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One of the strategies of integrated vector management is to lure gravid mosquitoes for 

surveillance purposes or to entice them to lay eggs in water containing toxins that kill 

the offspring (attract-and-kill or trap-and-kill). Typically, the major challenge of this 

approach is the development of a lure that stimulates oviposition plus a toxin with no 

deterrent effect. Bacillus thuringiensis var. israelensis (Bti) satisfies the latter criterion, but 

lures for these autocidal gravid traps are sorely needed. We observed that gravid Aedes 

aegypti, Ae. albopictus, and Culex quinquefasciatus laid significantly more eggs in cups 

with extracts from 4th-stage larvae (4L) of the same or different species. No activity was 

found when 4L were extracted with hexane, diethyl ether, methanol, or butanol, but 

activity was observed with dimethyl sulfoxide extracts. Larval extracts contained both 

oviposition stimulant(s)/attractant(s) and deterrent(s), which partitioned in the water 

and hexane phases, respectively. Lyophilized larval extracts were active after a month, 

but activity was reduced by keeping the sample at 4oC. In the tested range of 0.1 to 1 

larvae-equivalent per milliliter, oviposition activity increased in a dose-dependent 

manner. In field experiments, Ae. aegpti laid significantly more eggs in traps loaded 

with larval extracts plus Bti than in control traps with water plus Bti.  
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Introduction 

Integrated vector management is a rational decision-making process to make vector 

control more efficient, cost effective, ecologically sound, and sustainable. It is ultimately 

aimed at preventing the transmission of vector-borne diseases1. Throughout the world, 

vector abatement groups (67 agencies in California alone) are constantly engaged in 

vector surveillance not only to monitor populations of native species and the circulation 

of pathogens, but also for quarantine of invasive mosquito species (eg, Aedes (Stegomyia) 

aegypti and Ae. albopictus) as well as to monitor circulation of new and previously reported 

pathogens (eg, dengue, chikungunya, Zika, and West Nile viruses). In addition to labor-

intensive strategies, such as sampling of immature stages and aspiration of adult 

mosquitoes from house-to-house, abatement district personnel rely heavily on capturing 

host- and oviposition-seeking mosquitoes with surveillance traps. Although carbon 

dioxide is the most effective lure, CO2-baited traps capture blood-seeking mosquitoes and 

thus are less effective for early detection of a pathogen, because they trap many 

mosquitoes that have never had a blood meal. By contrast, gravid traps are more effective 

for surveillance, because they target a critical epidemiological stage – the gravid females 

that imbibed in and digested at least one blood meal and, therefore, are more likely to be 

infected with a vector-borne pathogen than the general adult population is2. Almost all 

female mosquitoes trapped in gravid traps have had at least one blood meal, which 

increases the chances of detection of circulating viruses. Additionally, ovitraps can also 
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be used as trap-and-kill systems for direct control of mosquito populations. For a direct 

trap-and-kill control strategy, ovitraps may be transformed into autocidal gravid ovitraps 

by adding a biological agent (eg, Bacillus thuringiensis var. israelensis, Bti), an insecticide, 

or even an adhesive strip, in addition to a natural or synthetic lure (reviewed in 

reference2).  

It has been reported for the last 4 decades that larval-holding water and larval-rearing 

water are “attractive” to conspecific Aedes and Culex mosquitoes3-13, although it has not 

been unambiguously determined whether these lures are derived from immature stages 

of mosquitoes, from bacteria they host, or even from bacteria in the rearing medium. 

