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Abstract 
Current scientific consensus holds that sound is transmitted, solely mechanically, from the 

tympanum to the cochlea via ossicles.  

But this theory does not explain the hearing extreme quality regarding high frequencies in 

mammals. So, we propose a bioelectronic pathway (the covert path) that is complementary to the 

overt path.. 

We demonstrate experimentally that the tympanum produces piezoelectric potentials isochronous to 

acoustic vibrations thanks to its collagen fibers and that their amplitude increases along with the 

frequency and level of the vibrations. This finding supports the existence of an electrical pathway, 

specialized in transmitting high-frequency sounds, that works in unison with the mechanical 

pathway. A bio-organic triode, similar to a field effect transistor, is the key mechanism of our 

hypothesized pathway. We present evidence that any deficiency along this pathway produces 

hearing impairment. By augmenting the classical theory of sound transmission, our discovery offers 

new perspectives for research into both normal and pathological audition and may contribute to an 

understanding of genetic and physiological problems of hearing. 

Introduction 
The scientific literature of sound transmission and perception is founded on the travelling wave 

(TW) principle proposed by von Bekesy (Nobel, 1961). The eardrum vibrates in response to sound.  

These vibrations travel via the three ossicles through the oval window and into the fluid-filled 

cochlea.  Inside the cochlea, acoustic signals are broken down into their component frequencies by 

the mechanical properties of the basilar membrane, to which the hair cells are attached. 

This paper questions the adequacy of current theory to explain the transmission of high frequency 

sounds (above 3 kHz according to Quix
1
) along the tympano-cochlear pathway. Beginning with the 

tympanum, we observe that radial fibres of collagen extend from its periphery to its centre.  

Thus the eardrum is a membrane attached to its periphery. At high frequencies, the Chladni model 

implies local resonances, which fragment its surface into vibrating zones all the more complex as 

the frequency increases
2
. 

This implies
3
 that ossicular transmission is extremely weak for frequencies above 2 kHz.

 
The 

magnitude and the precision of the transfer decrease as well, particularly in the 2-5 kHz range
 4 -5

 

(Cf. fig. 1a and 1b below) and this apparent flaw in current theory has not been convincingly 

explained
6
. 
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Fig. 1a 

frequency 1062 Hz 

jbio_201200186_sm_video04.avi 

 Fig. 1b 

frequency 5175 Hz 

jbio_201200186_sm_video06.avi 

Excerpted instant photographs of OCT videos [from Burkhardt A. et al., Investigation of the 

human tympanic membrane oscillation ex vivo by Doppler OCT, J Biophotonics,7:434-441 

(2012).]. 

These videos show that the tympanic surface responds to the high frequencies in a much 

more fragmented way (Chladni phenomenon) than to the frequencies under 1500 Hz. 

 

Click here while simultaneously using the Ctrl key  : This figure shows the effect of Bessel 

functions resulting from vibrations imposed on a roughly circular thin membrane. This 

phenomenon is particularly at work in the vibratory phenomena discovered experimentally 

by Chladni. 

 

 

The Hindawi following figures
7
, clearly illustrate the decay of the amplitude transmitted by the 

eardrum from 1 kHz up to highest frequencies, via the ossicles and up to the stapes. 

 

 
fig. 1c 

 
fig. 1d 

Amplitude of displacement versus frequency of umbo (c) and stapes footplate (d), for a range from 

100 to 10,000 Hz at 80 dBSPL (sound pressure). The amplitude of the displacements, at the 

entrance of the vestibular canal, decreases with the frequency. It is obvious that this amplitude 

participate to the control of the Traveling Wave. 

This work by Hindawi shows that the original TW is insufficient for the processing of high and 

medium frequencies. 

According to Nakajima et al
8
 “The significant sound pressures measured at certain frequencies (e.g. 

6 kHz) after ossicular interruption suggest that sound is transmitted to both [cochlear] scalae 

through a path independent of the ossicular chain”. Furthermore, cetaceans and other sea mammals 

develop only vestigial parts of the external and middle ear yet have extreme hearing capabilities
9
 

(Cf. Si 08).  It seems, then for Röösli et al
10

, that "a mechanism independent of the chain of 

ossicles is necessary for optimal transmission of high frequency sounds".  
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Our search for a mechanism that would overcome this low-pass effect has led us to hypothesize a 

sound signal path originating from the piezoelectricity of the tympanum and bone collagens. 

Furthermore, contrarily to a common supposition, the electric response of eardrum is not uniquely 

due to the cochlea (Cf.  Si 05).    

Examining the Deiters cells and the outer hair cells (OHC) at the other end of the tympano-cochlear 

pathway
11

, we note that stereocilia crowning the OHC have a mechano-electrical activity that 

transduces the acoustic TW into electrical signals
12

 (Cf.  Si 10). This transduction of acoustic 

waves, and the transmembrane transmission of resultant electrical signals, should involve the RC 

time constant of the plasma membrane and ion channels, resulting logically, in low-pass filtering 

(<1 kHz)
13

. However, some mammals hear at frequencies above 200 kHz
 14

. At these high 

frequencies, the relaxation time constant would be τ  1/(2π×200 kHz)  1 s, i.e. an order of 

magnitude faster than that found for ion channels
3
.
 
Further, there is very intense debate

15
 about 

currently accepted concepts. Several models have been advanced, but none has yet been 

experimentally verified, and the invoked mechanisms could not allow the transmission of 

frequencies higher than 12 kHz
16

. 

Thus, we have seen that, at the beginning of the tympano-cochlear pathway, as at its end, the high 

frequencies should be weakened. 

The tympanum, a piezo-electric bio-electret 
The triple-helical collagen molecules are organized hierarchically into fibrils, fibers, and bundles. 

Sounds produce piezoelectric potentials due to the collagen fibers
17

 of the tympanum. Fibers, like 

fibrils, are piezoelectric bioelectrets
18

, having a negative pole (C-terminal) and a positive pole (N-

terminal)
.
 

The voltage of the piezoelectric potentials due to isolated fibers
19

 is much higher (up to ten 

millivolts) than the potentials we measure on bundles of millimetric fibers.  

Furthermore ear canal obstruction, physical separation between eardrum and the cochlea or general 

anesthesia (ketamine) confirm that electrical potentials, isochronous to acoustic stimuli, do exist at 

the local level of collagen structures and are measurable independently of the activity of OHCs. So 

there is not any ambiguity at all between these two electrical activities.  

Could the recorded potentials be the simple result of artifacts dependent on ambient electromagnetic 

phenomena such as microphonic potentials generated by coaxial conductors, or the speaker? (Cf. Si. 

04). 

If this were the case, the observed potentials should persist even in the absence of collagen fiber 

structures. In fact, during  measurements concerning the patellar tendon we found that its 

replacement with a metal prosthesis (non collagenic) abolished the electrical response of the 

considered knee, while the contralateral knee, which had retained its tendon and was not equipped 

of prosthesis, responded electrically as the knees of all other subjects of the group. 

We verified that, in the absence of an acoustical signal, the measured voltage was zero, whereas for 

almost all the observed series, non-zero microvoltages could be measured. 

                                                 
3
 Yet "When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the 

correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and 

reverse transduction are crucial for setting the phase relations needed for amplification" (Nam J-H, Fettiplace R (2012) 

Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification. PLoS ONE 7(11): e50572. 

https://doi.org/10.1371/journal.pone.0050572). 
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Material and Methods  

Aim of the study 

This study was designed to test our hypothesis that the collagen fibers of the tympanum are 

piezoelectric. Our protocol involved stimulating the tympanum at various frequencies and using 

various pressures. We measured the potentials resulting from this stimulation to determine if their 

electric properties were dependent upon the amplitude (dB SPL) and the acoustic frequency (Hz). 

Types of Collagen 

Collagens II and I are piezoelectric histological components of eardrum. Their properties are very 

similar and we made measurements not only on collagen II of eardrum, but also on collagen I of the 

patellar tendon with the purpose to know at best their piezoelectric properties (Cf.  Si 01C; Si 01D). 

It is possible to detect an electric potential isochronous to the acoustic vibration between an 

indeterminate point of the tympanum and the mastoid bone
20

. It does not follow necessarily, 

however, that the potential measured in this type of experiment is produced by the Outer Hair Cells 

(OHCs). Our methodology
21

 allows us to demonstrate, in vivo, and under normal physiological 

conditions the piezoelectricity both of collagen I in tendons and of collagen II in eardrums. 

