directly querying a De Bruijn graph (DBG) built directly from Illumina sequencing reads.
Mapping reads directly to a DBG has been previously argued to be less biased than that of mapping
to assembled contigs [23]. Directly querying DBGs instead of assembled sequences has been previously
addressed [23][24][25][26], although most previous work has focused on mapping reads to a DBG, and
not diverse RNA virus sequence data. To our knowledge these approaches have not been applied to
pathogen classification from reads. Instead of mapping reads to a DBG, we sought to further develop
a simple method for querying short influenza genome sequences against a short read DBG in order to
retrieve the most similar reference for mapping applications. In doing so, we leverage the large number
of publicly available influenza segment sequences. We compare our tool that implements this algorithm,
VAPOR, with both a slow BLAST-based [27] approach and fast kmer-based MASH [28], and show su-
perior or equivalent results in several use cases with reasonable runtimes. We show through simulation,
that given a set of influenza reads, possibly contaminated with human or bacterial sequences, a highly
similar strain in the NIVR database (>20,000 strains) can be selected, achieving reasonably fast, and
often near-strain-level, classification.

Methodology

WGS Datasets

Total RNA was extracted from patient samples using the NucliSens easyMAG instrument according to
the manufacturer’s instructions. Following RNA extraction, a one-step RT-PCR (Quanta biosciences
qScript XLT kit, following manufacturer’s instructions) was then undertaken to generate DNA for se-
quencing using the primers previously described for influenza A [12] and influenza B [11]. Sequencing was
performed using Illumina sequencing instruments. Libraries were prepared using NexteraXT, and sam-
ples were then multiplexed for sequencing. Samples were run on a MiSeq (2x250bp V2 kit 44 samples)
and NextSeq (2x150bp Medium Output kit 213 samples). In total, 257 samples were utilized. Short
read data can be found at https://s3.climb.ac.uk/vapor-benchmark-data/vapor_benchmarking_

realdata_reads_filtered_18_03_18.tar. For publicly available data, any reads that were classified
as human by Kraken2 [29], or those that mapped to the hg38 human genome with minimap2[30], were
removed.

These WGS datasets were then processed by extraction of influenza reads by mapping with minimap2
[30] to 8 curated influenza segment reference fasta files (19594 sequences in total), one at a time, produced
by from all influenza segment sequences downloaded from the NIVR (https://www.ncbi.nlm.nih.gov/
genomes/FLU/) and clustered to 99.5% identity with cd-hit-est [31]. Extracted reads were assembled
with IVA [19]. For all 257 datasets used, a near-full length (>90%) contig could be assembled for at
least one major segment protein. Samples for which a contig could not be assembled were not used. In
total, 1495 segment contigs were included.

Mapping Assessment

Four mapping programs were assessed in this analysis: Minimap2 [30], BWA-MEM [32], NGM [33],
and Hisat2 [34]. Default settings were used for all tools. Each experiment can be reproduced using
the code and instructions found at https://github.com/connor-lab/vapor_mapping_benchmarking.
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Four mapping simulations were performed in total.

For assessment of the sufficiency of single reference strains for mapping diverse samples, two simulations
were performed. For assessment of robustness to species origin, read sets were simulated with Artificial-
FastqGenerator (AFG)[35] from 552 avian, 16,679 human, and 4054 swine H1N1 HA coding sequences
from the NIVR [14]. An additional 0.05% in silico substitution was introduced into simulated reads
to account for RT-PCR technical errors and biological intrahost variation. This rate was chosen to be
in accordance with experimental observations made by Orton et al. (2015) [20], although it may be
conservative. Reads were then mapped to the A/California/07/2009 (H1N1) HA reference sequence.
For assessment of robustness to divergence, technical and biological noise, reads were simulated from
A/Perth/16/09 (H3N2) HA, with additional in silico mutation with per-base rates between 2% and
16%, which was performed uniformly across the chosen reference sequence; reads were simulated as
above, then mapped back to A/Perth/16/09 (H3N2). This was performed 1000 times for each mutation
rate. A/California/07/2009 (H1N1) and A/Perth/16/2009 (H3N2) were used as references since they are
common clade representatives, as well as vaccine recommendations. Samtools [36] was used to retrieve
successfully mapped reads, which were then counted.

