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ABSTRACT 22 

Global population increase coupled with rising urbanization underlies the predicted need for 23 

60% more food by 2050, but produced on the same amount of land as today. Improving 24 

photosynthetic efficiency is a largely untapped approach to addressing this problem. Here, we 25 

scale modeling processes from gene expression through photosynthetic metabolism to predict 26 

leaf physiology in evaluating acclimation of photosynthesis to rising [CO2]. Model integration 27 

with the yggdrasil interface enabled asynchronous message passing between models. The 28 

multiscale model of soybean photosynthesis calibrated to physiological measures at ambient 29 

[CO2] successfully predicted the acclimatory changes in the photosynthetic apparatus that 30 

were observed at 550 ppm [CO2] in the field. We hypothesized that genetic alteration is 31 
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necessary to achieve optimal photosynthetic efficiency under global change.  Flux control 32 

analysis in the metabolic system under elevated [CO2] identified enzymes requiring the 33 

greatest change to adapt optimally to the new conditions. This predicted that Rubisco was less 34 

limiting under elevated [CO2] and should be down-regulated allowing re-allocation of 35 

resource to enzymes controlling the rate of regeneration of ribulose-1:5 bisphosphate (RubP). 36 

By linking the GRN through protein concentration to the metabolic model it was possible to 37 

identify transcription factors (TF) that matched the up- and down-regulation of genes needed 38 

to improve photosynthesis. Most striking was TF GmGATA2, which down-regulated genes 39 

for Rubisco synthesis while up-regulating key genes controlling RubP regeneration and starch 40 

synthesis.  The changes predicted for this TF most closely matched the physiological ideotype 41 

that the modeling predicted as optimal for the future elevated [CO2] world. 42 

 43 

KEYWORDS: Gene network model, metabolic model, photosynthesis, global change, Soybean, 44 

transcription factors, multiscale modeling, model integration  45 
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INTRODUCTION 46 

As the world’s most important seed legume and most widely grown dicotyledonous crop, 47 

the future-proofing of photosynthesis in soybean (Glycine max (L.) Merr.) under rising 48 

atmospheric concentrations of CO2 ([CO2]) is of importance.  Down-regulation of light-saturated 49 

net leaf CO2 uptake (Asat) at elevated [CO2] has been reported for many C3 crops, yet the 50 

mechanism underlying this response is poorly understood. Under current [CO2], Asat in C3 crops 51 

is most commonly limited by the in vivo Rubsico activity (Vc,max) (Long et al., 2004).  However, 52 

as [CO2] continues to rise, it follows from the steady-state biochemical model of photosynthesis 53 

of (Farquhar et al., 1980) and its subsequent modifications (Von Caemmerer, 2000) that control 54 

will shift from Rubisco to RubP regeneration (Long et al., 2004), which is represented by the 55 

maximum in vivo rate of whole chain electron transport (Jmax).  While described by electron 56 

transport, most evidence now points to this being limited by the metabolic steps of carbon 57 

metabolism leading to RubP regeneration (Raines, 2003, Stitt and Sonnewald, 1995).  This shift 58 

from Rubisco- to RubP- limited photosynthesis permits a reduction in leaf Rubisco content 59 

without a loss in Asat (Woodrow, 1994, Long et al., 2004, Ainsworth and Long, 2005).  Because 60 

Rubisco accounts for the largest single share of leaf N, optimization of Rubisco content would 61 

maximize the efficiency of use of this commonly limiting resource (Drake et al., 1997, Long et 62 

al., 2004).   63 

When [CO2] is increased around a photosynthesizing leaf, Asat can increase for two 64 

reasons, first the KM of Rubisco for CO2 is close to the current atmospheric concentration, so 65 

elevated [CO2] increases the velocity of carboxylation, and secondly, CO2 competitively inhibits 66 

the oxygenation reaction that produces phospho-glycolate and in turn photorespiration. This 67 

latter effect is particularly important because it increases the efficiency of net CO2 uptake by 68 

diverting ATP and NADPH (generated by the light reactions) away from photorespiratory 69 

metabolism to photosynthetic assimilation, and so will increase Asat regardless of other limiting 70 

factors. Under rising [CO2] both factors will increase Asat when Vc,max is limiting, but only the 71 

second factor when Jmax is limiting.  Assuming the average specificity and KM for CO2 and O2 72 

for Rubisco from terrestrial plants, and a constant intercellular versus external [CO2], one can 73 

calculate the increase in Asat that would result from an increase in atmospheric [CO2].  Following 74 

the procedure of (Long et al., 2004) for a leaf temperature of 25 °C, the increase in atmospheric 75 

[CO2] from today’s 400 µmol mol-1 to 550 µmol mol-1 would increase Rubisco-limited and 76 
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RubP-limited photosynthesis by 31% and 9%, respectively.  550 µmol mol-1 is the concentration 77 

forecast for 2050 assuming current emissions trends continue (RCP8.5, (Pachauri et al., 2014)). 78 

At current atmospheric [CO2] soybean leaf photosynthesis is at the transition point between 79 

Vc,max- and Jmax-limitation (Bernacchi et al., 2005). Therefore, as [CO2] rises soybean 80 

photosynthesis would become RubP-limited.  If however, resource currently invested in Rubisco 81 

was re-allocated to increased Jmax then this transition point would move to a higher [CO2] and a 82 

31% rather than 9% increase in Asat could be obtained, without any increased total investment of 83 

protein in the photosynthetic apparatus. When grown under elevated [CO2] in open-air field 84 

conditions, is an increase in Jmax observed at the expense of Vc,max?   85 

In two consecutive years, (Bernacchi et al., 2005) analyzed photosynthesis in a modern 86 

highly productive soybean cultivar under open-air [CO2] elevation using Free-Air Concentration 87 

Enrichment (FACE) (Long et al., 2006).  Compared to control plants those grown in [CO2] 88 

elevated to 550 µmol mol-1 showed a shift in control of Asat from co-limitation of Vc,max and Jmax 89 

to limitation solely by RubP-limitation. There was a significant 5% decrease in the ratio of 90 

Vc,max:Jmax, showing  a decline in Rubisco activity relative to the capacity for RubP regeneration 91 

(Bernacchi et al., 2005).  However, while acclimation had occurred it was insufficient to 92 

maximize the potential increase in Asat, had the system responded to fully re-optimize investment 93 

of resources.  At 25 °C, re-optimizing the system to 550 ppm was calculated to require a 35% 94 

reduction of investment in Rubisco and re-allocation of that protein to the apparatus for 95 

regeneration of RubP (Drake et al., 1997, Long et al., 2004), while only a 5% change was 96 

observed.  The plant was apparently over-investing in Rubisco and under-investing in the 97 

apparatus determining regeneration of RubP.  How might genetic manipulation be used to 98 

achieve re-optimization and prepare soybean and other crops to sustainably maximize 99 

photosynthetic efficiency and in turn crop productivity under future conditions? 100 