Measurements tools for eardrum, tendons and bones fibers 

For every measurements (eardrums, tendons and bone collagen) we use a lock-in amplifier to drive 

a loudspeaker. In this manner, we broadcast a sinusoidal sound at about one meter from the target 

(external auditory conduit, etc.) (Cf. Si 01E, Si 01F, Si 01G and Si 01H). We position a probe 

consisting of two electrodes at the center and the periphery of the tympanum, or at the ends of any 

targeted fibers. This probe captures the piezoelectric response of the fibers when they vibrate in 

response to the sound sent to the target. The lock-in amplifier makes it possible to select only those 

electrical responses isochronous to the acoustic stimulation. We measure electrical responses to 

stimulations at different acoustic frequency levels.   

A Lock In Amplifier, via an electric wave of Vhp tension (output) creates an acoustic wave 

at various frequencies diffused by a loudspeaker. 

Approval for the study  

The official title of this research is " Non-invasive Study in vivo of the generation of microvoltages 

by the tendons and the tympanum when they are subjected to moderate sound stimulations”. 

This work was promoted by CNRS-INSB (ID RCB N°2012-A01375-38; protocole12 008), Paris 

(France). This study was carried out in accordance with the recommendations of Institut National 

des Sciences Biologiques - CNRS PARIS. This protocol was approved by the French Institutional 

Review Board (IRB/IEC) ad hoc : CPP SOOM 4 N° ID RCB 2012-A01375-38. It was conducted in 

accordance with "Good Clinical Practices" and with French legislation on clinical trials (Loi de 

santé publique n° 2004-806 du 9 août 2004, Titre V, Chapitre II (recherches biomédicales). 

 

Approval of the study was obtained from the following: 

Committee of Experts and National Institute of Physics of the CNRS (Research Laboratory: UPR 

8011). 

Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES / CNRS–Toulouse).  

Comité de Protection des personnes (CPP SOOM4, Jan-Apr 2013; N° CPP13006a), 

Agence Nationale de Sécurité des Médicaments (ANSM, B130246-81; March 2013), 

Agence Française de Sécurité Sanitaire des produits de Santé (ASSFAPS, June, 2013). 

The Subjects 

The subjects (N=35) were healthy and their hearing was "normal", as determined by an ENT.  

We did, however, include one subject (D31) who had a cicatricle eardrum and another who needed 

to use a hearing aid (D33). In the latter case, the subject removed the prosthesis during testing. 

Other measurements were made on knees and other tendons. After being informed and signing the 
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Inform Consent Form, all subjects gave written informed consent in accordance with the 

Declaration of Helsinki. Then they were tested individually in a room designated for that purpose.  

The piezoelectricity of collagen fibers and the impedance of the epidermis and of the dermis vary 

with temperature. For this reason, the testing room was heated to 22° C in colder weather. 

The measurements team  

The measurements team consisted of two physicists and three physicians. Two of the physicians 

were ENTs.  

We checked the health and medical history of each subject through a personal interview and a 

clinical examination (audiogram, otoacoustic emissions) performed by an ENT physician. 

Then, one of the ENTs and another physician explained the protocol and installed the subject. 

Earlier, the two physicists had verified the correct operation of the lock-in amplifier and the 

connection of the probe conductors to the input of the lock-in. 

The physicists set up the left and right loudspeakers (1 m from the subject's ear, and at the same 

height as his or her ears). They connected the lock-in output to the input of the loudspeaker to be 

used. 

One of the two physicists was responsible for regulating the device for each of the frequencies to be 

studied. This included setting the frequency, sensitivity, and the amplitude of the stimulation 

addressed to the loudspeaker. 

The other physicist supervised all these actions and noted the results, i.e., value of the voltage 

detected by the probe in response to each stimulation in turn. 

After each testing session, the team met with the subject to obtain reactions and to determine the 

degree of “discomfort,” if any, felt by the subject for either ear. The team also met to compare 

observations they had made during the testing. 

Lock-In Amplifier 

To demonstrate, in vivo, and under normal physiological conditions, the piezoelectricity of 

tympanum fibers, we used either a digital lock-in amplifier ("Stanford SR830") or a dual-phase 

analog lock-in amplifier ("EG and G, M 5210") to drive a loudspeaker.   

A lock-in amplifier can extract a signal with a known carrier wave from an extremely noisy 

environment. Signals up to 10
6

 times smaller than noise components can still be reliably detected. 

Loudspeakers 

In our protocol, the lock in amplifier, via an electric wave of Vhp tension (output), created an 

acoustic wave at selected frequencies broadcast by a loudspeaker. The loudspeaker was either a 

Harman/Kardon: DP/N 0865DV
4
 or a Yamaha HS 50; For frequencies higher than 20 kHz, we 

used a Conrad TE300 tweeter. 

Tympanic Probe 

Furthermore, the conformation of the eardrum is quite variable depending on the individual, and 

the experimenters must adapt to it. For example, according to some of them, measures were taken 

under better conditions when one of the two electrodes was resting near the handle of the hammer 

but not on it, while the other electrode was in place near the annulus tympanicus, but staying on the 

periphery of the tympanic membrane without encroaching on the annulus tympanicus (i.e. local 

recordings).  

The advantage of that differential recording technique
22 

was that it allowed us to determine the 

source of the potential
23

.  

 

Thus we tried two configurations (Fig. 2): 

(a) two electrodes equipped with a manipulable rigid elbow and flexible electrodes, easy to 

handle, easily affixed to appropriate parts of the eardrum, but not allowing standardization 

of the inter-electrodes distance... Because of the obliquity of the eardrum, other 

                                                 
4
 no longer available 
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experimenters might wish to use a probe with electrodes that are easy to mold 

extemporaneously. 

(b) two electrodes attached to a plastic bracket, ensuring a constant distance, but more 

difficult to handle. 

 

 

 

 

Figure 2 

Probes used for measurement on the eardrums 

 

 

The shielding braid is put in contact with the peripheral structure of the tympanum, away from the 

handle of the malleus (Fig. 3). The central copper wire is put in contact with the central structure of 

the tympanum: either umbo (direction “A”) or handle of the malleus (“G”). 

 
Figure 3 

 

It is possible to detect an electric potential isochronous to the acoustic vibration between an 

indeterminate point of the eardrum and the mastoid bone
5
. However, it does not necessarily follow 

that this potential be a microphonic produced by Outer Hair Cells OHCs. On the contrary, our 

methodology allows us to demonstrate, in vivo, and under normal physiological conditions, that it 

is the result of the piezo-electricity of the collagen II of the eardrums. 

 

The closer together the electrodes are placed, the smaller the area recorded will be (i.e. local 

recordings). This is one advantage of the differential recording technique
24

. This "differential 

technique" is necessary for determining the source of a potential
25

. 

In order to evaluate the electrical behavior of points belonging to the central structure (manubrium) 

during acoustic stimulations, electrodes can be placed at two points on the same side of the 

manubrium (symbolized by an F letter). This system can detect if there is electrical isochronism 

between these points. On the contrary, electrodes might be placed facing each other on either side 

of the manubrium (E). This latter system would allow us to capture the activity of a bundle of 

circular fibers (not completed). 

The following letters were added by us: A or G: “radii” types of fibers of collagen ; HH’: arbitrary 

cord joining two peripheral points ; F: manubrium of the malleus ; GAH’H: annulus tympanicus. In 

order to verify the piezoelectric activity of the tympanum, an electrode is placed on the 

manubrium, another on the periphery according to the straight lines either A or G. 

With humans the synchronous electrical responses between two points on the same side (inner or 

                                                 
5
 Gavilan C., Sanjuàn J., Microphonic Potential picked up from the human tympanic membrane. Ann Otol Rhinol Laryngol. 73, 102-109 

(1964). 
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outer) of the annulus tympanicus (HH’) are generally impossible to measure.  

 

For measurements on the tympanum (Cf. Si 01G), we used a probe consisting of a coaxial copper 

cable (1 mm outside diameter). The advantage of coaxial design is that electric and magnetic fields 

are restricted to the dielectric, with little leakage outside the shield. Electric and magnetic fields 

outside the cable are entirely prevented from interfering with signals inside the cable. This property 

makes coaxial cable a good choice for carrying weak signals without interference. 

In order not to damage the epidermis of the eardrum, the ends of the two strands were either coated 

by a small amount of an eutectic solder or shaped to form a smooth closed loop.. 