For comparison of mapping with and without VAPOR classification, and potential zoonotic virus de-
tection, 33,133 unique full-length influenza A HA coding sequences of any lineage or species were down-
loaded from the NIVR, and 5000 pairs were chosen randomly; the first of the pair was used for read
simulation as above, and the second as a mapping reference. In the second run with VAPOR classifica-
tion, a single sequence was randomly chosen as before, but the reference was chosen by VAPOR version
1.0.1. As before, successfully mapped reads were extracted with samtools, then counted.

To assess the potential benefit of classification with VAPOR on real data, 206 of 257 read pairs were
subjected to mapping with Minimap2 with default settings for short reads (-x sr), both with and without
VAPOR classification. 51 of 257 samples with less than 1000 HA reads were excluded to avoid very low
coverage samples skewing calculation of mean percentage gain. In the first case, reads were mapped
to a set of 4 HA references from different subtypes: A/Perth/16/2009 (H3N2), A/California/07/2009
(H1N1), B/Florida/4/2006 (Yamagata), B/Brisbane/60/2008 (Victoria). In the second case, VAPOR
was used to choose a single reference from 53,758 influenza A and B HA references. The number of
reads mapping and the number passing VAPOR pre-filtering was recorded in each case.

Algorithm Overview

Figure 1 gives a simplified overview of the seed-and-extend algorithm used by VAPOR. As input, VAPOR
takes a fasta file of full-length reference segment sequences, and a fastq (or fastq.gz) file of influenza
WGS reads. Firstly, VAPOR builds a set of kmers R from the reference sequences. Next, for i ∈ I,
where I is the number of reads, the ith read is decomposed into a set of non-overlapping words Ai, and if
|Ai ∩R| \ |Ai| ≤ t, for some specified parameter t, the read is discarded. This is repeated for the reverse
complement; if both are kept, the highest score decides orientation. Next, a weighted DBG (wDBG),
W = (N,E,W ), where N,E,W are sets of nodes, edges, and weights, is built from the surviving reads;
explicitly, edges are represented as overlapping kmers, and weights are kmer coverage in the remaining
reads. Let j ∈ J be the index of the jth kmer. Any kmer ej ∈ E with corresponding weight wj ∈ W
less than a coverage parameter c is discarded. Next, querying is performed. Let m ∈ M be the index
of the mth reference sequence. Each reference sequence, sm, with length Lm, is decomposed into a
sequence of kmers. Querying proceeds in four phases, where the query is walked along the wDBG: kmer
seeding, trimming, bridging, and scoring. Firstly, an array am is created from exact kmer matches,
where amn is the weight of the nth kmer of the mth reference, and any kmers not in E are set to zero.
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In trimming, any gaps (sequence of zeros) in this array, representing kmers not present in the wDBG,
is then expanded (seed trimming) to suboptimal branch points in the graph within ρ positions of the
gap, in order to heuristically prevent suboptimal seeds to low coverage regions of the wDBG, possibly
generated by error. Let k ∈ K be the index of the kth gap in am. For any gap gk of length l, a
bridge bk is formed by walking l locally optimal (where there is a branch, the edge with the highest
weight) edges in the wDBG from the last matching base. Each bridge, bk, a string, is then compared to
the kth gap string, the original substring in the reference sequence corresponding to the gap. For any
matching base between the gap string and the bridge, the corresponding weight of the kmer with this
base as its first position is inserted into am at the corresponding position. Finally, since the scores in
am correspond to kmer weights, per-base scores are re-calculated. The score of any base (including the
final k − 1 that do not have corresponding kmers) is given the highest score of all kmers that contain
it in the sequence, excluding mismatching bridge positions. This is calculated using a deque. Finally,
the total score is given by Sm = qm ·

∑Lm

n=0 amn where qm is the proportion of bases of sm found in
the graph. For speed considerations, only a subset of seed arrays are extended: those with a fraction
of nonzero elements greater than a user-defined parameter --min kmer cov (default: 0.1), and in a
top user-defined percentile --top seed frac (default: 0.2). VAPOR is implemented in Python3, with
source code available at https://github.com/connor-lab/vapor.