Here we combine a metabolic model of C3 photosynthetic metabolism, including the C2 101 

photorespiratory pathway, mathematically representing all discrete steps of photosynthesis from 102 

light and CO2 absorption to starch and sucrose synthesis (Zhu et al., 2007, Zhu et al., 2013) with 103 

a gene network model to predict observed acclimatory changes. This is successfully tested 104 

against observed acclimatory changes of photosynthesis in soybean grown at elevated [CO2].  105 

Finally, via sensitivity analysis and dynamic gene regulatory network analysis, the combined 106 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2019. ; https://doi.org/10.1101/582981doi: bioRxiv preprint 

https://doi.org/10.1101/582981


4 

 

model is used to predict genetic changes, including expression levels of transcription factors, that 107 

could fully optimize leaf photosynthetic efficiency to future elevated [CO2] conditions. 108 

 109 

MULTISCALE MODEL DEVELOPMENT 110 

To predict what genes may transcriptionally regulate the soybean response to elevated 111 

[CO2], it was necessary to develop a mechanistically informed model in which the multi-scale 112 

response could be explored. We have previously developed complete mechanistic metabolic 113 

models of photosynthetic carbon metabolism that successfully predict dynamic responses of leaf 114 

chlorophyll fluorescence and fluxes of CO2 and O2 to changes in light, [CO2] and [O2]  (Zhu et 115 

al., 2007, Zhu et al., 2013). While each of these models provided new insights about 116 

photosynthesis, when combined with optimization routines to predict optimal investments for 117 

different environments, they are not equipped to predict transcriptomic and genetic changes that 118 

could achieve those optimal patterns of investment.  The generalization of whole plant 119 

metabolism and signaling pathways often results in simulations with low prediction accuracy 120 

upon model perturbation. Multiscale models that mimic the biological flow of information across 121 

scales have been shown to have higher prediction accuracy than models at individual scales, 122 

especially when simulating conditions different from the original training data (Chew et al., 123 

2014). To our knowledge, no current model of photosynthesis in soybean scales from genes to 124 

organs. Such a model could potentially simulate system-wide changes in photosynthesis in 125 

response to targeted genetic perturbations.  126 

To predict leaf-level responses of net CO2 uptake, a metabolic model (e-Photosynthesis) 127 

was combined with a leaf micrometeorological model that integrated boundary layer 128 

conductance, stomatal conductance, and leaf energy balance (Drewry et al., 2010, Nikolov et al., 129 

1995). Our prior e-Photosynthesis model (Zhu et al., 2013) simulates fluxes through some 70 130 

reactions involved in the light and dark reactions of C3 photosynthesis. The steady-state 131 

photosynthesis rate predicted by the e-Photosynthesis model replaced the leaf model prediction 132 

that was based on the Farquhar model of photosynthesis (Nikolov et al., 1995). Leaf temperature, 133 

light intensity and intercellular CO2 concentration predicted by the leaf model were used as 134 

inputs for the e-Photosynthesis model. The integrated leaf metabolic and micrometeorological 135 

model effectively simulates the observed response to net leaf CO2 uptake to [CO2] observed for 136 

soybean in the field (Bernacchi et al., 2005) (Figure 1, Supplemental figure 1). However, it lacks 137 
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any capacity to predict the observed decrease in Vc,max and increase in Jmax that resulted from 138 

growth in elevated [CO2]. This is because the model lacks any connection to the underlying 139 

changes in gene expression that may cause this altered photosynthetic phenotype.  140 

 The altered photosynthetic phenotype likely resulted from adjusted enzyme 141 

concentrations in soybean leaves grown under ambient and elevated CO2 concentrations. Such 142 

CO2-induced changes in protein concentrations was shown for total protein concentration in 143 

barley, rice, wheat, soybean, and potato (Taub et al., 2007) and for specific proteins via 144 

proteomic analysis in rice (Bokhari et al., 2007), wheat (Yousuf et al., 2017), and grape (Zhao et 145 

al., 2019). A decrease in the quantity of Rubisco is a pervading feature of plants grown in the 146 

field under elevated [CO2] (Ainsworth and Long, 2005). However, the e-Photosynthesis model 147 

only allows substrate (CO2) concentration to change, which results in altered reaction rates, but 148 

lacks capacity to predict acclimatory changes in enzyme concentrations. By including gene 149 

expression data from soybean plants grown under ambient and elevated [CO2] (Leakey et al., 150 

2009), it is possible to make predictions about changes in enzyme concentrations.  151 

Gene expression data cannot be used as direct input for the e-Photosynthesis model, 152 

which can only accept enzyme concentrations. Also, transcriptome data from microarray or 153 

RNA-sequencing technologies provide relative and not absolute quantification of mRNA 154 

transcripts. To overcome these challenges and inform the e-Photosynthesis model with gene 155 

expression data, a model was needed to computationally translate mRNA to protein 156 

concentration. An ordinary differential equation (ODE) was adapted from (Becskei and Serrano, 157 

2000), and given as: (�� �  � �

�� 

�

�

 �  � �  ��  – 	
 �  ��),      158 

  Eq. 1 159 

where, L and U are the estimated gene family-specific protein synthesis and degradation rates (Li 160 

et al., 2017), respectively, r is the mRNA level, p is the initial protein concentration, and d is the 161 

upper limit of protein translation. It is assumed that r and p are equal (Edfors et al., 2016), and p 162 

is based on starting protein concentration estimates from the e-Photosynthesis model. To 163 

simulate steady-state protein concentrations in elevated CO2, p was adjusted based on the 164 

proportion of change in mRNA level between ambient and elevated [CO2] for a given gene.  165 

The change in predicted, relative protein concentrations between ambient and elevated 166 

CO2 conditions (ProteinRatio) was used to adjust the enzyme concentration and activity of each 167 
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gene involved in the light and dark reactions of photosynthesis represented in the e-168 

Photosynthesis model, as follows:  169 

max _ max_ 0 [ . ]eleV V E ProteinRatio= ⋅  Eq 2 

 

 170 

 where, Vmax_ele is the maximum activity of each enzyme in elevated CO2, Vmax_0 is the original 171 

maximum activity of each enzyme in ambient CO2, and E is the estimated enzyme 172 

concentration. 173 

  Because the protein translation model and metabolic/leaf level models are implemented 174 

in different programing languages (Python and MATLAB) respectively, they cannot 175 

communicate with each other directly without significant alteration of the model code or through 176 

manual integration by running the model programs independently and using files to pass 177 

information between them. In order to integrate the models programmatically (Figure 2), we 178 

used the yggdrasil framework. yggdrasil is an open-source Python package developed by the 179 