The probe consists of two electrodes based on a coaxial cable: 

 Central copper wire wrapped with a sheet of plastic isolator (with the end of the copper wire 

used for contacting the eardrum) 

 Surrounding conductive braid wrapped with a sheet of plastic isolator (with its end used for 

contacting the eardrum) 

For measurements, one electrode was apposed to the center of the eardrum (a point on the posterior 

side of the manubrium) and the other at its periphery (a point on the posterior limbus). The probe 

captures the piezoelectric response of the radial tympanic fibers when they vibrate in response to 

the sound sent to the tympanum. We measured electrical responses to stimulations, at different 

acoustic and frequency levels. We selected 16 frequencies (125 Hz to 30 kHz) and five sound 

pressure levels (55 to 80 dB) for this study. All measures were taken on both sides. 

An electric wave of VHP tension is sent by the lock-in to the loudspeaker, creating an acoustic wave 

at the chosen frequency. Then, the electric tympanic probe receives the piezoelectric response. The 

voltage of the response is displayed on the digital screen of the lock-in. 

Otoscopy for optimal visual access  

We used either a Zeiss OPMI 99 microscope (19X magnification) or a KAPS Som62 MAT005 

halogen microscope (16X magnification). 

Units of measurement 

As units of measurement, we used the International System. For acoustic frequencies, we used Hz 

(cycles/second), and for amplitudes the decibel sound pressure level (dB SPL). 

Possible drawbacks with respect to measurements 

 Our measurements on the eardrum encompass broadcasting a sinusoidal sound at one meter from 

the external auditory conduit. We were very cautious, yet the measurement of sound amplitude 

reaching the eardrum from a loudspeaker in a free field  may be problematic.  

Spatial fluctuations of the sound pressure might be an important factor: a frontal or lateral shifting 

of a few centimeters between the sound source and the ear of the subject may have significant 

effects on perceived and measured amplitudes. In despite of all our efforts to assure a strong 

stability during measurement process, the experimenters could not ensure that the clinician, or his 

hands, were, or were not, at times, an obstacle dampening the amplitude for the frequencies emitted 

by the loudspeaker. 

 

 

We recall moreover, that, in addition to the implied physical parameters, in live measurements, 

there are psycho-physiological interactions as well. When enabled, the tensor tympani muscle pulls 

the malleus medially, tensing the eardrum and damping its vibrations (Cf.  Si 03A ). This is also the 

case of the stapes muscle and of the smooth muscles that are inserted into the annulus tympanicus. 

Cerebral commands of OHC activity likewise follow this pattern. 

 

In addition, the position of the electrodes should make it possible to measure the variations of 

potential in response to the sounds between the two ends of one and the same fiber; This is 

obviously very difficult to achieve, especially in vivo. It is obvious that our measures are 
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underestimated (Cf. Si 02). Similarly, it is very difficult to standardize the pressure of the electrodes 

on the skin (Cf.  Si 03B). 

Anesthesia during measurement on the eardrum 

Measurements on the eardrum of humans were made after applying a light anesthesia to the 

eardrum (cream EMLA 5%:  Lidocaine 25 ‰, Prilocaine 25 ‰) this cream was removed 

afterwards, using vacuum aspiration or wiping with gauze.  

We did not use a conductive paste because it would be inappropriate to mix it with the anesthetic 

paste. Also, the quantity and surface of contact would be very difficult to standardize. 

Evaluation of the possibility of pain 

Yet, an index (Likert scale, 0 to 5) of "felt pain" was recorded. 

Differentiation of piezo-tympanic potential and cochlear microphonics 

 We have considered and evaluated possible technical artifacts: (contact surface (Cf. Si 04C), 

microphonic of measurement cables (Cf. Si 04D)). 

We have shown that our measurements correspond to a tympanic generation and that it would be a 

mistake to equate them with cochlear microphonics (Cf. Si 05). We performed an experiment to 

check whether the sound generated a piezoelectric response at the mastoid level, including by 

blocking the airway. 

This supports our hypothesis that the electrical response of the system cannot be reduced to 

cochlear microphonic activity (Cf. Si 06). 

Statistics 

For explaining the potential difference V, we estimated a regression model, log-quadratic in the 

frequencies F and linear in the sound level L, including a fixed effect component (for each 

individual and each side). 

The model was estimated by ordinary least squares completed by the usual tests (global tests of 

significance and tests of significance of the parameters) with the R software
26

 (lm command). 

Further analysis of individual characteristics and experimental conditions is presented in Si 14. 

Results 
We tested 35 individuals, aged 17 to 87, for 16 frequencies (125 Hz to 30 kHz) and for five sound 

pressure levels (55 to 80 dB). All measures were taken on both sides. Due to missing data, the 

sample size was 453 (Cf. above Material and Methods). This sample constitutes an unbalanced 

panel data sample estimated by ordinary least squares with the introduction of a so-called “fixed 

effect” dependent on the individual and the side (left or right). For the raw data, Cf. 

10.6084/m9.figshare.5671807. 

The empirical evidence of a significant effect of frequency and sound pressure on the difference in 

potential was verified by statistical analysis using the "R"
 
software. The explained variable is the 

microvoltage Vijks measured for individual i, frequency j, sound pressure level k and side s (left or 

right).  

The relation is assumed to be log-quadratic in the frequencies F and linear in the sound level L.  The 

least squares estimation is: 

log(1+Vijks) = αis + 0.036616 Liks - 2.142166 log(Fijs) + 0.144777 (log(Fijs))
2
  + Uijks 

                      (s.d. = 0.006437) (s.d. = 0.481262) (s.d. = 0.029839)  

where Uijks is a zero mean random residual (Cf. fig 4). 
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Figure 4 

Relationship between piezotympanic voltage (fixed-effect corrected data) and acoustic frequency: 

estimated model for the two sound levels, 60 dB and 80dB (bold parabolic line) and 50 random 

models based on the estimated covariance matrix of coefficients (curves in between the two dotted 

lines and encompassing the bold line). 

 

All the coefficients are highly significant (p < 0.001). The standard error of Uijks is 1.109 and the 

adjustment is measured by the R² = 0.90 (adjusted 0.89 with 376 degrees of freedom). The F-

statistic is 53.57 with a p value smaller than 22.10
−16

. The estimated U-shaped curve is represented 

in fig.4. 

The values of the αis fixed effects are distributed between 5.24 and 11.69 with an average value of 

8.02 dB. We established a significant (p < 0.001) positive correlation between αis  and two 

individual characteristics: “Age” and “Body Mass Index”; There is also a strong correlation 

between left and right sides. 

Other factors could explain these fixed effects, such as pressure on the measurements probe by the 

ENT practitioner, position of the two electrodes of the probe relative to a unique (or not) collagen 

bundle (Cf. Si 02), muscular activity of the tensor tympani muscle (Cf. Si 03A) and pressure on the 

epidermis by the practitioner (Cf. Si 03B). 

Taken together, these measurements show that the tympanum responds to acoustic stimulations by 

isochronous potentials, which we attribute to the tympanum’s collagenous fibers. This result 

corresponds to the outcomes of our measurements on other collagenous fibers such as tendons: 

knees, Achilles, arm muscles, etc. (Cf. Si 01; Si 14B). 

These isochronous tympanic potentials (dubbed "pT") are dependent upon frequency. The voltage 

decreases from infrasounds to middle frequencies (minimum at 1632 Hz), and then increases along 

with frequencies for every subset of measures.  

We hypothesize that these tympanic voltages created by the piezoelectricity of the collagen fibers of 

the eardrum are transmitted very rapidly to the OHCs of the cochlea by an electrical path. We will 

now describe this hypothesized “covert path,” yet up to now neglected. 

The covert path, from tympanum to trickystor 
We will show that electrical responses are transmissible via a series of electrical synapses from the 

tympanum to the apex of the DOHC complex (Deiters Outer Hair Cell complex), where we identify 

a structure similar to that of a Field Effect Transistor (FET). We dub this structure Trickystor (TkS) 

due to its complexity. 
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Gap Junctions (GJs)
27

 are cytoplasmic conduits possessing large pore size (10–15 Å). They allow 

communication between the intracellular milieus of two contiguous cells and the passage of small 

metabolites and signaling molecules (mass < 2.10
-27

 kg) between cells. GJs are composed of two 

hemi-channels, each made up of six connexins (Cx).  