Classification Benchmarking

VAPOR was compared to MASH [28] and BLAST [27] read classification by simulation. BLAST consen-
sus classification was performed by BLASTing each read, taking the best scoring references by e-value
then bit score, summing the number of times each result occurs in all reads, and returning the most
frequent. Reads were simulated as follows: a reference, so, was chosen from 46,724 unique full-length
influenza A HA sequences from the NIVR, and mutated uniformly with a given probability (0.01, 0.02,
0.03) to generate a mutated sequence sm; reads were simulated with AFG as before, with a higher uniform
error rate of 1%, in order to provide a challenging classification task representative of difficult datasets.
To provide an additional challenge, we simulated an intra-host population with 4 minor sequences, mixed
in the ratio of 100:5:1:1:1, with each minor sequence additionally mutated by 1% relative to the major
sequence. This process was performed 500 times for each category. Performance was assessed as follows:
The Levenshtein distance of the mutated sequence sm was taken with respect to the original sequence
so as a baseline, denoted by L(sm, so); the reads were classified by each tool with all 32,804 references
as a database, and the best hit sc returned by each were compared to the mutated sequence to obtain
L(sm, sc). Global alignment was performed with the pairwise2 module of Biopython[37] (with cost pa-
rameters 0, -1, -1, -1). We defined the additional Levenshtein distance, LA = L(sm, sc) − L(sm, so).
This distance was chosen because, for mutated sequences, it captures the additional error in classifica-
tion beyond that caused by uniform mutation to the original reference. We note that L(so, sm) may
occasionally be sub-optimal, that is there may exist s′o such that L(s′o, sm) < L(so, sm) where in silico
mutations introduced resulted in a sequence more similar to some other sequence in the database than
the original.

For real datasets, 257 raw read sets that produced full-length contigs for at least one segment were
chosen from the sequencing runs described above. The assembled contigs were annotated with BLAST
(sorting by e-value, bit-score, and length), and raw reads classified by VAPOR. The percentage identity
of VAPOR classifications to each contig was recorded.
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Detection of Reassortments and Zoonotic Strains

For assessment of reassortment classification, two simulations were performed. Firstly, 9659 avian,
18,308 human, and 2893 swine complete influenza genome sets were downloaded from the NIVR. 250
human genome sets were randomly selected. Another 250 were randomly selected with a single segment
swapped with a randomly chosen avian or swine segment. For each, 1000 reads from each segment
were simulated uniformly with an error rate of 0.5%. Each set of reads was classified with VAPOR.
For the reference strains chosen by VAPOR for each segment, respective HA sequences were compared
by global alignment, and percentage identity (PID) taken. If the maximum pairwise distance between
chosen strain HA sequences exceeded a given threshold v, a classification of true was returned. Receiver
operating characteristic (ROC) curves were generated by varying the parameter v. For assessment of
intra-subtype reassortment classification, the same experiment was performed with randomly chosen
H3N2 genomes.

Computational Resources

In all cases, experiments were performed natively on a 96 core, 1.4 TB memory CentOS version 7.4.1708
virtual machine hosted by CLIMB [38], with GNU parallel [39] where required.