From an evolutionary perspective, the cost-benefit of producing such a signal is 

intriguing, but from epidemiological and practical viewpoints, it is a weak link worth 

exploring as a target for vector control. Here, we show that gravid females Ae. aegypti, Ae. 

albopictus, or Culex quinquefasciatus mosquitoes lay significantly more eggs in oviposition 

cups loaded with aqueous extracts from conspecific or allospecific 4th-stage larvae or 

pupae (but not with extracts from eggs) than in clean water cups. Liquid-liquid extraction 

of the active larval extracts showed that they contain both oviposition stimulant(s) and 

deterrent(s) in the aqueous and organic phases, respectively. Field studies in Recife, 

Brazil showed that Ae. aegypti laid significantly more eggs in traps baited with larval 

extract plus Bti than in traps baited with Bti-containing water, thus demonstrating that 

the larval extracts are feasible for integrated vector management applications.  
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Results & Discussion 

Although there is a consensus in the literature that larval- and pupal-holding waters are 

active in eliciting oviposition in conspecific adult mosquitoes3-13, some apparently 

contradictory results may be derived from confounding factors, such as visual stimuli 

and overcrowding factors. When evaluating interspecific interactions, the overcrowding 

factors14-16 deserve particular attention. To circumvent these problems, we measured 

oviposition behavior using 150-ml of water per cup and with standard concentrations of 

direct extracts from larvae and pupae. Inspired by preliminary and promising 

experiments with Ae. albopictus10, we tested extracts at 1 larva-equivalent or 1 pupa-

equivalent per 3 ml of water, or 0.33 equivalent per ml. First, we obtained aqueous 

extracts from L4 larvae of Ae. aegypti and tested the fresh extracts against gravid females 

of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus. Both Ae. aegypti (Fig. 1A) and Ae. 

albopictus (Fig. 1B) gravid females showed a highly significant preference for cups loaded 

with Ae. aegypti larvae than for control cups (water only), with Cx. quinquefasciatus 

showing a moderate preference (Fig. 1C). Likewise, gravid females of the 3 species laid 

significantly more eggs in cups containing aqueous extract from Ae. aegypti pupae than 

in water cups (Fig. 1D-E). By contrast, none of the 3 species showed oviposition 

preference for aqueous extracts from Ae. aegypti eggs (Fig. S1).  Our findings differ from 

what has been reported, ie, that responses of gravid Ae. aegypti females to conspecific 
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larval rearing water did not differ significantly from water controls3,12. This discrepancy 

may be due to the difference in extracts (larval rearing water vs direct extract) or loss of 

activity of larval rearing water over a short period of time. We tested the longevity of our 

extracts later, but first asked whether the oviposition attractant/stimulant could also be 

extracted from Ae. albopictus. Again, gravid females of the tested species laid significantly 

more eggs in cups loaded with Ae. albopictus larval extracts than in control cups (Figs. 2A-

C). Interestingly, the pupal extracts from Ae. albipictus were active against conspecific and 

Cx. quinquefasciatus adult females (Fig. 2D, F), but not against Ae. aegypti (Fig. 2E). Ae. 

albopictus showed a preference for conspecific egg extracts over control water cups (Fig. 

S2), but Ae. aegypti and Cx. quinquefasciatus did not. These findings are somewhat 

consistent with earlier preliminary experiments showing that extracts from Ae. albopictus 

larvae and pupae (but not eggs) were active to conspecific gravid females10. We next 

tested extracts from Cx. quinquefasciatus L4 larvae and pupae. Again, gravid females of 

the 3 mosquito species laid significantly more eggs in cups loaded with larval extract than 

in control cups (Fig. 3A-C) as well as in cups loaded with extracts from Cx. 

quinquefasciatus pupae than in plain water cups (Fig. 3D-F). Although it is tempting to 

assume that larval extracts from Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus share 

common active ingredient(s), this assumption must await further rigorous testing and 

identification of the active ingredient(s) of these extracts. 
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A very hydrophobic compound, n-heneicosane17, has been isolated from Ae. aegypti eggs 

and has been demonstrated to stimulate the antennae18 of both Ae. aegypti and Ae. 

albopictus and thus has been suggested to be an oviposition attractant17,18. Although it is 

highly unlikely that n-heneicosane would be an active ingredient in the larval and pupal 

extracts, we tested whether the active ingredients could be extracted with organic 

solvents. To avoid emulsification when the extracts were mixed with water in oviposition 

cups, hexane extracts were dried up and reconstituted in dimethyl sulfoxide (DMSO). 