 GJs are very fast conductors able to constitute an electric network. The GJs are especially useful in 

facilitating electrical transmissions
28

. One of the neuronal functions of GJs is thought to be 

synchronization between brain cells
29

. The transmission of a signal by means of these electrical 

synapses is not dependent upon a certain threshold. Further, such transmission is extremely rapid 

and takes place without diffusion (leakage) into extracellular spaces. It is noteworthy that an electric 

sinusoidal wave (e.g. pT voltages) can travel along an electrolytic pathway, going through the GJs 

with minute displacements of ions between adjacent cells. This takes place without global 

displacements from the first cell to the last and back. Alternating current (AC) voltages cause no net 

movement into the conductive medium, regardless of its length, since the charge carriers oscillate 

back and forth in response to an alternating electric field. Nanotube structures might be implicated 

in the electrical communication by GJs between ear and OHCs
30

. 

The cell bodies of the osteocytes act as mechanosensors of the petrosal bone. They merge to form a 

syncytium (based on the Cx43) capable of conveying electrical signals. Electrical transmission 

between osseous cells always travels in the same direction: from the interior of the bone toward its 

surface (periost)
31

. Electrical signals arising from the piezo-electricity of the tympanum can, thus, 

be transmitted to the external wall of the cochlea (the spiral ligament, which is a periosteum 

structure) via the syncytium of the subperiosteal cells. 

Through the root cells
32

, Cx43 interacts with the Cx26 of the cochlea, thus enabling the transmission 

of the piezotympanic signal to the cochlear Deiters Cells (DCs). A critical relationship may be 

established between the mutation of Cx43 proteins and non-syndromic high-frequencies deafness
33

. 

Yet there are two independent syncytia in the cochlea:  

 The connective tissue GJ system of the lateral wall (fibrocytes): The deterioration of this 

system results in a progressive hypoacousis, especially with respect to high frequency 

sounds
34

. The Fibroblast Growth Factors (FGFs)
35

, which regulate the electrical excitability 

of cells, appear to have a role in the maintenance of normal auditory function
36

. 

 The epithelial cell GJ system is composed of several types of supporting cells linked to the 

root cells within the spiral ligament. It is obviously the most important system for 

transmitting the pT signal. Root cells are present primarily in the basal part of the cochlea, 

the part devoted to hearing high frequencies. The epithelial cell GJ system is capable of 

transmitting variations of potential
37

 from the root cells to the DCs, and, when it does not 

function, the OHCs, even if they are normal, lose their effectiveness
38

.  

 

Thus, active cochlear amplification is dependent on the GJs of supporting cells
39

 - 
40

: Genetic
41

 or 

experimental alterations of either the structure of root cells or of several connexins [Cx26 (GJB2), 

Cx30 (GJB6), Cx31, Cx32, Cx43] have been shown to result in non-syndromic deafness
42

 
- 43 - 44

. 

Purely metabolic explanation of their usefulness seems insufficient to explain why this is so. The 

number of Cx26 and Cx30 declines from the cochlear apex to its base, but this finding does not 

weaken the hypothesis that these GJs play an essential role for all frequencies: Either mutations or a 

blocking
45

 of Cx26 produces a reduced, or absent, distortion product of otoacoustic emission 

(DPOAE) and hearing loss at all frequencies. 

That apparent discordance should be clarified by their role in the functioning of the Trickystor 

(below). 

The Trickystor 
Travelling waves cause the stereocilia crowning the OHCs to move, producing a mechano-electrical 

transduction. The resulting electrical signals, if their frequency is under a few kHz, pass through the 

cuticular bilayer.  
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Our experiments have demonstrated the piezoelectricity of the eardrum and its adjacent bony 

structures. We have also presented a probable route of transmission of the tympanic electrical 

signals (pT) via electrical synapses (GJs) up to the DOHC complex, It has been proposed that 

cochlear support cells interact with hair cells in a manner similar to interneurons or astrocyte 

interactions with neurons in the central nervous system
46

 - 
6
. Each OHC is surrounded by five DCs 

(fig. 5). Its base is supported by the cupular body of a DC (DC5) and its ciliated apex is bordered by 

four phalangeal apexes from four other DCis (i=1..4): on the right (DC1), inside (DC2), on the left (DC3), 

outside (DC4); each being different from the DC5. 

 
Figure 5 

3D and top view of the DOHC-complex organization 

 

Every component of an Organic Field Effect Transistor (OFET) is present in the apex of the DOHC 

complex (Fig. 6).  

 

 
Figure 6 

Diagram of OFET model, with added corresponding elements of Trickystor (brackets). 

 

We will consider its elements in turn: the source (Cf. Si 10 A), the semiconductor channel, the gate 

with its electrical insulation from the overall structure, and, finally, the drain. 

The source is identical to what has been shown in the classical literature: Electrical potentials result 

from stereociliar movement (flexo-electricity) and from the biasing potential. 

                                                 
6
 Connors  and  Long, Electrical synapses in the mammalian brain, "Annu Rev Neurosci" 2004;27:393-418. 
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A common feature of Organic FET materials is the inclusion of a conjugated π-electron system. 

This system serves as the active semiconducting layer and facilitates the delocalization of orbital 

wave functions. In its original meaning, a conjugated system is a molecular entity whose structure 

may be represented as a system of alternating single and multiple bonds. In such systems, 

conjugation is the interaction of one -orbital with another across an intervening σ-bond.  

Homoconjugation is defined as "an orbital overlap of two π-systems separated by a non-conjugating 

group, such as CH2" 
47-

 
48

. Conjugation and homoconjugation alike give semiconductor properties 

to a biological molecule. When biological poly-unsaturated fatty acids (PUFAs) are either 

conjugated (R-CH=CH-CH=CH-R') or homoconjugated (R-CH=CH-CH2-CH=CH-R), they have 

the properties of a semiconductor
49

.  

The cuticular bilayer (fig.07) encompasses semi-conductors such as phospholipids, conjugated 

linoleic acid, conjugated linolenic acids, or docosahexaenoic acid ethyl ester-d5 as well as other 

conjugated and homoconjugated PUFAs. There is an inverse association between hearing loss and 

higher intakes of long-chain n−3 PUFAs and regular weekly consumption of fish
50

. Modifications 

of the PUFAs by genetic mutations, for example, "peroxisome biogenesis disorders "
 
or "X-linked 

adrenoleukodystrophy", have deleterious consequences on the auditory processing of high 

frequencies (Cf. Si  10D). 

Fig. 07 presents two conductive pathways capable of passing charge carriers through the cuticular 

membrane: The ionic channels are relevant for frequencies below 3 kHz
51

 but ineffective for higher 

frequencies; the semiconductor channels are most likely to intervene for high frequencies, up to 

more than 200 kHz.  

In fact, these two connecting structures might be topographically associated since conjugated 

PUFAs are close neighbors of ionic channels. PUFAs are incorporated into the lipid bilayer near to, 

but not included within, the pore domain. They affect voltage transition electrostatically. If the 

charge is switched, these electrostatic interactions accomplish opposite effects
  
(Cf. Si 10B  and 

10C). 

The leaflets of the bilayer are primarily composed of phospholipids, and anti-phospholipids can 

negatively affect hearing (Cf. Si 10D). Chlorpromazine, which intercalates into the inner leaflet of 

the phospholipid bilayers, alters OHC electro-motility without a known direct action on prestin; 

according to Ricci et al
52

 “The conductance of the Mechano Electrical Transducer channels changes 

along the tonotopical position within the cochlea, suggesting differential requirements at different 

frequencies”. Thus, the intervention of the phospholipids concerns specifically neither the action of 

the stereocilia, nor that of the prestin, but rather that of the cuticular bilayer. 

 
Figure 7 

Simplified diagram of the cuticular bilayer 

The doping of a semiconductor material consists of introducing into its matrix very small quantities 

of other material comprising different charge carriers. Small numbers of them can change the ability 

of a semiconductor to conduct electricity.  In the case of conjugated PUFAs, the doping material 
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may consist of a system of anionic cholesterol rafts nested between the two leaflets of the bilayer
53

. 

These cholesterol rafts modify the passage of electrons through the bilayer in certain directions and 

also the voltage dependence of the prestin (Cf. Si 10C). 

The lipid bilayer is associated with an electronic double layer: endocochlear  (+90 mV) versus 

intracellular (-70 mV) potential; It has a non-linear capacitance dependent upon the voltage applied. 