Crops in silico research group for connecting models written in different programming languages 180 

through simple interfaces in the model’s language of implementation. Based on information on 181 

the target models and connections between the models provided in human-readable specification 182 

files, yggdrasil runs the designated models in parallel and coordinates asynchronous 183 

communication between the models as they run. Asynchronous message passing allows models 184 

to continue working after sending output to the next model in the network without waiting for 185 

the output to be received, thereby improving the performance of the overall model integration as 186 

models can complete calculations simultaneously in separate processes. yggdrasil currently 187 

supports connecting models written in Python, Matlab, C and C++ on Linux, Mac OS, and 188 

Windows operating systems. Additional information on the yggdrasil package can be found in 189 

(Lang, 2019) or in the documentation (https://cropsinsilico.github.io/yggdrasil/). 190 

 191 

METHODS 192 

Differential Expression Analysis of Genes Responding to CO2 193 

The soybean transcriptome differential responses to growth in ambient and elevated [CO2] was 194 

obtained previously using the Affymetrix Glycine max genechip (Leakey et al., 2009). These 195 

data were re-analyzed here to identify differentially expressed (DE) genes corresponding to leaf 196 
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tissue collected at the beginning of seed set when the canopy has attained full maturity. Probe 197 

sets were normalized using the GC Robust Multi-array Average (GCRMA) method. A one-way 198 

ANOVA was done in the R statistical software environment using the aov function of the stats 199 

package. The reanalysis identified 5005 DEGs on a statistical cutoff of P value <= 0.05 and 200 

Benjamini-Hochberg False Discover Rate (FDR) <= 0.3.  201 

Construction of CO2 responsive Gene Regulatory Network 202 

Co-expression using mutual rank 203 

Mutual rank analysis (Obayashi and Kinoshita, 2009) was used to obtain highly significant co-204 

expression relationships among differentially expressed genes (DEGs). In mutual rank analysis, 205 

the Pearson Correlation Coefficient (PCC) is calculated between the gene of interest and all other 206 

DEGs, then sorted based on their PCC ranks, in which the gene pair having the highest 207 

correlation value is given rank 1 (Obayashi and Kinoshita, 2009). Mutual Rank is calculated 208 

from PCC rank by taking the geometric mean between PCC ranks from gene A to gene B and 209 

from gene B to gene A, as these can be different. The ranks are scaled between 0 to 1, where MR 210 

of 1 indicates the most significant coexpression interaction. All interactions having an MR >= 211 

|0.8| and a PCC >= |0.6| were selected for the coexpression network. Interactions having a 212 

significant correlation were further filtered to retain only those that had predicted binding 213 

interactions between the TF and target gene as described below.  214 

Static Gene Regulatory Network construction and analysis   215 

To analyze gene regulatory networks, a DNA pattern search algorithm was performed 216 

(PlantPAN, http://plantpan2.itps.ncku.edu.tw/) (Medina-Rivera et al., 2015) to identify the 217 

presence of known Cis-regulatory elements (CREs) in the promoter region of genes of interest. 218 

Known CREs were obtained from the transcription factor databases Transfac (Matys et al., 219 

2006), JASPAR (Sandelin et al., 2004), CISBP (Weirauch et al., 2014), and PlantTFDB (Jin et 220 

al., 2013), and NewPLACE (Higo et al., 1999).  The promoter region considered in this study 221 

was the sequence 1 Kb upstream of the predicted or experimentally verified Transcription Start 222 

Site (TSS) for every gene obtained from PlantProm (Shahmuradov et al., 2003). Promoter 223 

regions of target genes were analyzed for an enrichment of CREs for a particular TF family. For 224 

this analysis, the average number of binding sites for a CRE in the putative 1 Kb up-stream 225 

promoter region of all the genes present in Soybean Wm82.a1.v1 was calculated. If a target gene 226 
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promoter has a greater than average number of TF family-specific binding sites present in its 227 

promoter, then the CRE of interest is considered over-represented.  228 

 229 

Dynamic Gene Regulatory Network Model Construction 230 

A dynamic Gene Regulatory Network (GRN) model was built using a linear regression 231 

algorithm to infer relationships between a dependent variable (in this case the expression of the 232 

putative target gene) and one or more independent variables (or predictors; in this case TFs). The 233 

resulting linear model was used to predict the response variable based on the states of the 234 

dependent variables. The regression algorithm was run in R using the LM function (Team, 235 

2013), which optimizes variables of the linear model using a least squares fit between the 236 

response and dependent variables on training data (Eq 1) (Bjorck, 1996).  237 

For example: 238 

where, g0, W1, W2 are least squares optimized parameters for the linear model. mRNA_TF1, 239 

mRNA_TF2, etc. are expression values of TFs predicted to regulated target genes of interest in 240 

the static GRN. Parameters were optimized using training data, which ultimately resulted in a 241 

weight (Wx) that corresponds to the level of influence that a TF exerts on a predicted target 242 

gene’s expression. A linear model was generated for every gene in the static CO2-responsive 243 

GRN, and used to simulate the expression of genes of interest in both ambient and elevated CO2 244 

environments. All linear model equations are listed in Supplemental Table 1. 245 

The training data was obtained from seven soybean Affymetrix microarray transcriptome 246 

datasets (GSE8432, GSE23129, GSE26198, GSE29740, GSE29741, GSE35427, GSE44685). 247 

While these datasets were derived from a variety of experimental conditions, they were chosen 248 

because samples were taken from similar tissue and developmental stage as those in the CO2-249 

responsive dataset used to build the static GRN (Leakey et al., 2009). Expression data from all 250 

training sets were commonly normalized by GCRMA and quality control analysis was 251 

performed; samples with a high variation in their median expression level within replicates were 252 

removed from the analysis. A total of 213 samples were used to train the linear regression model. 253 

The CO2-responsive dataset that is used to build the static GRN was used as a test dataset for the 254 

linear model, to predict expression of the target gene using the optimized weight associated with 255 

every TF. 256 

 ����_���	
� � 	0 � ��1 � �������� � ��2 � �������� ��           Eq 3 
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 257 

Protein translation model 258 

A protein translation model (PTM) adapted from (Becskei and Serrano, 2000) was used to 259 

predict steady-state protein concentrations based on relative mRNA transcript levels (See Eq. 1) 260 

The model parameter p (and thus r) is obtained from the initial protein concentration used in the 261 

e-Photosynthesis metabolic model under the control (ambient CO2 = 380 ppm) condition. To 262 

predict initial protein concentration in elevated CO2 conditions (550 ppm), p was adjusted using 263 

the relative fold change in mRNA transcript levels measured between ambient and elevated CO2 264 

conditions. As stated earlier, L and U are protein synthesis and degradation rates, respectively, 265 

and denotes the increase or decrease in protein abundance per hour (denoted as g/L/hour). 266 