Indeed, there was no significant difference in the number of eggs laid by Ae. aegypti 

gravid females in cups loaded with hexane extract vs control cups (Fig. 4A). By contrast, 

there was a significant preference for cups loaded with DMSO larval extracts compared 

with the control (water plus DMSO) (Fig. 4B). Similarly, Cx. quinquefasciatus showed a 

significant preference for DMSO but not for hexane extracts (Fig. 4C, D). We repeated 

these experiments and noticed a trend of controls getting more egg rafts than hexane 

extracts, thus suggesting a possible deterrent effect from hexane extracts. We surmised 

that a trace of these or other deterrents might be contained in our aqueous extracts. To 

test this assumption, we performed liquid-liquid extraction of the active material and 

tested separately the aqueous and organic phases. Of note, a small gel-like intermediate 

phase was discarded after the aqueous phase was collected and before the start of 

collecting the hexane phase.  There was a clear preference for gravid Cx. quinquefasciatus 

to lay eggs in the aqueous fraction over the control (Fig. 5A), whereas the organic phase 
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showed a deterrent effect (Fig. 5B). We, therefore, concluded that the aqueous extracts 

contain both oviposition stimulant(s)/attractant(s) and deterrent(s) with the former 

offsetting the latter. We then extracted Cx. quinquefasciatus L4 larvae with other organic 

solvents and found similar deterrent effects with diethyl ether, methanol, and butanol 

(Fig. S3). Furthermore, we surmised that the active ingredient is either water soluble 

organic compound(s) or protein(s)/peptide(s) that do not require folding for activity; 

otherwise activity in DMSO extracts would have been lost19. 

Next, we investigated whether lyophilization would affect activity. Larval extracts from 

the yellow fever mosquito were separated into 2 groups; half of the sample was extracted 

and then kept at 4oC for 3 days, and the other half of the sample was lyophilized and 3 

days later extracted just before bioassays. Responses elicited by the refrigerated and 

lyophilized samples were significantly higher than in their respective controls (Fig. 6A, 

B). Interestingly, however, when these experiments were performed with a longer storage 

time (30 days), the refrigerated sample lost activity, whereas activity was retained by the 

lyophilized sample (Fig. 6C, D). These experiments reinforce what has been observed 

with direct organic solvent extractions. Specifically, it is highly unlikely that the active 

ingredients are organic molecules of low or medium molecular weight, which would 

have evaporated during lyophilization. Moreover, these data show that the active 

ingredient(s) undergoes degradation at 4oC as would be expected for a peptide or protein 

kept in a crude extract, which must contain proteolytic enzymes from the mosquito gut. 
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It is very common in chemical ecology that some compounds act in a dose-dependent 

manner, being an attractant at lower doses and a deterrent at higher doses. Because we 

used a standard concentration of 0.33 L-eq/ml throughout these studies, we next tested 

lower and higher doses. The activity from 0.1-1 L-eq/ml increased in a dose-dependent 

manner (Fig. 7). It is therefore unlikely that the oviposition stimulant(s)/attractant(s) in 

our aqueous extracts are related to overcrowding factors. The active lures are like 

exudates from larvae (and pupae), but we cannot unambiguously determine whether 

they are derived from bacteria housed in mosquito gut or by the insect. From an 

evolutionary perspective, it would make more sense if they were produced by bacteria 

rather than by the host.  

Lastly, we explored the potential application of these larval extracts in attraction-and-kill 

strategies. Specifically, we questioned whether these extracts would be active in the field 

when combined with a toxic agent. The number of eggs in traps loaded with both larval 

extract and Bti were significantly higher than in the control traps with water plus Bti (Fig. 