That is an essential component of a beneficial biasing imposed on the TkS. The (Cx26
+/-

/ Cx30
+/-

) 

digenic mutation, which decreases that bias, results in high frequencies hearing loss
54

.  

The gate is represented by Deiters phalanxes with their high microtubules content. These 

microtubules cause negative differential resistance, improve electric connectivity between their two 

ends, and amplify the critical frequency of the transferred signals
55

. 

 

In physiological conditions, there is a strict insulation, chemical as well as electrical, between 

phalangeal apexes of 4 DCs and the cuticle of an embedded OHC (fig. 5). This being the case, no 

electric current will flow from one to the other of their apical membranes. 

However, this border, the tight junction (TJ) and other elements of the Apical Junctional Complex 

cannot prevent a hydrophobic intercellular electrostatic coupling unrelated to any GJ. Thus, the 

stereociliar signal can be amplified by the isochronous piezotympanic (pT) signal acting on 

semiconductors of the cuticular membrane. TJs between OHCs and DCs are, indeed, critical for 

normal functioning of the organ of Corti; mutations of the TJP2 gene cause autosomal dominant 

non-syndromic hearing loss
56

 (Cf. Si 10F; Cf. also Si 10G). 

As in the classical FET schema, the electric signal from the source must reach the drain (prestin) 

(Cf. Si 10H) within the lateral wall of the cell and stimulate it. In our view, when passing through 

the cuticular bilayer, the signal is driven by the TkS. Voltage variations due to the stereociliae 

alternatively shorten and lengthen the prestin located in the latero-basal wall of the OHCs. In the 

case of the highest frequencies, we make the assumption that the signal is amplified by the pT 

coming from the external ear (eardrum and bone collagen). The problem of the presence of prestin 

in the vestibular system dedicated to some infrasounds is examined in Si 10I. 

Overview of the “covert path” 
The TkS is probably a decisive element for refreshing the acoustic signal (especially for high 

frequencies), for enhancing cochlear amplification, and for frequency analysis (tuning) of the audio 

signal. 

We propose (Fig. 8) the design of an equivalent circuit which presents the classical pathway (in 

black) supplemented by the “covert path” (in red). 
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Figure 8 

Equivalent circuit:  classical pathway (in black);  “covert path”, our model (in red). 

 SLM  (Superior Ligament of Malleus): Collagenic ligament that crosses from the head of the 

malleus to the roof of the tympanic cavity (tegmentum attici). BEW: hypothetic Backward 

Electrical Wave (Cf. Si 12 OAE vs BEW). 

 

Every step of the covert path is indispensable for good hearing, and any deficiency (either genetic, 

experimental or toxic) in any of the steps of the covert path produces hearing impairment, mainly in 

the high frequencies. 

'Sine Qua Non' demonstration of the covert path 
 In the following figure (fig.09) we number the places of the consecutive stages whose 

alteration has the effect of hearing loss. For each of these stages, we then listed a list of significant 

publications relating these hearing losses to these alterations. 

 
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 

Collagen II Annulus T. GJ Cx43 Root cell GJs Cx26,30 Phalanx TJs Semi-conductors Doping Biasing 

Figure 9 

'Sine Qua Non' demonstration of the covert path 
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For each step indexed in fig. 9, we now give a brief description, and then we cite the references 

establishing the negative effect of any flaw on auditory functioning: 

 

Step 1 Collagen II of the eardrum and mastoid. Any flaw in the structure of type II 

collagen, accompanied by a defect in its piezoelectricity, causes hearing loss: 
 Liberfarb RM, et al., The Stickler syndrome Genet. Med,.5,  21-27 (2003) 
 Omim120140 

 

Step 2 The annulus fibrosus tympanicus
 
is the thickened peripheral rim of the pars tensa 

of the tympanic membrane; It is connected with the bony sulcus tympanicus via radial fiber 

bundles, which continue directly into the tympanic bone. Osteoma of the osseous and 

fibrous annulus tympanicus can cause hearing impairment: 
 Uno Yoshihumi, The attachment structure of the guinea pig tympanic membrane, Auris Nasus Larynx, 27,45-

50(2000). 
 He Z., Vibration measurements on the widely exposed gerbil eardrum, Biomedical Engineering, partial fulfilment of 

Master of Engineering, McGill University (2012).  
 

Step 3 Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal 

recessive deafness: 

 Liu, X. Z., et al., Mutations in GJA1 (cx43) are associated with non-syndromic autosomal recessive deafness. Hum 
Molec Genet 10: 2945-2951, 2001. 
 

Step 4 Crossing spiral ligament via Root-cells may be central to pathological processes 

associated with various forms of hearing loss: 

 Jagger DJ, Forge A. The enigmatic root cell - emerging roles contributing to fluid homeostasis within the cochlear 
outer sulcus. Hear Res. 303, 1-11 (http:\www.sciencedirect.com\science\article\pii\S0378595512002523 2013) . 

 

Step 5 GJs (Cx26, Cx30) Mutations in either Cx26 or Cx30 are the major cause of non-

syndromic prelingual deafness in humans.  
 

 Zong L, Chen J, ZhuY, Zhao HB, Progressive age-dependence and frequency difference in the effect of gap 
junctions on active cochlear amplification and hearing, Communications, 489, 223-227 (2017) 

 Zhu, Y. et al., Active cochlear amplification is dependent on supporting cell gap junctions, Nat Commun,4, 1786 
(2013), Omim 604418. 

 Chang Q, Tang W, Ahmad S, Zhou B, Lin X, Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea 
is Compromised in Connexin30 Null Mice,. PLoS ONE 3 (12), e4088 (2008). 

 

Step 6 Phalanx of Deiters (GATE). Destruction of the phalanx cytoskeleton annihilates the 

electric effect of the DCs on the OHCs: 
 Yu N, Zhao HB, Modulation of Outer Hair Cell Electromotility by Cochlear Supporting Cells and Gap Junctions. 

PLoS ONE 4(11): e7923 (2009).  

 

Step 7 Tight Junctions between phalanx of Deiters Cell and OHC cuticle; Mutation of the 

TJP2 gene causes autosomal dominant non-syndromic hearing loss (ADNSHL): 
 Kim MA, et al. Genetic Analysis of Genes Related to Tight Junction Function in the Korean Population with Non-

Syndromic Hearing Loss. PLoS ONE 9(4), e95646  (2014).  
 Wilcox ER et al., Mutations in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness 

DFNB29, Cell, 104: 165-172 (2001). 
 Tang VW. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic 

molecules. Biology Direct. 2006;1:37. 
 Itajiri S, Katsuno T. Tricellular Tight Junctions in the Inner Ear. BioMed Research International. 2016;2016:6137541. 

 

Step 8 Semi-conductors (Conjugated PUFAs and phospholipids, etc.); Genetic, dietary or 

toxic deficiencies of conjugated PUFAs in cuticular phospholipids, induce a downward 

sloping audiometric pattern: 
 OMIM# 253260 and  609019. 
 Wolf B, Spencer R, Gleason T., Hearing loss is a common feature of symptomatic children with profound biotinidase 

deficiency. J Pediatr 2002, 140,2:242–246  
 Tanigawa T, Adiponectin deficiency exacerbates age-related hearing impairment, Cell Death and Disease (2014) 5, 

e1189 
 Van Veldhoven PP, Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism, J. of 

Lipid Research, Thematic Review Series: Genetics of Human Lipid Diseases, 51, 2010 , p. 2885 
 Wanders RJA, Peroxisomes, lipid metabolism, and peroxisomal disorders, ASHG 2004 Meeting Toronto, Molecular 

Genetics and Metabolism, 83, 1–2, September–October 2004: 16–27  
 Braverman NE et al., Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, 

clinical manifestations, and treatment guidelines, Mol Genet Metab 117 : 313-21 (2016) 
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 Zempleni J, Hassan YI, Wijeratne SS, Biotin and biotinidase deficiency. 

Expert Rev Endocrinol Metab 3 : 715–24 (2008) 
 March J, Advanced Organic Chemistry reactions, mechanisms and structure (3rd ed.). New York: John Wiley  and  

Sons (1985) 
 Hush, N. S., An Overview of the First Half-Century of Molecular Electronics. Annals of the New York Academy of 

Sciences, 1006: 1–20 (2006) 
 Inzelt, György "Chapter 1: Introduction". In Scholz, F. Conducting Polymers: A New Era in Electrochemistry. 