Soybean gene-specific L and U rates were estimated based on the rates of their Arabidopsis 267 

orthologs taken from (Li et al., 2017). If ortholog information for a gene was not available, L and 268 

U were estimated by taking an average of L and U rates for all Arabidopsis genes involved in 269 

photosynthesis.  270 

The PTM model simulations resulted in steady-state protein concentration ratios between 271 

ambient and elevated [CO2] conditions for every gene. Optimized parameter ‘d’ was obtained in 272 

a gene specific manner such that, the steady-state protein concentration ratio between the two 273 

conditions (elevated/ambient) remains constant for that gene after a particular threshold ‘d’ (see 274 

Supplemental Table 2). This protein concentration ratio was then used as one of the inputs for the 275 

e-Photosynthesis model (described below) in order to account for changes in gene expression as 276 

a factor influencing the enzyme kinetics of proteins in the primary C metabolism machinery. The 277 

model assumes constant temperature and constant concentration of RNA polymerase (El Samad 278 

et al., 2005). 279 

Metabolic photosynthesis model 280 

The soybean photosynthesis metabolic flux (MF) model is based on the e-Photosynthesis model  281 

(Zhu et al., 2013) and implemented in MATLAB. The e-Photosynthesis model is a general C3 282 

photosynthesis model that includes each discrete process from light capture to carbohydrate 283 

synthesis, including photorespiratory C2 metabolism. In the model, the rate of change of the 284 

concentration of each metabolite is represented by an ordinary differential equation (ODE): 285 

 ��

��
� �� � �� 

                                         Eq 4 
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Where, [C] represents metabolite concentration; Vp is the total rate of reaction(s) that produces C, 286 

and Vu is the rate of consumption. Rate equations for each enzyme catalyzed reaction were 287 

developed based on standard Michaelis-Menten equations for enzyme kinetics, with kinetic 288 

parameters corresponding to a temperature of 25°C. Four enzymes, including Rubisco, did not 289 

satisfy the conditions needed to apply Michaelis-Menten kinetics, and equations for their 290 

catalysis were as in (Zhu et al., 2007). Initial protein concentration of enzymes in the MM 291 

kinetics equation were obtained from (Zhu et al., 2013) (Supplemental Table 3). Vc,max and Jmax 292 

of soybean grown under ambient and elevated [CO2] in the field had been determined previously 293 

(Bernacchi et al., 2005).  This was the same germplasm, site and treatments from which the 294 

transcriptional data, used in developing the GRN, was obtained.  Here the Vc,max and Jmax 295 

obtained in ambient [CO2] was used to calibrated the metabolic model, which on integration with 296 

the other models was then used to attempt to predict the observed changes in the Vc,max and Jmax 297 

observed with growth at elevated [CO2].  Calibration was achieve by adjustinge amounts of 298 

Rubisco to match the Vc,max described for soybean grown in ambient [CO2].  All other protein 299 

amounts in the metabolic model, were elevated maintaining the proportion used in (Zhu et al., 300 

2013), until a Jmax was achieved that matched that observed by (Bernacchi et al., 2005).  This 301 

required multiplying each by 1.2 over those used in (Zhu et al., 2013) (Supplemental table 3). 302 

The enzyme kinetic parameters of e-Photosynthesis are for 25°C.  Leaf temperatures in the 303 

simulations used here slightly exceeded this.  To deal with these slight, but variable, increases in 304 

temperature parameters were adjusted to the actual leaf temperature (Ti) using a Q10 function, as 305 

described previously (Woodrow and Berry, 1988). 306 

 
�� � ���. ��	

��
��

�	  Eq 5 

The predicted enzyme protein concentration changes as a percentage of that in ambient [CO2] 307 

were assumed in direct proportion to the changes of enzyme activities (Vmax) in the metabolic 308 

model. For example, if the predicted sedoheptulose-1:5 bisphosphatase (SBPase) protein 309 

concentration was predicted to increase by 3% under elevated [CO2], then SBPase activity 310 

(Vmax_Rubisco) was also increased by 3% in metabolic model. 311 
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 312 

Sensitivity analysis of each step in the metabolic model 313 

Metabolic control analysis defines the quantitative link between the flux through a pathway and 314 

the activity of an enzyme in terms of the flux control coefficient (Fell, 1998). The maximum 315 

activity of each enzyme (Vmaxi) was both increased and decreased by 1% individually in the 316 

model to calculate the new photosynthesis rate (A+ and A-) for the two CO2 concentrations (350 317 

ppm vs 550 ppm) to identify the enzymes that most influence the net photosynthetic rate. The 318 

flux control coefficient (CC) of each enzyme was calculated as: 319 

 
�� �

��

���� �

��� �

�
�
�� � �


0.02 � �
 

   

Eq 6 

Where A is the original net leaf CO2 uptake rate, before the simulated change in activity of 320 

enzyme i (õVmax i).  321 

 322 

Leaf level photosynthesis model 323 

At the leaf level, the metabolic model was integrated with leaf level models of stomatal 324 

physiology, and energy balance based on the method of (Nikolov et al., 1995). Here, stomatal 325 

conductance is a function of predicted net leaf CO2 uptake rate, humidity, and [CO2] after 326 

(Collatz et al., 1991).  Leaf energy balance takes account of intercepted short and long wave 327 

radiation, radiative energy loss from the leaf, convection and latent heat loss in transpiration.  328 

However, these models are inter-dependent. For example, CO2 uptake rate affects stomatal 329 

conductance, stomatal conductance affects leaf temperature and leaf temperature affects CO2 330 

uptake rate. Solving these circular connections is achieved iteratively.  Iteration continues until 331 

change to obtain a numerical solution of stomata conductance, leaf temperature, boundary-layer 332 

conductance and photosynthesis rate until changes in all four are <0.1% between iterations. This 333 

model is also implemented in MATLAB. Equations and parameters are listed in supplemental 334 

information (Supplemental table 4).  335 

 336 

RESULTS 337 
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A multiscale model of soybean can mimic photosynthetic acclimation observed in FACE 338 

experiments 339 

The integrated model predicted new steady-state enzyme concentrations for selected 340 

reactions belonging to the dark reactions and starch synthesis in the e-Photosynthesis model in 341 

response to growth of soybean leaves under elevated [CO2]. The ratio of predicted steady-state 342 

enzyme concentrations in elevated to ambient CO2 is used as one of the inputs in the e-343 