Results

Benchmarking Single-Reference Mapping

A range of mapping programs (Minimap2, BWA-MEM, Hisat2, and NGM) were compared to assess
possible data loss when single references are chosen for mapping of short reads from influenza virus
WGS datasets. For the first experiment, simulated reads from 16,679 human, 552 avian, and 4054 swine
H1N1 HA sequences retrieved from the NIVR were mapped to the reference strain A/California/07/2009
(H1N1). Reads were simulated with an additional 0.05% error on top of simulated sequencing error to
account for the combined effect of intra-host population variation and RT-PCR error. This error rate
was found to be conservative when compared to the raw error rate in our datasets, as shown by Supple-
mentary Figure 2, which was frequently higher than 2%. The proportion of successfully mapped reads
for each tool and host species is given in Figure 2. In this case, using a single reference strain with
any of the programs resulted in unmapped reads. NGM resulted in the lowest average percentage of
unmapped reads. When utilizing a database of all H1N1 sequences from human hosts, Minimap2, NGM,
BWA-MEM, and Hisat2 had mean mapping percentages of 87.2, 92.2, 89.1, and 84.9% respectively; as
such, even for these influenza sequences, data loss was not uncommon, possibly due to samples in the
database representing human infection from zoonotic strains. However, for avian and swine samples,
read recovery was poor. For NGM, only 34.1% of avian reads mapped successfully on average. Swine
sequences were mapped with intermediate success. This provides evidence that, should zoonotic strains
be sequenced in routine surveillance, they may fail to map entirely, and go undetected. We note that
this analysis is not an evaluation of overall mapping performance, since such an analysis must include
mapping scores, but evidence that regardless of software, data loss may potentially occur.

Secondly, in order to assess how read recovery varies with sequence divergence, reads were simulated
by taking the coding sequence of A/Perth/16/09 HA and subjecting it to in silico uniform mutation
at specified rate, with additional read error of 0.05% as before. These results, shown in Figure 3,
demonstrate that, for all mapping programs, at approximately 10% mutation, read recovery begins to
regularly diminish, which is insufficient for robust mapping of influenza strains from different species.
Furthermore, for several of the programs tested, mapping quality was suboptimal beyond 1-3% mutation.
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Classification Performance Simulation

In order to assess the performance of classification from simulated reads, our tool, VAPOR, was compared
to MASH and consensus BLAST classification. Reads were simulated from randomly selected NIVR
H1N1 HA sequences mutated with a given uniform per-base probability, with additional read error of
1% to provide challenging datasets. A fourth category included simple simulated intra-host populations
(denoted as 3%/Q). Figure 4 shows the additional Levenshtein distance, LA = L(sm, sc)−L(sm, so), for
each tool, where so, sm, and sc are the original, mutated, and retrieved database sequences respectively.
Mean coverage for simulated reads was 77.76 for single-sequence simulations, and 96.03 for simulated
intra-host populations. The average additional distance of retrieved sequences for MASH were 4.69,
5.24, 6.83, and 7.28, showing some sensitivity to additional simulated variant noise; for all cases mean
additional distance for BLAST and VAPOR were below 0.74 and 0.88 respectively. For MASH, the 75%,
95%, and 99% percentiles for retrievals for the 3% threshold were 11.00, 24.00, and 37.04. However, for
BLAST and VAPOR, these percentiles were under 12 and 14 respectively for all cases. These results
show that references chosen by BLAST and VAPOR were often near-optimal or optimal, despite a
large amount of noise, and that the performance difference between these approaches was very small.
These results show that the algorithm used by VAPOR facilitates accurate classification of influenza
strains directly from reads, comparable in accuracy but faster than BLAST for WGS read sets, which
is generally not computationally tractable for datasets with millions of reads.

Real Data Classification Performance

Unlike BLAST and MASH, VAPOR can be applied directly on reads with no pre-processing. As such,
in order to validate the performance of VAPOR directly on real datasets, we took raw reads from 257
samples corresponding to 1495 segment contigs previously processed and assembled with IVA, with a
single full length contig each previously annotated by BLAST. In each case, corresponding reads were
classified by VAPOR. The chosen reference was compared by global alignment to the assembled full
length contigs. Figure 5 gives a scatter plot showing the PID of references retrieved by VAPOR to the
assembled contig versus the PID of references selected by BLAST classifications of contigs. Comparison
to BLAST classification of contigs was used to provide a baseline near-optimal classification. The mean
percentage identity between contig and VAPOR classification was 99.82%. In the case of NS1, VAPOR
outperformed BLAST annotation of assembled contigs, with a mean of 99.48 versus 98.74. On closer
inspection, this was a result of the method used to sort BLAST results. These results show that in most
cases tested, VAPOR was able to accurately identify a sample from reads with comparable performance
to BLAST annotation of assembled contigs. We note that, for some contigs, neither BLAST nor VAPOR
could achieve classifications with a PID greater than 97%. Manual examination of these samples showed
large deletions, with at least one a likely misassembly (deletion including start codon, inclusion of 5’
UTR).