Monographs in Electrochemistry. Springer : 1–6. ISBN 978-3-540-75929-4. (2008) 
 Bard Allen J., Inzelt  György, Scholz Fritz, Electrochemical Dictionary : cuticular phospholipids, Springer Science 

and  Business Media. (2008) 
 Engelman DM. 2005. Membranes are more mosaic than fluid. Nature 438: 578–580 
 Jacobson K, Mouritsen OG, Anderson RGW. 2007. Lipid rafts: At a crossroad between cell biology and physics. Nat 

Cell Biol 9: 7–14. 
 Coskun U., Simons K. 2010. Membrane rafting: From apical sorting to phase segregation. FEBS Lett 584.  

 

Step 9 Doping by cholesterol rafts. The modulation of Voltage-gated calcium channels 

(VGCCs) and Big Potassium channels (BK) currents by cholesterol, and the associated 

changes in hair cell excitability may have implications for sensorineural hearing loss.  
 Purcell EK, Liu L, Thomas PV, Duncan RK. Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type 

Potassium Channels in Auditory Hair Cells. Dryer SE, ed. PLoS ONE; 6(10):e26289. 
doi:10.1371/journal.pone.0026289 (2011). 

 https://en.wikipedia.org/wiki/Niemann%E2%80%93Pick_disease,_type_C. 
 Oghalai JS., Pereira FA., and Brownell WE., Tuning of the Outer Hair Cell Motor by Membrane Cholesterol, J Biol 

Chem., 282(50): 36659–36670. (2007)
7
. 

 

Step 10 Biasing. The lipid bilayer is associated with an electronic double layer 

(endocochlear potential), which is an essential component of a beneficial biasing imposed on 

the TkS. The (Cx26
+/-

/ Cx30
+/-

) digenic mutation, which decreases that bias, results in high 

frequencies hearing loss: 
 Mei L et al., A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of 

endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall,  

Neurobiol Dis. 108, 195-203 (2017). 

Conclusion and perspectives  
The electric signal generated by tympanic collagen fibers is not conceived as the alternative origin 

of the mechano-sensation in the auditory system, but rather as a significative  electronic  

contribution (Cf. Si 10E). 

Our experiments have shown that the tympanum has piezoelectric properties that engender an 

electrical signal in response to acoustic vibrations. This signal, which is frequency-dependent, is, 

then, carried to the outer wall of the cochlea and from there to the DCs by means of electrical 

synapses (various GJs and their connexins).  

The piezoelectricity of the tympanum opens up the perspective of an electrical synergistic pathway 

of sound transmission heretofore unknown (the covert path). This pathway from the tympanum to 

the cochlea is capable of contributing significantly to hearing, especially to hearing the highest 

frequencies, as it has a determining effect on the amplification and tuning attributed to the basal 

OHCs (Cf. Si 11B).  

Our hypothesis of an electric pathway does not negate the established theory of sound transmission 

but rather expands it. For it is our idea that the mechanical and the electrical transmission of sound 

work together
57

 - 
58 

to produce optimal hearing (especially for high frequencies). Thus, our findings 

pave the way for a better understanding of the hearing process and have important implications for 

both theory and practice. It is well known that age-related hearing loss primarily involves high 

frequency sounds, the very sounds we believe are mainly transmitted by the electrical pathway. Our 

work opens perspectives in the understanding of hearing and in the treatment of hearing problems. 

So the discovery of this electric transmission of sound may elucidate certain as yet unexplained 

phenomena of auditory physiology. For example, it may lay the groundwork for a better 

understanding of otoacoustic emissions (OAEs).  No satisfactory explanation has yet been found for 

                                                 
7
 doi: 10.1074/jbc.M705078200; Cf.  also Si 2. 
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the backward propagation of OAEs (elusive backward travelling wave) 
59

 
- 60

. Our theory may also 

shed light on hyperacusis of children, which is associated with larger amplitude OAEs but with no 

other auditory factors
61

. Furthermore despite ossicular blockage by the mesenchyme until after 

birth, it has been shown (see Si 08B) that the foetus hears and memorizes the sounds of its 

environment several weeks before birth
8
! This makes it difficult to understand the existence - 

though well demonstrated - of foetal hearing from the 22
th

 amenorrhea week
9
 - 

10
. So Hill concludes 

that "any prenatal conduction to the cochlea must be mediated through bone conduction". However, 

the mechanism of bone conduction is itself poorly understood, so that the explanation of foetal 

hearing by bone conduction would simply move the problem on. It therefore seems that another 

conceivable mechanism would be the "covert path".  

In fact, it is likely that knowledge of this new pathway can shed light on how sea mammals and bats 

use very low or very high frequencies for echolocation. In the case of cetaceans, hearing is 

dependent upon a "collagenous-fatty acoustic pathway" which, according to our theory, primarily 

uses the piezo-electricity of collagen to amplify frequencies up to more than 250 kHz (Cf. Si 08). 

The eardrum of terrestrial mammalians and the collagenous-fatty acoustic bodies of sea 

mammalians share a double function: on the one hand, a mechanical mobilization for medium 

frequencies, and, on the other, a piezoelectric behavior of collagen fibers for the perception of very 

high and very low frequencies. 

This new findings might have an important impact on the future development of hearing aids. Such 

a practical application would be very useful for an ageing population. 

Supplementary Informations 
This article is very shortened and limited to what is most recent in our theory and results. So we 

propose some supplementary information (Si) to expand and discuss several aspects of our 

experimental and theoretical work. 
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Fig. 1a 

frequency 1062 Hz 
jbio_201200186_sm_video04.avi 

 Fig. 1b 
frequency 5175 Hz 

jbio_201200186_sm_video06.avi 
Excerpted instant photographs of OCT videos [from Burkhardt A. et al., Investigation of the 
human tympanic membrane oscillation ex vivo by Doppler OCT, J Biophotonics,7:434-441 
(2012).]. 
These videos show that the tympanic surface responds to the high frequencies in a much 
more fragmented way (Chladni phenomenon) than to the frequencies under 1500 Hz. 
 
Click here while simultaneously using the Ctrl key  : This figure shows the effect of Bessel 
functions resulting from vibrations imposed on a roughly circular thin membrane. This 
phenomenon is particularly at work in the vibratory phenomena discovered experimentally 
by Chladni. 

 
 

 
fig. 1c 

 
fig. 1d 

Amplitude of displacement versus frequency of umbo (c) and stapes footplate (d), for a range from 
100 to 10,000�Hz at 80�dBSPL (sound pressure). The amplitude of the displacements, at the 
entrance of the vestibular canal, decreases with the frequency. It is obvious that this amplitude 
participate to the control of the Traveling Wave. 

 

 

 

Figure 2 
Probes used for measurement on the eardrums 
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Figure 3 
Position of the electrodes of the probe :  

 It is possible to detect an electric potential isochronous to the acoustic vibration between an indeterminate point of the 
eardrum and the mastoid bone. 
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Figure 4 

Relationship between piezotympanic voltage (fixed-effect corrected data) and acoustic frequency: 
estimated model for the two sound levels, 60 dB and 80dB (bold parabolic line) and 50 random 

models based on the estimated covariance matrix of coefficients (curves in between the two dotted 
lines and encompassing the bold line). 

 

 
Figure 5 

3D and top view of the DOHC-complex organization 

 
Figure 6 

Diagram of OFET model, with added corresponding elements of Trickystor (brackets). 
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Figure 7 

Simplified diagram of the cuticular bilayer 

 

 
Figure 8 

Equivalent circuit:  classical pathway (in black);  “covert path”, our model (in red). 
 SLM  (Superior Ligament of Malleus): Collagenic ligament that crosses from the head of the 

malleus to the roof of the tympanic cavity (tegmentum attici). BEW: hypothetic Backward 
Electrical Wave (Cf. Si 12 OAE vs BEW). 
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 
Collagen II Annulus T. GJ Cx43 Root cell GJs Cx26,30 Phalanx TJs Semi-conductors Doping Biasing 

Figure 9 
'Sine Qua Non' demonstration of the covert path 

For each step indexed in fig. 9, we now give a brief description, and then we cite the references 
establishing the negative effect of any flaw on auditory functioning: 
 

Step 1 Collagen II of the eardrum and mastoid. Any flaw in the structure of type II 
collagen, accompanied by a defect in its piezoelectricity, causes hearing loss: 

� Liberfarb RM, et al., The Stickler syndrome Genet. Med,.5,  21-27 (2003) 
� Omim120140 

 
Step 2 The annulus fibrosus tympanicus is the thickened peripheral rim of the pars tensa 
of the tympanic membrane; It is connected with the bony sulcus tympanicus via radial fiber 
bundles, which continue directly into the tympanic bone. Osteoma of the osseous and 
fibrous annulus tympanicus can cause hearing impairment: 

� Uno Yoshihumi, The attachment structure of the guinea pig tympanic membrane, Auris Nasus Larynx, 27,45-
50(2000). 