Photosynthesis model (Supplemental Table 5). Though the magnitude of the change is small, the 344 

predicted CO2 response is consistent with the altered photosynthetic phenotype, as shown by the 345 

improved fit to the measured response of Asat to leaf intercellular [CO2] and the values of Vc,max 346 

and Jmax calculated from this response (Bernacchi et al., 2005) (Figure 1). Including the gene 347 

expression data, the Vcmax of the predicted CO2 response curve decreases from 115 to 109 μmol 348 

m-2 s-1, and Jmax of the predicted curve increase from 149 to 153 μmol m-2 s-1. Simulations reveal 349 

no significant change in leaf temperature, transpiration and stomatal conductance 350 

(Supplementary Figure 1). Importantly, the fully integrated model was able to simulate the 351 

change in photosynthetic rate due to the acclimation response observed in soybean plants grown 352 

under elevated [CO2] (Figure 1). The predicted Asat in 550 ppm [CO2] increased by 17.7% 353 

compared to ambient. Predicted metabolite concentrations also changed dynamically with 354 

elevation of [CO2], for example RubP decreased, PGA, T3P and SBP increased, as would be 355 

expected from an increased flux into these pools with accelerated carboxylation and decreased 356 

oxygenation at Rubisco (Figure 3). 357 

 358 

in silico perturbations reveal potential mechanisms for the transcriptional regulation of 359 

photosynthetic acclimation  360 

Genes with a functional role in the same biological pathway are often co-expressed and 361 

sometimes co-regulated. The identification of common cis-regulatory elements in the promoters 362 

of tightly co-expressed genes is a good proxy for co-regulation (Allocco et al., 2004). The 363 

corresponding transcription factors that bind to these CREs are promising targets for the 364 

manipulation of whole pathway expression. The re-engineering of photosynthesis is needed to 365 

increase crop productivity in response to climate change (Zhu et al., 2010), such as overcoming 366 

the limitations caused by photosynthetic acclimation at elevated atmospheric [CO2]. With a fully 367 

integrated model of photosynthesis it was then possible to simulate the field-level photosynthetic 368 
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response to genetic perturbations under both ambient (380 ppm) and elevated (550 ppm) [CO2]. 369 

The ideotype for elevated [CO2] is one in which Rubisco content is substantially decreased and 370 

controlling components of the apparatus for RubP regeneration substantially increased. This 371 

problem was approached by revisiting the individual models to identify gene targets that 372 

significantly contribute to deliver this metabolic ideotype.  373 

 374 

Sensitivity of the system to individual steps within photosynthetic carbon metabolism  375 

To determine which steps in the system exert the strongest control on Asat in both ambient and 376 

elevated [CO2], a sensitivity analysis was performed by varying each parameter +/- 1% (Table 377 

1). Control coefficients (CCs) are calculated as the ratio of change in the amount of one enzyme 378 

divided by change in Asat.  If a 1% change in enzyme x results in a 1% change in Asat CC = 1, the 379 

maximum possible, while if the change in Asat is zero, then CC = 0, meaning that no control is 380 

exerted by that enzyme.  The sum of all control coefficients should approximate to 1.  Rubisco 381 

has the highest CC of all enzymes in ambient [CO2], while SBPase has the highest control 382 

coefficient in elevated CO2 (Table 1). Nine enzymes with the highest CCs overall (>0.01) were 383 

further evaluated for transcriptional regulation. 384 

A CO2–responsive gene regulatory network reveals co-regulated genes 385 

A static gene regulatory network (GRN) of the nine enzymes with the highest CCs from 386 

the e-Photosynthesis model was constructed using transcriptome data from soybean grown under 387 

ambient and elevated [CO2] (Leakey et al., 2009). Network nodes represent the genes that 388 

encode the nine enzymes involved in photosynthesis with the highest CC. Network edges 389 

represent regulatory interactions between TFs and putative, co-expressed target genes as 390 

determined by rank correlation of expression (MR >= 0.8 and PCC >= |0.6|) and the significant 391 

presence of CREs in the promoter of target genes for a corresponding TF gene. The static GRN 392 

was used to define the regulatory interactions that contribute to the expression of each target 393 

gene, in which each gene of interest (GOI) may have more than one TF protein regulating its 394 

expression. A linear regression modeling approach (Karlebach and Shamir, 2008) was used to 395 

determine the strength of influence, or weight (w), of each TF predicted to regulate a GOI. The 396 

resulting equations containing weighted TF-target interactions that enabled dynamic simulations 397 

with the GRN, where the expression of any TF in the network could be modified (up- or down-398 

regulated) and result in a predicted change in expression of the target GOI (Figure 4). 399 
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The dynamic GRN (Figure 5) was explored to identify TFs that would simultaneously 400 

down-regulate carboxylation of Rubisco and up-regulate RubP regeneration and starch synthesis. 401 

Based on network topology, the top three candidate TFs are GmWRKY71 (Glyma.07G023300), 402 

a bHLH transcription factor (Glyma.18G115700), and GmGATA2 (Glyma.01G169400) 403 

(Supplemental Figure 2). in silico perturbations were performed for each candidate TF in which 404 

the TF expression was eliminated (knock-out) or overexpressed. Simulations within the dynamic 405 

GRN resulted in newly predicted expression levels of all genes targeted by the TF of interest 406 

(Figure 4).  407 

The predicted change in mRNA expression provided input for the protein translation 408 

model that in turn predicted steady-state enzyme concentrations under elevated and ambient 409 

[CO2] as described in the Model Development section. The ratio of steady-state protein levels 410 

were then fed into the fully integrated photosynthesis model to obtain predicted changes in 411 

photosynthesis rate. The in silico over-expression of GmWRKY71 and GmGATA2, and the 412 

knockout of the bHLH TF resulted in a predicted increase in photosynthetic rate under both 413 

ambient and elevated [CO2]. A simultaneous in silico over-expression of GmWRKY71 and 414 

knock-out of bHLH TF increased the overall photosynthesis rate compared to wild type, but 415 

these failed to significantly lower Rubisco and release the resource that would be needed to 416 

elevate capacity for RubP regeneration without more resource investment (Figure 6A-C). The 417 

most promising TF candidate according to model simulations is the overexpression of 418 

GmGATA2, which results in the most dramatic change to both the down-regulation of 419 

carboxylation and up-regulation of RubP regeneration based on the simulated A/Ci curve (Figure 420 

6D). 421 

  422 

DISCUSSION 423 

Multi-scale models have the potential to identify and add missing mechanistic details 424 

about system function and generate new hypotheses to prioritize targeted engineering efforts in 425 

plant science (Marshall-Colon et al., 2017, Millar et al., 2019). More than 4,000 mathematical 426 

plant models were published over the last decade. The majority of these models describe one 427 

biological scale or process and generalize the un-modeled spatio-temporal processes as a single 428 

output from a black box. Linking single-scale models will improve the comprehensive 429 

investigation of biological systems, resulting in explanatory models with higher prediction 430 
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accuracy than models limited to one biological scale. The ability to interrogate biology at many 431 

resolutions can reveal emergent system behaviors that cannot easily be measured (Walpole et al., 432 