Mapping with Pre-Classification

In order to assess the utility of pre-classification for mapping, 25,533 full-length HA coding sequences
from human, avian, and swine hosts were downloaded from the NIVR, and pairs were chosen randomly;
one was used for read simulation, and the other as a mapping reference. In this case, mapping was
performed both with and without pre-classification with VAPOR. Figure 6 gives the percentage of reads
recovered against percentage identity for a pair, which shows that, for pairs chosen with less than 90%
percentage identity, read recovery was poor. For mapping without pre-classification, mean recovery
rates for Minimap2, NGM, BWA-MEM, and Hisat2 were 12.4%, 23.1%, 15.9%, 6.9%. However, with
pre-classification using VAPOR, the mean was over 99.72% for all tools. These results demonstrate
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that mapping pipelines that include pre-classification are robust to sequences of zoonotic origin. Raw
mapping performance was also assessed on real data by mapping datasets with Minimap2 with and
without pre-classification. Figure 7 shows the number of additional reads mapped when pre-classification
was performed. In all but one case, this resulted in a greater number of mapped reads, with a mean of
7816.03, corresponding to a mean percentage gain of 6.85%, including a case with over 68,000 additional
reads. The maximum percentage increase was 13.32%. An outlier did occur where the number of
mapped reads decreased. In this case, VAPOR identified several thousand more reads as influenza than
were mapped. On further inspection, for this sample, reads mapped to both A/Perth/16/09 (H3N2)
and A/California/07/09 (H1N1), indicating that the sample represented influenza from two different
subtypes. As such, this sample may represent a true biological coinfection or a contamination, and
could not be mapped to a single reference.

Detection of Reassorted Strains Directly from Reads

In order to assess the application of read pre-classification to reassortment detection directly from reads,
250 simulated reassortment events with zoonotic strains were mixed with 250 complete genome sets,
reads simulated, then classified by VAPOR. A simple reassortment classifier was used on the output of
VAPOR, which compared the minimum pairwise PID of the HA sequences of the 8 strains assigned by
VAPOR to each segment; if this PID was below a given parameter v, a reassortment was called. A ROC
curve is shown in Figure 8, illustrating the performance of this classification strategy. Simulated zoonotic
reassortments were detected with 97.2% true positive rate (TPR) and 0.08% false positive rate (FPR)
for a v of 91.35%. This is expected because, as previously shown, VAPOR generally was able to classify
strains to within a few base-pairs; randomly chosen zoonotic strains generally had PIDs of less than
90% to human strains, depending on origin. We note that, given the database used, some avian strains
may have been isolated from humans, and labelled as human; as such, perfect classification with this
dataset may be impossible. In order to provide a more difficult reassortment detection task, the same
experiment was performed between human H3N2 sequences. We found at a PID threshold of 96.3%,
a TPR of 76.8% could be achieved at a FPR of 10.8%. This result was expected given that sequences
from different H3N2 strains generally have a PID within a few percent. In total, these results provide
evidence that reassortments with zoonotic strains can be detected directly from reads with reasonable
accuracy, but that intra-lineage reassortments may be more difficult.