� He Z., Vibration measurements on the widely exposed gerbil eardrum, Biomedical Engineering, partial fulfilment of 
Master of Engineering, McGill University (2012).  
 

Step 3 Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal 
recessive deafness: 

� Liu, X. Z., et al., Mutations in GJA1 (cx43) are associated with non-syndromic autosomal recessive deafness. Hum 
Molec Genet 10: 2945-2951, 2001. 
 

Step 4 Crossing spiral ligament via Root-cells may be central to pathological processes 
associated with various forms of hearing loss: 

� Jagger DJ, Forge A. The enigmatic root cell - emerging roles contributing to fluid homeostasis within the cochlear 
outer sulcus. Hear Res. 303, 1-11 (http:\www.sciencedirect.com\science\article\pii\S0378595512002523 2013) . 

 
Step 5 GJs (Cx26, Cx30) Mutations in either Cx26 or Cx30 are the major cause of non-
syndromic prelingual deafness in humans.  
 

� Zong L, Chen J, ZhuY, Zhao HB, Progressive age-dependence and frequency difference in the effect of gap 
junctions on active cochlear amplification and hearing, Communications, 489, 223-227 (2017) 

� Zhu, Y. et al., Active cochlear amplification is dependent on supporting cell gap junctions, Nat Commun,4, 1786 
(2013), Omim 604418. 

� Chang Q, Tang W, Ahmad S, Zhou B, Lin X, Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea 
is Compromised in Connexin30 Null Mice,. PLoS ONE 3 (12), e4088 (2008). 

 
Step 6 Phalanx of Deiters (GATE). Destruction of the phalanx cytoskeleton annihilates the 
electric effect of the DCs on the OHCs: 

� Yu N, Zhao HB, Modulation of Outer Hair Cell Electromotility by Cochlear Supporting Cells and Gap Junctions. 
PLoS ONE 4(11): e7923 (2009).  
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Step 7 Tight Junctions between phalanx of Deiters Cell and OHC cuticle; Mutation of the 
TJP2 gene causes autosomal dominant non-syndromic hearing loss (ADNSHL): 

� Kim MA, et al. Genetic Analysis of Genes Related to Tight Junction Function in the Korean Population with Non-
Syndromic Hearing Loss. PLoS ONE 9(4), e95646  (2014).  

� Wilcox ER et al., Mutations in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness 
DFNB29, Cell, 104: 165-172 (2001). 

� Tang VW. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic 
molecules. Biology Direct. 2006;1:37. 

� Itajiri S, Katsuno T. Tricellular Tight Junctions in the Inner Ear. BioMed Research International. 2016;2016:6137541. 

 
Step 8 Semi-conductors (Conjugated PUFAs and phospholipids, etc.); Genetic, dietary or 
toxic deficiencies of conjugated PUFAs in cuticular phospholipids, induce a downward 
sloping audiometric pattern: 

� OMIM# 253260 and  609019. 
� Wolf B, Spencer R, Gleason T., Hearing loss is a common feature of symptomatic children with profound biotinidase 

deficiency. J Pediatr 2002, 140,2:242–246  
� Tanigawa T, Adiponectin deficiency exacerbates age-related hearing impairment, Cell Death and Disease (2014) 5, 

e1189 
� Van Veldhoven PP, Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism, J. of 

Lipid Research, Thematic Review Series: Genetics of Human Lipid Diseases, 51, 2010 , p. 2885 
� Wanders RJA, Peroxisomes, lipid metabolism, and peroxisomal disorders, ASHG 2004 Meeting Toronto, Molecular 

Genetics and Metabolism, 83, 1–2, September–October 2004: 16–27  
� Braverman NE et al., Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, 

clinical manifestations, and treatment guidelines, Mol Genet Metab 117 : 313-21 (2016) 
� Zempleni J, Hassan YI, Wijeratne SS, Biotin and biotinidase deficiency. 

Expert Rev Endocrinol Metab 3 : 715–24 (2008) 
� March J, Advanced Organic Chemistry reactions, mechanisms and structure (3rd ed.). New York: John Wiley  and  

Sons (1985) 
� Hush, N. S., An Overview of the First Half-Century of Molecular Electronics. Annals of the New York Academy of 

Sciences, 1006: 1–20 (2006) 
� Inzelt, György "Chapter 1: Introduction". In Scholz, F. Conducting Polymers: A New Era in Electrochemistry. 

Monographs in Electrochemistry. Springer : 1–6. ISBN 978-3-540-75929-4. (2008) 
� Bard Allen J., Inzelt  György, Scholz Fritz, Electrochemical Dictionary : cuticular phospholipids, Springer Science 

and  Business Media. (2008) 
� Engelman DM. 2005. Membranes are more mosaic than fluid. Nature 438: 578–580 
� Jacobson K, Mouritsen OG, Anderson RGW. 2007. Lipid rafts: At a crossroad between cell biology and physics. Nat 

Cell Biol 9: 7–14. 
� Coskun U., Simons K. 2010. Membrane rafting: From apical sorting to phase segregation. FEBS Lett 584.  

 
Step 9 Doping by cholesterol rafts. The modulation of Voltage-gated calcium channels 
(VGCCs) and Big Potassium channels (BK) currents by cholesterol, and the associated 
changes in hair cell excitability may have implications for sensorineural hearing loss.  

� Purcell EK, Liu L, Thomas PV, Duncan RK. Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type 
Potassium Channels in Auditory Hair Cells. Dryer SE, ed. PLoS ONE; 6(10):e26289. 
doi:10.1371/journal.pone.0026289 (2011). 

� https://en.wikipedia.org/wiki/Niemann%E2%80%93Pick_disease,_type_C. 
� Oghalai JS., Pereira FA., and Brownell WE., Tuning of the Outer Hair Cell Motor by Membrane Cholesterol, J Biol 

Chem., 282(50): 36659–36670. (2007). doi: 10.1074/jbc.M705078200; Cf.  also Si 2. 
 
Step 10 Biasing. The lipid bilayer is associated with an electronic double layer 
(endocochlear potential), which is an essential component of a beneficial biasing imposed on 
the TkS. The (Cx26+/-/ Cx30+/-) digenic mutation, which decreases that bias, results in high 
frequencies hearing loss: 

� Mei L et al., A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of 
endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall, 

Neurobiol Dis. 108, 195-203 (2017). 
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Fig. 1a 

frequency 1062 Hz 

jbio_201200186_sm_video04.avi 

 
 Fig. 1b 

frequency 5175 Hz 

jbio_201200186_sm_video06.avi 

Excerpted instant photographs of OCT videos [from Burkhardt A. et al., Investigation of the 

human tympanic membrane oscillation ex vivo by Doppler OCT, J Biophotonics,7:434-441 

(2012).]. 

These videos show that the tympanic surface responds to the high frequencies in a much 

more fragmented way (Chladni phenomenon) than to the frequencies under 1500 Hz. 

 

Click here while simultaneously using the Ctrl key  : This figure shows the effect of Bessel 

functions resulting from vibrations imposed on a roughly circular thin membrane. This 

phenomenon is particularly at work in the vibratory phenomena discovered experimentally 

by Chladni. 

 

 

 
fig. 1c 

 
fig. 1d 

Amplitude of displacement versus frequency of umbo (c) and stapes footplate (d), for a range from 

100 to 10,000 Hz at 80 dBSPL (sound pressure). The amplitude of the displacements, at the 

entrance of the vestibular canal, decreases with the frequency. It is obvious that this amplitude 

participate to the control of the Traveling Wave. 

 

 

 

Figure 2 

Probes used for measurement on the eardrums 
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a 

 
b 

 

Figure 3 

Position of the electrodes of the probe :  
 It is possible to detect an electric potential isochronous to the acoustic vibration between an indeterminate point of the 

eardrum and the mastoid bone. 
 