2013). Multiscale models that link genes to phenotypes can accelerate the directed development 433 

of crop ideotypes. Until now metabolic modeling has predicted ideotypes with maximal 434 

photosynthetic efficiency for given environmental conditions with respect to distribution of 435 

resources between photosynthetic proteins. Achieving the ideotype then depends on identifying 436 

individual genes that might be up- or down- regulated. The multi-scale model may now be used 437 

not only to predict the metabolic ideotype, but the gene expression changes at the network level 438 

needed to achieve this.  In turn, this has led, as demonstrated here, to the identification of 439 

transcription factors that can achieve the multiple gene expression changes needed by alteration 440 

of the expression of just one or two transcription factors.  441 

In this study, we constructed a multiscale model of soybean leaf photosynthesis by 442 

integrating three models across molecular and organ-level scales using asynchronous message 443 

passing. By informing the leaf micrometeorological model with gene-level data, we were able to 444 

simulate the field-observed phenomena of photosynthetic acclimation in soybean plants grown 445 

under two different atmospheric CO2 concentrations. Acclimation was previously suggested to 446 

be a transcriptionally driven process that increases the capacity of respiration (Leakey et al., 447 

2009). This though does not explain the observed decrease in in vivo Rubisco activity (Vc,max) 448 

and increase in capacity for RuBP regeneration (Jmax)  by (Bernacchi et al., 2005). Existing 449 

models of photosynthesis do not provide a means to link observed transcriptional changes with 450 

metabolism and photosynthetic capacity at the leaf level. Our integrated model overcomes this 451 

and not only suggests the changes in mRNA levels and how these affect photosynthetic 452 

metabolism, but was able to predict the acclimation of photosynthetic CO2 assimilation that had 453 

been observed (Figure 1). Previous studies have reported proteome-level changes in response to 454 

elevated CO2 in soybean and other crop species (Ainsworth and Long, 2005, Bokhari et al., 455 

2007, Taub et al., 2007, Yousuf et al., 2017, Zhao et al., 2019).  456 

  Interestingly, only 48 out of the 81 genes that encode enzymes in the e-Photosynthesis 457 

model had a statistically significant change in expression in elevated [CO2], and only 17 had a 458 

fold change >1.5. Since the ratio of change in enzyme concentration was proportional to the 459 

change in transcript concentration, it reveals that even a slight modification to the e-460 

Photosynthesis model resulted in better prediction accuracy of field observations. This result 461 
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represents the double-edged sword of multiscale modeling, in which fine-tuning at the molecular 462 

level can have drastic consequences at higher scales. Errors can propagate in multiscale models 463 

as information is exchanged across spatial and temporal scales. However, empirical validation of 464 

the model outputs at any scale can minimize error propagation. In our study, field data 465 

corroborated model simulations, providing confidence in the success of the modeling approach 466 

and the biologically relevant flow of information from genes to organs.   467 

 468 

in silico perturbations identified transcriptional regulators of photosynthesis 469 

The successful manipulation of photosynthetic efficiency has been achieved through 470 

targeted engineering of individual enzymes (Köhler et al., 2017, Driever et al., 2017), but an 471 

alternative strategy is to simultaneously alter the expression of suites of enzymes involved in 472 

different parts of the photosynthesis pathway (Simkin et al., 2017). Understanding the 473 

transcriptional regulation of photosynthesis genes may help to fine-tune pathway expression 474 

under different environmental conditions, so avoiding the need to directly engineer change in 475 

expression of genes for each enzyme. This study uncovered three TFs, GmWRKY71, 476 

GmGATA2, and a bHLH TF, which potentially regulate the expression of genes encoding key 477 

enzymes involved in photosynthesis. While the transcriptional and post-transcriptional regulation 478 

of genes involved in photosynthesis have previously been explored (Isono et al., 1997, 479 

Fankhauser and Aubry, 2016, Saibo et al., 2008, Wang et al., 2017a, Zhang et al., 2016), this is 480 

the first report of targeted GRN analysis to identify TFs that specifically co-regulate the 481 

carboxylation of Rubisco and RubP regeneration.  482 

Our hypothesis driven approach sought to explore how decreasing Rubisco and 483 

reallocating resources to RubP regeneration might increase Asat. The dynamic GRN identified 484 

high-confidence TF-target gene relationships between photosynthesis genes that have a high 485 

control coefficient and TFs tightly co-expressed with those genes. Using diverse training data, 486 

we were able to derive weights associated with each TF-target interaction, indicating which TFs 487 

exerted the greatest transcriptional control. Several TFs were found to co-regulate genes 488 

affecting Rubisco and RubP regeneration (Figure 5). However, only GmGATA2 was predicted 489 

to significantly down-regulate genes affecting Rubisco synthesis and up-regulating genes that 490 

would increase RubP regeneration and starch synthesis. The multiscale model simulations for the 491 

knockout and overexpression of GmGATA2 suggest a mechanism by which the transcriptional 492 
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regulation of key photosynthetic genes can alter flux through the pathway. For example, the 493 

overexpression of GmGATA2 resulted in decreased Vc_max and increased Jmax, as would be 494 

required to maximize efficiency in an elevated [CO2] environment (Table 2; (Drake et al., 1997, 495 

Long et al., 2004)). The rewiring of metabolism, under both ambient and elevated CO2, produces 496 

a change in photosynthetic efficiency, which is a leaf-level phenotype. Specifically, the KO of 497 

GmGATA2 decreases overall photosynthetic capacity only in ambient [CO2], while 498 

overexpression results in a large decrease in carboxylation and increase in RubP regeneration 499 

according to the A/Ci curve (Figure 6D).  500 

All of the top candidate TFs from our model simulations belong to TF families that have 501 

previously been implicated in the transcriptional regulation of photosynthesis (Saibo et al., 502 

2008). For example, bHLH TFs (Myc Family of TFs) were found to regulate aspects of C4 503 

photosynthesis that are also related to genes in the ancestral C3 state (Borba et al., 2018). 504 

Interestingly, a number of other studies identified the GATA family of transcription factors as 505 

important regulators of photosynthesis and of carbon and nitrogen balance. The overexpression 506 

of Class B GATAs and GLKs in Arabidopsis roots improved photosynthesis by increasing root 507 

chlorophyll content (Ohnishi et al., 2018). GmGATA2 is annotated as NITRATE�INDUCIBLE, 508 