8). In conclusion, L4 larval extracts have a potential application in integrated vector 

management. The logistics of this attract-and-kill strategy might be simplified when the 

active ingredients are identified and synthetic counterparts are used instead of 

cumbersome crude extracts. For the time being, however, extracts from lyophilized larvae 

may be used as lure.   
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Materials & Methods  

Mosquitoes. Cx. quinquefasciatus mosquitoes used in this study at UC Davis originated 

from Dr. Anthon Cornel’s stock laboratory colony, which in turn started from adult 

mosquitoes collected in Merced, CA, in the 1950s. The Davis colony has been kept for 

more than 7 years at 27±1oC, 75%±5 relative humidity, and under a photoperiod of 12:12 

h (light:dark). The Recife colony of Cx. quinquefasciatus originated from eggs collected 

in Peixinhos, a neighborhood of Olinda, metropolitan region of Recife, Pernambuco, 

Brazil in 2009. The Ae. aegypti and Ae. albopictus colonies started in 1996 and 1998, 

respectively, from eggs collected in neighborhoods in Recife. All 3 mosquito colonies 

from Brazil were kept in Recife at 26±2oC, 65-85% relative humidity, and under a 

photoperiod of 12:12 h (light:dark). Larvae were kept in plastic containers (30 X 15 cm; 

10 cm height) with a density of approximately 0.3 larvae/ml.  

 

Extraction procedures. Fourth-stage larvae were collected with a plastic mesh net and 

washed with distilled water 3-7 times. Fifty larvae were placed into a 2-ml 

microcentrifuge tube. After adding 0.5 ml of distilled water, the larvae were grinded, 

the pistil was washed twice with 0.5 ml of distilled water. The extract was then filtered 

through a Whatman #1 filter paper (catalogue number 1001-110) and washed with a 

total 150 ml of distilled water. Organic solvent extracts followed a slightly different 

procedure. Hexane, diethyl ether, methanol, and butanol extracts were obtained in 
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Pyrex glass homogenizers, the supernatant was filtered through Pasteur pipettes with a 

cotton plug, and this procedure was repeated twice. In the case of hexane and diethyl 

ether extracts, after separation the solvent was evaporated, and the extract reconstituted 

in DMSO. Methanol and butanol extracts were used directly without solvent exchange. 

DMSO extracts were centrifuged to remove debris. For experiments comparing 

lyophilization with refrigeration, a group of L4 larvae was separated into 2 equal parts; 

1 sample was directly extracted with water and the other was lyophilized before 

extraction. For partition with hexane, a freshly prepared aqueous extract was 

transferred to a separatory funnel and equal volume of hexane was added. After 

vigorous shaking, the 2 phases were separated. The concentration of the aqueous phase 

was adjusted, a small gel-like intermediate phase was discarded, the organic phase was 

dried up in a rotavapor, reconstituted in DMSO, and the concentration was adjusted.  

 

Oviposition bioassay.  This bioassay was performed in cages (50 x 40 x 32 cm) in which 

2 oviposition cups were placed in diagonal positions 30 cm away from each other20. 

These cups were loaded one with treatment and another with control. In both cases, the 

volume was adjusted to 150 ml with water. The 2 cups had the same amount of solvent. 

For example, the same amounts of methanol, butanol, and DMSO were added to both 

cups to deliver the larvae-equivalent to make a final dose of 0.33 L-eq/ml and to have 

the same amount of solvent in control cups.  Twelve cages were used per treatment per 
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day. For experiments with Aedes mosquitoes, we used a filter paper on the edge of the 

cups as an oviposition substrate. This was not necessary with Cx. quinquefasciatus 

because they lay eggs on the water edge. Thirty to 50 gravid females were released per 

cage. Egg rafts from Cx. quinquefasciatus were collected daily, whereas eggs from Aedes 

mosquitoes were counted after 7 days. Data were analyzed with Prism 7 (GraphPad, La 

Jola, CA). They were arcsine transformed, and after passing the Shapiro-Wilk normality 

test, they were compared by using the 2-tailed, paired t test. For comparison of doses, 4 

treatments and 1 control were placed in each case. Thus, means of treatments were 

compared with the control by using the nonparametric Friedman test.      