Discussion

Mapping Approaches and Improvement with VAPOR

We provide evidence that, in the best case, approaches for influenza virus analysis that use mapping to
a single reference may result in data loss due to biological variation and noise. As shown in Supplemen-
tary Figure 1 and 2, influenza strains continually accumulate substitutions relative to a single reference
(approximately 5 substitutions per year for H3N2), and reads may have a high error rate (>2%). Of-
ten, mapping to a single reference may be most unreliable for important samples, such as zoonotic
transmission events. In the worst cases, mapping may fail completely, when usable data is present,
requiring time and expertise to resolve with more complex methods. Our approach largely avoids these
pitfalls altogether, allowing much simpler pipelines and alignment visualization via standard genome
browsers, while also retaining the advantages of using a mapping-based approach for analysis. We chose
Minimap2, BWA-MEM, NGM, and Hisat2 in order to represent a range of mapping softwares. BWA
in particular has found use in general for influenza read mapping [9][17][22][40][41][42][43]. In other
cases, software such as Bowtie2[44] have been used [10][16] for mapping to single references. In some
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cases, references were chosen by mapping-based approaches for selection [22]. Of these softwares, only
NGM was developed with specific robustness to variation. Furthermore, the experiments reported were
not intended as complete evaluations of the programs, since such an evaluation must also include map-
ping quality. Our data, however, does demonstrate that pre-classification with raw reads provides a
broad strategy to improve robustness of pipelines and achieve faster results. For the chosen references,
A/Perth/16/2009 (H3N2) and California/07/2009 (H1N1) were chosen as vaccine strains recommended
by the WHO multiple times, and have also been used previously as references [9]. In other cases, differ-
ent single references have been used [10]. They represent single strains that are well known, and may be
used to represent each subtype. We do not believe that using different individual strains would affect
the trends demonstrated.

We note that alternative approaches exist, including mapping to a large sequence database, but this
does not allow for visualization of an alignment, and subsequent analysis such as characterization of
point mutations. We note that in principle, pre-classification with any software could work reasonably
well. MASH performed well in simulations. However; using an optimal reference is ideal, since for later
advanced applications, such as transmission events, or study of intra-host variation, the closest possible
reference may be necessary. Furthermore, VAPOR permits simultaneous filtering out of any non-human
or bacterial reads with optimal reference selection. Whilst BLAST performed well for individual read
classification, it is often too slow for general application. With regards to de novo assembly, in the
cases where not enough initial data exists to assemble fragments, mapping allows analysis of limited
fragments. Furthermore, assembly of virus genomes can be slow, often taking several days for a single
sample when contaminant reads - such as human DNA are present. Finally, misassembly can occur [21].

In all but one of our real data cases examined, pre-classification with VAPOR resulted in a greater
number of mapped reads than mapping to 4 reference strains from A/H3N2, A/H1N1, B/Victoria, and
B/Yamagata. However, for a single sample, which contained influenza sequences from two clades, the
number of mapped reads was reduced. Although VAPOR can report the number of influenza sequences
detected in total, future study should be utilized to develop methods of coinfection detection. In these
relatively rare cases, a single reference is not sufficient for mapping.

VAPOR Algorithm and Performance

We have presented a novel approach to virus classification from short reads data using DBGs. In future
study, as public sequence data accumulates, our algorithm may show promise in WGS approaches for
other RNA viruses with small genomes, such as measles virus, Hepatitis C Virus, Human Immunodefi-
ciency Virus (HIV), or Ebola virus. In general, our approach may have applications to short, variable
genomes with high redundancy databases. We have shown that in many cases, VAPOR outperforms
MASH, and has comparable performance to BLAST-based approaches. Furthermore, the algorithm used
by VAPOR is well suited to simultaneous pre-filtering of contaminating human or bacterial sequences
in samples, although we note that, in cases of coinfection, our algorithm may not be sufficient. Lastly,
improved speed may be achieved by future implementation in C++, although generally, for the datasets
examined, VAPOR can run within 5 minutes on a laptop with a 2.60GHz i7-6600U CPU.

Several default parameters were explored during development, but not exhaustively. A kmer size of 21
was utilized, as this was also able to perform read pre-filtering from contaminating sequences, without
addition of a separate parameter. Similarly, parameters controlling the minimum fraction of required
kmers for seed extension, as well as the top percentile of seeds chosen for extension could be adjusted,
possibly to improve speed. However, in the read sets examined, the default parameters were generally
sufficient to ensure matches were found, and did not appear to exclude potentially optimal matches.
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However, for novel strains that differ greatly from all strains previously observed, more sensitive param-
eterizations may be required.