CARBON METABOLISM�INVOLVED (GNC) and is homologous to AtGATA5, and both are 509 

Class A GATAs that are associated with the light regulation of gene expression and 510 

photomorphogenesis (Zhang et al., 2015). The overexpression of the poplar PdGNC gene in 511 

Arabidopsis improved photosynthesis under low N levels by increasing the size and number of 512 

chloroplasts per cell. The photosynthetic rate in transgenics increased by 42% compared to WT 513 

lines (An et al., 2014). These studies with structurally or functionally similar GATA TFs provide 514 

support for the role of GmGATA2 in the regulation of photosynthesis. Our GRN analysis 515 

uncovered a strong positive correlation (co-expression) between GmGATA2 and FBP-aldolase 516 

and starch synthase and a strong negative correlation (anti-correlation) between GmGATA2 and 517 

the gene Rbcs that encodes the RuBisCO small sub-unit. Metabolic modeling and direct up-518 

regulation have suggested that both FBP-aldolase and starch synthase exert strong control on 519 

RubP-regeneration (Zhu et al., 2007, Uematsu et al., 2012, Tian et al., 2018). These network 520 

predictions provide testable hypotheses for the next round of experimentation and modeling. 521 

  The multiscale modeling strategy described here represents a uni-directional flow of 522 

information from genes to physiological phenotype. However, bi-directional inputs and outputs 523 
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exist between the e-Photosynthesis model and the leaf micrometeorological model, in which the 524 

metabolic model can accept environmental parameters from the organ-level model. Ideally, a 525 

truly dynamic and biologically accurate model would have a bi- or multi-directional flow of 526 

information across scales. A limitation of this model is a lack of feedback from the metabolic 527 

model to gene expression. This limitation stems from an inadequate amount of species- and 528 

condition-specific transcriptional studies. Given the availability of more expression data, it 529 

would be possible to include a model component with switch-like behavior that pulls in 530 

appropriate expression data based on environment-level inputs. Alternatively, given protein 531 

expression data it may be possible to leverage the proportional relationship between change in 532 

protein concentration and change in transcript levels to predict gene expression based on protein 533 

levels. Regardless of the method, this gap in information flow is an area of focus to improve the 534 

current model. Moreover, this multiscale model is focused on one biological process, 535 

photosynthesis. The proof-of-concept modeling approach outlined in our study provides a 536 

feasible workflow, and a base model that can be expanded on to include related pathways and 537 

processes that are still black boxes and beyond the scope of in our current model.  538 

 539 

Future directions. 540 

  We are now poised to explore the multiscale model generated hypotheses, including the 541 

functional testing of the top TF candidate genes. Ideally, these hypotheses will be tested directly 542 

in soybean through the generation of transgenic plants that can be grown in FACE experiments 543 

(Ainsworth et al., 2008). Likewise, the model is in place for expansion to include additional 544 

metabolic pathways, but also scale to other levels. For example, the leaf micrometeorological 545 

model is already a sub-component of a canopy-level model (Drewry et al., 2010, Srinivasan et 546 

al., 2017), so an intuitive next step would be link to models that provide 3-D biophysical 547 

representations of stands of plants, as for example those developed for  sugarcane agronomy 548 

(Wang et al., 2017b). This allows simulations with more realistic inputs for light capture and 549 

competition between plants. Finally, advanced visualization of multiscale model outputs will be 550 

an important next step in the simulation and analysis of in silico crops. Combined modeling and 551 

visualization approaches will lead to realistic simulations of ideotypes to guide selection of 552 

genetic targets for crop improvement (Marshall-Colon et al., 2017). 553 

 554 
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Conclusion 555 

Despite the many assumptions that have had to be made in this first linkage of gene expression 556 

networks, through protein concentrations and photosynthetic metabolism to leaf level CO2 557 

exchange, it was successful in accurately predicting the observed acclimation of photosynthetic 558 

capacity in soybean when grown under elevated [CO2].  Most importantly it is shown to provide 559 

a numerical means to identify from many hundreds of possible transcription factors, those most 560 

likely to adapt photosynthetic efficiency to global atmospheric change.  It opens the way to 561 

guiding sustainable adaptation of crop photosynthesis to a range of both current and future 562 

environments. 563 

  564 
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TABLES 757 

Table 1. The flux control coefficient of photosynthetic enzymes in ambient and elevated CO2. 758 

Enzyme Value 
 (μmol m-2 s-1) 

Meta 
(AmbCO2) 

Meta 
(EleCO2) 

Meta+GE 
(EleCO2) 

Meta+GE 
(EleCO2)* 

Rubisco 120 0.443 0.121 0.165 0.108 
Sedoheptulose-bisphosphatase 13.35 0.305 0.674 0.605 0.746 
Fructose-bisphosphate aldolase 50.2 0.114 0.091 0.077 0.047 
Glucose-1-phosphate 
adenylyltransferase 

8.01 0.076 0.058 0.055 0.035 

The maximum rate of ATP 
synthesis 

6 0.054 0.047 0.081 0.051 

Fructose-bisphosphatases 29.91 0.039 0.031 0.030 0.021 
UTP-glucose-1-phosphate 
uridylyltransferase 

3.46 0.021 0.014 0.014 0.009 

Fructose-bisphosphatase (C) 1.92 0.014 0.010 0.011 0.007 
Fructose-2,6-bisphosphate 2-
phosphatase 

0.5 0.010 0.007 0.006 0.004 

Transketolase 128.57 0.008 0.003 0.003 0.001 
Fructose-bisphosphate aldolase 
(C) 

3.22 0.007 0.005 0.005 0.003 

Glycine transaminase 82.37 0.007 0.002 0.001 0.001 
(S)-2-hydroxy-acid oxidase 
&Catalase(CAT, EC1.11.1.6) 

43.68 0.001 0.000 0.000 0.000 

Sucrose-phosphate synthase 1.67 0.001 0.001 0.002 0.002 
Phosphoribulokinase 446.19 0.001 -0.001 -0.001 0.000 
glycine dehydrogenase 
(aminomethyl-transferring) 

74.84 0.000 0.000 0.000 0.000 

Glycerate kinase 171.47 -0.001 0.001 -0.001 0.000 
Glyceraldehyde-3-phosphate 
dehydrogenase (NADP+) 

166.35 -0.001 0.001 0.001 0.000 

Glycerate dehydrogenase 300.29 -0.001 0.000 0.000 0.000 
Phosphoglycolate phosphatase 1572.6 -0.001 0.000 0.000 0.000 
Sucrose-phosphate phosphatase 16.65 -0.002 0.000 0.000 0.000 
Serine-glyoxylate transaminase 99.19 -0.004 -0.003 -0.002 -0.001 
6-phosphofructo-2-kinase 3.03 -0.009 -0.006 -0.006 -0.003 
Fructose-bisphosphate aldolase 50.2 -0.015 -0.010 -0.008 -0.004 
Phosphoglycerate kinase 1241.24 -0.030 -0.023 -0.023 -0.016 
Photosynthesis rate  