 

Field experiments. These experiments were performed on the campus of the Federal 

University of Pernambuco. Ovitraps21 were loaded with 1 liter of larval extract (final 

dose, 0.33 L-eq/ml) plus 0.5 g of Bacillus thuringiensis serotype israelensis (VectorBac® 

WG, strain AM65-62, Lot: 257-352-PG), whereas the control traps were loaded with 1 

liter of water and 0.5 g of Bti. To each trap, 2 wood boards (5 x 15 cm; 5 mm thickness) 

were attached to the border of the water container so as to facilitate oviposition. These 

experiments were performed from October 2017 to February 2018. Traps were inspected 

and rotated every 2 weeks, with a total of 51 replicates. Data were analyzed by 

comparing the means by using the Wilcoxon matched-pairs signed rank test. 

Data Availability.  
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All raw data are included, see Supplemental Information.  
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Figure Captions 

Figure 1. Oviposition preference by Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus to 

aqueous extracts from Ae. aegypti larvae or pupae compared with water. Mean (±SEM) 

number of eggs laid by (A) Ae. aegypti and (B) Ae. albopictus, and egg rafts laid by (C) Cx. 

quinquefasciatus in cups loaded with Ae. aegypti 4th-stage larval extracts and control cups 

(water only). (D, E, F) Oviposition preference by the same species when given a choice 

of Ae. aegypti pupal extracts and water only. N = 10 for each treatment. For clarity, data 

are presented in percentage of oviposition preference, with mean number of eggs or egg 

rafts presented along with each bar. After arcsine transformation and passing the 

Shapiro-Wilk normality test, each dataset was compared using the 2-tailed, paired t test.  

 

Figure 2. Oviposition preference by Ae. albopictus, Ae. aegypti, and Cx. quinquefasciatus to 

aqueous extracts from Ae. albopictus larvae or pupae compared with water. Mean 

(±SEM) number of eggs laid by (A) Ae. albopictus and (B) Ae. aegypti, and egg rafts laid 

by (C) Cx. quinquefasciatus in cups loaded with Ae. albopictus 4th-stage larval extracts 

and control cups (water only). (D, E, F) Oviposition preference by the same 3 species in 

dual choices assays comparing Ae. albopictus pupal extracts and water only. N = 10 for 
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each treatment. For clarity, data are presented in percentage of oviposition preference, 

with mean number of eggs or egg rafts presented along with each bar. After arcsine 

transformation and passing the Shapiro-Wilk normality test, each dataset was 

compared by using the 2-tailed, paired t test.  

 

Figure 3. Oviposition preference by Cx. quinquefasciatus, Ae. aegypti, and Ae. albopictus to 

aqueous extracts from Cx. quinquefasciatus larvae or pupae compared with water. Mean 

(±SEM) number of egg rafts laid by (A) Cx. quinquefasciatus, and eggs laid by (B) Ae. 

aegypti and (C) Ae. albopictus in cups loaded with Cx. quinquefasciatus 4th-stage larval 

extracts and control cups (water only). (D, E, F) Oviposition preference by the same 3 

species in dual choices assays comparing Cx. quinquefasciatus pupal extracts and water 

only. N = 10 for each treatment. For clarity, data are presented in percentage of 

oviposition preference, with the mean number of eggs or egg rafts presented along with 

each bar. After arcsine transformation and passing the Shapiro-Wilk normality test, 

each dataset was compared by using the 2-tailed, paired t test.  

 

Figure 4. Oviposition preference by the yellow fever mosquito and the southern house 

mosquito to conspecific larval extracts with hexane or DMSO. Oviposition preference 

by Ae. aegypti comparing (A) hexane and (B) DMSO extracts from conspecific 4th-stage 

larvae vs water. Mean (±SEM) number of egg rafts laid by Cx. quinquefasciatus in cups 
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loaded with conspecific 4th-stage larval extracts obtained with (C) hexane or (D) DMSO 

and water cups.  