Real-data Classification

As shown in Figure 6, we note that the BLAST contig classification strategy we used performed poorly
on NS1. This was due to sorting by e-value, bit-score, and length over percentage identity, combined
with the presence of some NS1 sequences in the database which were longer than the required coding
region. We opted to include this result to illustrate a potential pitfall that can occur with automated
BLAST classification. Although sorting by PID may alleviate this problem, it may also yield shorter,
incomplete alignments. For some samples, neither BLAST nor VAPOR could retrieve a sequence closer
than 96% to the assembled contig. For some samples, this was due to large deletions present in the
assembled contig. Although some of these deletions may be present in the true biological sequences,
for at least one, this was due to suspected misassembly. These assemblies were also included to draw
attention to potential problems that may be encountered during analysis. Furthermore, samples with
deletions of ambiguous origin could not be excluded.

Reassortment Classification

Over 97% of simulated zoonotic transmission events or reassortments could be identified at a cost of a
0.08% FPR using a simple alignment strategy whereby the PID of the HA sequences corresponding to
the strains assigned to each segment are compared. Whilst some false positives occurred, this strategy
provides a basis for pre-screening that can then be confirmed with slower methods as required. Intra-
subtype classification from a single host species, such as human H3N2 was more difficult to classify. In
this case, reported positives could be further validated by slower methods such as phylogenetic placement
of assembled contigs. We note that it is not known a priori if any of the NIVR genomes are reassortments
themselves. It is also possible that randomly choosing zoonotic strains to reassort is not biologically
accurate, since there may be a limit on the similarity of reassorted sequences. However, we applied
the same methodology to H3N2 sequences in order to demonstrate feasibility in detecting reassortment
between very similar strains, although this was less accurate.

Conclusions

Here we demonstrate that influenza sequence pre-classification with VAPOR allows alignment visualiza-
tion, minimizes data loss, reduces pipeline complexity, and allows for classification of zoonotic strains
and reassortments directly from reads. We believe that the simplicity of our approach has potential to
alleviate several difficulties associated with current bioinformatics pipelines, and could reduce workloads
in public health surveillance. Lastly, whilst we have tested VAPOR extensively for use with influenza,
we believe our approach may be more broadly applicable to other sequence data, particularly small RNA
and DNA viruses.

Abbreviations

HA: hemagglutinin; NA: neuraminidase; WGS: whole genome sequencing; WHO: world health organiza-
tion; RT-PCR: reverse-transcription polymerase chain reaction; NIVR: NCBI Influenza Virus Resource;
GISAID: Global initiative on sharing all influenza data; NGS: next-generation sequencing; PHW: Public
Health Wales; wDBG: weighted de Bruijn graph.
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Availability and Requirements

1. Project name: VAPOR

2. Project home page: https://github.com/connor-lab/vapor

3. Operating system: Any with a command line and python3

4. Other requirements: NumPy >= 1.51.1

5. Programming language: python 3.x

6. License: GNU GPL 3.0

7. Restrictions to non-academic use: None

Availability of Data and Materials

All scripts and pipelines used for simulations can be found https://github.com/connor-lab/ in the
following repositories: vapor benchmark mapping; vapor benchmark simulation; vapor benchmark