 
24.876 29.176 29.047 29.261 

* Assuming the total nitrogen (protein) resource is a constant 759 

Table 2. The Vcmax and Jmax of the predicted ACi curves. The Vcmax and Jmax were predicted using 760 

A/Ci curve fitting utility version 2.0 (Sharkey, 2015). 761 

Treatment Vcmax(25°C) Jmax(25°C) 

WT-Amb 115.49 149.22 

WT-Ele 109.17 152.57 
WT-Ele (ConN) 112.29 153.58 
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bHLH TFOx-Amb 12.97 33.55 
bHLH TFOx-Ele 110.66 90.71 
bHLH TFKo-Amb 116.43 153.05 

bHLH TFKo-Ele 114.54 154.51 
GmWRKY71Ox-Amb 115.12 153.5 
GmWRKY71Ox-Ele 112.08 154.97 

GmWRKY71Ko-Amb 116.02 142.86 
GmWRKY71Ko-Ele 113.37 151.82 
bHLH TFKo&GmWRKY71Ox-
Amb 

118.93 154.76 

bHLH TFKo&GmWRKY71Ox-
Ele 

114.67 155.78 

GmGATA2Ox-Amb 91.28 157.58 

GmGATA2Ox-Ele 89.67 157.59 
GmGATA2Ko-Amb 123.28 135.62 
GmGATA2Ko-Ele 119.75 147.49 

ConN: Assuming the total nitrogen (protein) resource is a constant 762 

 763 

FIGURE LEGENDS 764 

Figure 1. Simulated and measured (Bernacchi et al., 2005) photosynthetic carbon dioxide 765 

response curves of soybean growing in ambient CO2 (370 μmol mol-1) and elevated CO2 (550 766 

μmol mol-1). PAR is 2000 µmol m-2 s-1 767 

 768 

Figure 2. Model integration schematic describing the scaling from the gene regulatory network 769 

model to the metabolic model to the leaf physiological model. Note that these models interact 770 

through state variable indicated in the arrows. Ca is ambient CO2 concentration, PPFD is the 771 

amount of light absorbed by the leaf, T is leaf temperature and A is the net carbon assimilation. 772 

 773 

Figure 3. Metabolic model predicted metabolite concentrations without and with gene expression 774 

data (GE). PAR is 1200 µmol m-2 s-1.  775 

 776 

Figure 4. Gene expression level changes in target genes of interest as a result of in silico 777 

perturbation of three candidate TFs from the photosynthesis GRN. Figure shows mRNA 778 

expression levels in wild type and perturbed TF (bHLH TF knockout in a, GmWRKY71 779 

overexpression in b, simultaneous knockout of bHLH TF and GmWRKY71 overexpression in c, 780 

GmGATA overexpression in d) conditions under ambient and elevated CO2. 781 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2019. ; https://doi.org/10.1101/582981doi: bioRxiv preprint 

https://doi.org/10.1101/582981


27 

 

 782 

Figure 5. Gene regulatory network of metabolic genes having control coefficient > 0.01 based on 783 

sensitivity analysis of the metabolic model enzymes after incorporating gene expression data. 784 

Figure shows transcription factors as triangles and metabolic genes as squares. The network also 785 

shows change in mRNA expression of these genes under elevated CO2 concentration in leaves 786 

with blue nodes indicating downregulation and orange nodes indicating upregulation under 787 

elevated CO2  as compared to ambient CO2. Similarly, blue edges indicate predicted repression 788 

and orange edges indicate predicted activation of the metabolic gene by the TF. Thickness of the 789 

edges are based on linear model weights with more thickness indicating a heavier weight 790 

associated with the TF-target interaction. 791 

Figure 6. Predicted influence of transcription factor perturbations on photosynthesis rate a) 792 

bHLHB TF Knockout; b) GmWRKY71 Overexpression; c) bHLH TF Ko + GmWRKY71 Ox; d) 793 

GmGATA2 Overexpression. 794 

 795 

SUPPLEMENTARY TABLES AND FIGURES 796 

Supplemental figure 1. Simulated variation of assimilation (a), transpiration (b), stomatal 797 

conductance (c), and leaf temperature (d) as a function of leaf internal CO2 concentration under 798 

ambient CO2 (black) and elevated CO2 (red). PPFD is 1200 µmol m-2 s-1 799 

Supplemental figure 2. Sub-networks for three transcription factors from the dynamic 800 

photosynthesis GRN chosen for in silico perturbation. The figure consists of bHLH TF (a), 801 

GmGATA2 (b) and GmWRKY71 (b) along with their predicted direct targets. Network nodes 802 

and interactions can be interpreted as in figure 5 of the main text. 803 

Supplemental table 1. Least squares optimized weights for transcription factors regulating 804 

enzymes with high control coefficient after integration of protein translation model with e-805 

photosynthesis metabolic model in the dynamic photosynthesis GRN. This table is provided 806 

separately as an excel workbook. 807 

Supplemental table 2. Gene specific ‘d’ parameter values used in the protein translation model 808 

Supplemental table 3. Vmax, Kcat, molecular weight and protein content used in the e-809 

photosynthesis metabolic model 810 

Supplemental table 4. Leaf level photosynthesis model parameters 811 
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Supplemental table 5. Steady state protein concentration ratios predicted by the protein 812 

translation model for enzymes that are part of the e-photosynthesis model 813 

 814 

Appendix 1 Abbreviations and units  – Some variables have been added here 815 

A: Net carbon assimilation (µmol m-2 s-1) 816 

Asat: Light saturated A (µmol m-2 s-1) 817 

Ci: Leaf intercellular CO2 concentration (µmol mol-1) 818 

[CO2]: Atmospheric CO2 concentration (µmol mol-1) 819 

FACE: Free Air [CO2] Enrichment 820 

gs: Stomatal conductance (mmol m-2 s-1) 821 

J: Rate of electron transport (µmol m-2 s-1) 822 

Jmax: Maximum rate of electron transport (µmol m-2 s-1) 823 

Rd: Mitochondrial respiration (µmol m-2 s-1) 824 

Rubisco: Ribulose-1,5-bisphosphate carboxylase/oxygenase 825 

RubP: Ribulose-1,5-bisphosphate 826 

SoyFACE: Soybean Free Air [CO2] Enrichment 827 

Tleaf: Leaf temperature (°C) 828 

Vc,max: Maximum velocity of carboxylation (µmol m-2 s-1) 829 

 830 

 831 

 832 

 833 
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