 

Figure 5. Evidence for oviposition stimulant(s) and deterrent(s) in extracts from 4th-

stage Cx. quinquefasciatus. Aqueous larval extract was partitioned with hexane, and 

subsequently the 2 phases were tested for oviposition preference, ie, (A) aqueous phase 

and (B) hexane phase. To avoid emulsion formation, hexane extract was dried, and the 

solvent replaced with DMSO. An equal amount of DMSO was added to the control cup.  

N = 4 for each treatment. After arcsine transformation and passing the Shapiro-Wilk 

normality test, each dataset was compared by using the 2-tailed, paired t test. 

 

Figure 6. Assessing stability of the larvae-derived oviposition stimulant(s). Ae. aegypti 

oviposition preference to conspecific larval extracts (A) kept at 4oC for 3 days and (B) 

freshly lyophilized, kept at room temperature and reconstituted 3 days later. Similar 

experiments performed with fresh extract (C) kept at 4oC for 30 days and (D) freshly 

lyophilized extract kept at room temperature for 30 days and reconstituted on the day 

of the tests. N = 12 for each dataset. Data were arcsine transformed and after passing the 

Shapiro-Wilk normality test, each group was compared by using 2-tailed, paired t tests.  
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Figure 7. Effect of the concentration of larval extracts on oviposition stimulation. Larval 

extracts from 4th-stage Ae. aegypti were tested in indoor assays comparing the 

“standard dilution” of 0.33 larvae-equivalent per ml (L-eq/ml) with lower and higher 

doses. N = 12. Means of the treatments were compared with the control by using the 

nonparametric Friedman test. 

 

Figure 8. Oviposition preference for larval extracts in the presence of Bacillus 

thuringiensis israelensis (Bti). Bti was added to traps loaded with 4th-stage larval extracts 

from Ae. aegypti as well as to the control water traps. Pairs of traps were deployed in the 

8 different locations in the field and inspected every 2 weeks. N = 51. Means were 

compared by using the Wilcoxon matched-pairs signed rank test.   
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Figure S1.  Oviposition preference by Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus 

to aqueous extracts from eggs of Ae. aegypti compared with water. Mean (±SEM) 

number of eggs laid by (A) Ae. aegypti and (B) Ae. albopictus, and egg rafts laid by (C) Cx. 

quinquefasciatus in cups loaded with extracts and control cups (water only). N = 10 for 

each treatment. For clarity, data are presented in percentage of oviposition preference, 

with mean number of eggs or egg rafts presented along with each bar. After arcsine 

transformation and passing the Shapiro-Wilk normality test, each dataset was 

compared by using the 2-tailed, paired t test.   
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Figure S2. Oviposition preference by Ae. albopictus, Ae. aegypti, and Cx. quinquefasciatus 

to aqueous extracts from Ae. albopictus eggs compared with water. Mean (±SEM) 

number of eggs laid by (A) Ae. albopictus and (B) Ae. aegypti, and egg rafts laid by (C) Cx. 

quinquefasciatus in cups loaded with Ae. albopictus egg extracts and control cups (water 

only). (D, E, F) Oviposition preference by the same 3 species in dual choices assays 

comparing Ae. albopictus pupal extracts and water only. N = 10 for each treatment. For 

clarity, data are presented in percentage of oviposition preference, with mean number 

of eggs or egg rafts presented along with each bar. After arcsine transformation and 

passing the Shapiro-Wilk normality test, each dataset was compared by using the 2-

tailed, paired t test.  
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Figure S3. Oviposition preference by Cx. quinquefasciatus in dual choice assays 

comparing water vs conspecific larval extracts with various solvents. Percentage of 

oviposition preference comparing control traps with those loaded with (A) diethyl ether 

(ether), (B) methanol, and (C) butanol extracts from 4th-stage Cx. quinquefasciatus larvae. 

N = 12 for each treatment. After arcsine transformation and passing the Shapiro-Wilk 

normality test, each dataset was compared by using the 2-tailed, paired t test. 
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