realdata; vapor benchmark simulation. Short read data can be found at https://s3.climb.ac.uk/
vapor-benchmark-data/vapor_benchmarking_realdata_reads_filtered_18_03_18.tar. Human se-
quences were depleted from this data as described in Methodology. All other data required for repro-
duction of results can be obtained according to the instructions found in the respective repositories.
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Figure 1: Simplified VAPOR algorithm overview. Firstly (A), contaminant reads (grey) are filtered
out according to the fraction of shared kmers with the reference sequences (green, blue), and a wDBG
is built from the surviving influenza reads (red). Sequences are queried against the wDBG in two main
phases (B): kmer seeding and bridge extension. Exact kmer matches are used as seeds (ATT in the
example). For a given gap of length l in the query kmer sequence (here l = 5), we attempt to traverse
the graph l locally optimal steps in the wDBG to produce a bridge sequence (yellow) and corresponding
scores. Comparison of the bridge and gap sequence is shown in B, with mismatching bases greyed out.
When scoring (C), bridge scores are used to fill in gaps (yellow), mismatched bases are not counted, and
the score of the kmer with the greatest weight that may cover a given base is used (red). Final arrays
are summed and multiplied by the fraction of bases with nonzero coverage.
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Figure 2: Density histograms showing proportion of mapped reads in samples, by software
and dataset. Reads were simulated for each dataset retrieved from the NIVR: 16,679 Human H1N1
HA (left column); 552 avian H1N1 HA (middle column); 4054 Swine H1N1 HA (right column). All
sequences were mapped to California/07/2009. For human sequences, most simulated datasets mapped
successfully, although even for this dataset, around 10% of samples had some proportion of unmapped
reads. However, for avian and swine sequences, mapping quality was poor, and often failed entirely.
Even for the best performing software, NGM, avian sequences in particular mapped poorly.
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Figure 3: Box plots showing percentage of simulated Human H3N2 HA reads mapping
to Perth/16/2009 for each software, with in silico uniform mutation at indicated per-
base probability. Reads were simulated from in silico uniformly mutated Perth/16/2009 HA with
the indicated per-base probability, approximately corresponding to 2 to 16% divergence. Reads were
additionally subjected to 0.05% substitution to account for technical noise, such as from RT-PCR, and
biological noise, such as from intrahost variation. Data loss was frequently observed with all tools beyond
10% mutation. Outliers are indicated as diamonds. N=1000 for each category.
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Figure 4: Box plots showing additional Levenshtein distance LA = L(sm, sc) − L(sm, so) of
input sequence to output reference chosen by VAPOR, MASH, and BLAST consensus
classification. Reads with 1% error rate were generated from randomly selected references mutated in
silico by 1%, 2%, 3% and 3% with additional biological intra-host variant noise simulation 3%/Q, and
repeated 500 times for each category. LA is defined as Levenshtein distance of a classified sequence sc
to original mutated sequence sm, minus the distance of the original mutated sequence sm to the original
non-mutated reference sequence so. Outliers are indicated as diamonds. Performance of VAPOR was
generally equivalent to that of BLAST. For both of these tools, classification most often resulted in
none, or a few extra incorrect bases. Sequences ranked highest by MASH were often sub-optimal.
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Figure 5: Scatterplots showing PIDs of VAPOR read classifications versus BLAST contig
classifications with respect to assembled contigs for all 8 major segment coding sequences.
Black lines indicate x = y. Points that fall below this line were classified better from reads with VAPOR.
Points above the line were classified better with BLAST from contigs. VAPOR is capable in general
of performing classification of reads to within 1% of the correct sequence. The mean PID of VAPOR
classifications for all segments was 99.82%. For datapoints under 98% PID, BLAST was generally also
not able of providing a better classification given the reference database.
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Figure 6: Read recovery versus percentage identity for randomly chosen influenza A HA
sequence pairs. Influenza A HA sequences were chosen randomly from the NIVR database in pairs,
one used as a reference, and one used to simulate reads for mapping. For percentage identities lower than
10%, mapping was unreliable. Furthermore, notably between strains of differing host origin, percentage
identity was observed in many cases to be as low as 60%. These trends were observed for all tools,
although performance dropped off more gradually for NGM.
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Figure 7: Additional Number of reads mapped by Minimap2 with VAPOR pre-classification
for 257 real WGS datasets. Pre-classification with VAPOR on average resulted in 7816.03 more
mapped reads. Several samples gained more than 50,000 reads by choosing a suitable reference. For
one sample, representing a possible coinfection, 5221 fewer reads mapped when using a single reference
chosen by VAPOR.
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Figure 8: Receiver operating characteristic (ROC) curve for classification of simulated reas-
sortment events. Although most zoonotic reassortments were detected at all parameter values (top),
intra-H3N2 lineage (bottom) reassortments were more difficult to detect. The curve was generated by
varying v, the minimum PID between VAPOR classifications of individual segment strains on the basis
of HA. Due to the noise present in VAPOR classifications, as well as the close sequence similarity of
H3N2 sequences, all parameter values with high TPR corresponded to a large FPR.
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