 
Figure 4 

Relationship between piezotympanic voltage (fixed-effect corrected data) and acoustic frequency: 

estimated model for the two sound levels, 60 dB and 80dB (bold parabolic line) and 50 random 

models based on the estimated covariance matrix of coefficients (curves in between the two dotted 

lines and encompassing the bold line). 

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2019. ; https://doi.org/10.1101/561779doi: bioRxiv preprint 

https://doi.org/10.1101/561779
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 5 

3D and top view of the DOHC-complex organization 

 
Figure 6 

Diagram of OFET model, with added corresponding elements of Trickystor (brackets). 

 

 
Figure 7 

Simplified diagram of the cuticular bilayer 

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2019. ; https://doi.org/10.1101/561779doi: bioRxiv preprint 

https://doi.org/10.1101/561779
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 8 

Equivalent circuit:  classical pathway (in black);  “covert path”, our model (in red). 

 SLM  (Superior Ligament of Malleus): Collagenic ligament that crosses from the head of the 

malleus to the roof of the tympanic cavity (tegmentum attici). BEW: hypothetic Backward 

Electrical Wave (Cf. Si 12 OAE vs BEW). 

 

 
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 

Collagen II Annulus T. GJ Cx43 Root cell GJs Cx26,30 Phalanx TJs Semi-conductors Doping Biasing 

Figure 9 

'Sine Qua Non' demonstration of the covert path 

For each step indexed in fig. 9, we now give a brief description, and then we cite the references 

establishing the negative effect of any flaw on auditory functioning: 

 

Step 1 Collagen II of the eardrum and mastoid. Any flaw in the structure of type II 

collagen, accompanied by a defect in its piezoelectricity, causes hearing loss: 
 Liberfarb RM, et al., The Stickler syndrome Genet. Med,.5,  21-27 (2003) 
 Omim120140 

 

Step 2 The annulus fibrosus tympanicus
 
is the thickened peripheral rim of the pars tensa 

of the tympanic membrane; It is connected with the bony sulcus tympanicus via radial fiber 
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bundles, which continue directly into the tympanic bone. Osteoma of the osseous and 

fibrous annulus tympanicus can cause hearing impairment: 
 Uno Yoshihumi, The attachment structure of the guinea pig tympanic membrane, Auris Nasus Larynx, 27,45-

50(2000). 
 He Z., Vibration measurements on the widely exposed gerbil eardrum, Biomedical Engineering, partial fulfilment of 

Master of Engineering, McGill University (2012).  
 

Step 3 Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal 

recessive deafness: 

 Liu, X. Z., et al., Mutations in GJA1 (cx43) are associated with non-syndromic autosomal recessive deafness. Hum 
Molec Genet 10: 2945-2951, 2001. 
 

Step 4 Crossing spiral ligament via Root-cells may be central to pathological processes 

associated with various forms of hearing loss: 

 Jagger DJ, Forge A. The enigmatic root cell - emerging roles contributing to fluid homeostasis within the cochlear 
outer sulcus. Hear Res. 303, 1-11 (http:\www.sciencedirect.com\science\article\pii\S0378595512002523 2013) . 

 

Step 5 GJs (Cx26, Cx30) Mutations in either Cx26 or Cx30 are the major cause of non-

syndromic prelingual deafness in humans.  
 

 Zong L, Chen J, ZhuY, Zhao HB, Progressive age-dependence and frequency difference in the effect of gap 
junctions on active cochlear amplification and hearing, Communications, 489, 223-227 (2017) 

 Zhu, Y. et al., Active cochlear amplification is dependent on supporting cell gap junctions, Nat Commun,4, 1786 
(2013), Omim 604418. 

 Chang Q, Tang W, Ahmad S, Zhou B, Lin X, Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea 
is Compromised in Connexin30 Null Mice,. PLoS ONE 3 (12), e4088 (2008). 

 

Step 6 Phalanx of Deiters (GATE). Destruction of the phalanx cytoskeleton annihilates the 

electric effect of the DCs on the OHCs: 
 Yu N, Zhao HB, Modulation of Outer Hair Cell Electromotility by Cochlear Supporting Cells and Gap Junctions. 

PLoS ONE 4(11): e7923 (2009).  

 

Step 7 Tight Junctions between phalanx of Deiters Cell and OHC cuticle; Mutation of the 

TJP2 gene causes autosomal dominant non-syndromic hearing loss (ADNSHL): 
 Kim MA, et al. Genetic Analysis of Genes Related to Tight Junction Function in the Korean Population with Non-

Syndromic Hearing Loss. PLoS ONE 9(4), e95646  (2014).  
 Wilcox ER et al., Mutations in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness 

DFNB29, Cell, 104: 165-172 (2001). 
 Tang VW. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic 

molecules. Biology Direct. 2006;1:37. 
 Itajiri S, Katsuno T. Tricellular Tight Junctions in the Inner Ear. BioMed Research International. 2016;2016:6137541. 

 

Step 8 Semi-conductors (Conjugated PUFAs and phospholipids, etc.); Genetic, dietary or 

toxic deficiencies of conjugated PUFAs in cuticular phospholipids, induce a downward 

sloping audiometric pattern: 
 OMIM# 253260 and  609019. 
 Wolf B, Spencer R, Gleason T., Hearing loss is a common feature of symptomatic children with profound biotinidase 

deficiency. J Pediatr 2002, 140,2:242–246  
 Tanigawa T, Adiponectin deficiency exacerbates age-related hearing impairment, Cell Death and Disease (2014) 5, 

e1189 
 Van Veldhoven PP, Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism, J. of 

Lipid Research, Thematic Review Series: Genetics of Human Lipid Diseases, 51, 2010 , p. 2885 
 Wanders RJA, Peroxisomes, lipid metabolism, and peroxisomal disorders, ASHG 2004 Meeting Toronto, Molecular 

Genetics and Metabolism, 83, 1–2, September–October 2004: 16–27  
 Braverman NE et al., Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, 

clinical manifestations, and treatment guidelines, Mol Genet Metab 117 : 313-21 (2016) 
 Zempleni J, Hassan YI, Wijeratne SS, Biotin and biotinidase deficiency. 

Expert Rev Endocrinol Metab 3 : 715–24 (2008) 
 March J, Advanced Organic Chemistry reactions, mechanisms and structure (3rd ed.). New York: John Wiley  and  

Sons (1985) 
 Hush, N. S., An Overview of the First Half-Century of Molecular Electronics. Annals of the New York Academy of 

Sciences, 1006: 1–20 (2006) 
 Inzelt, György "Chapter 1: Introduction". In Scholz, F. Conducting Polymers: A New Era in Electrochemistry. 

Monographs in Electrochemistry. Springer : 1–6. ISBN 978-3-540-75929-4. (2008) 
 Bard Allen J., Inzelt  György, Scholz Fritz, Electrochemical Dictionary : cuticular phospholipids, Springer Science 

and  Business Media. (2008) 
 Engelman DM. 2005. Membranes are more mosaic than fluid. Nature 438: 578–580 
 Jacobson K, Mouritsen OG, Anderson RGW. 2007. Lipid rafts: At a crossroad between cell biology and physics. Nat 

Cell Biol 9: 7–14. 
 Coskun U., Simons K. 2010. Membrane rafting: From apical sorting to phase segregation. FEBS Lett 584.  
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Step 9 Doping by cholesterol rafts. The modulation of Voltage-gated calcium channels 

(VGCCs) and Big Potassium channels (BK) currents by cholesterol, and the associated 

changes in hair cell excitability may have implications for sensorineural hearing loss.  
 Purcell EK, Liu L, Thomas PV, Duncan RK. Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type 

Potassium Channels in Auditory Hair Cells. Dryer SE, ed. PLoS ONE; 6(10):e26289. 
doi:10.1371/journal.pone.0026289 (2011). 

 https://en.wikipedia.org/wiki/Niemann%E2%80%93Pick_disease,_type_C. 
 Oghalai JS., Pereira FA., and Brownell WE., Tuning of the Outer Hair Cell Motor by Membrane Cholesterol, J Biol 

Chem., 282(50): 36659–36670. (2007). doi: 10.1074/jbc.M705078200; Cf.  also Si 2. 
 

Step 10 Biasing. The lipid bilayer is associated with an electronic double layer 

(endocochlear potential), which is an essential component of a beneficial biasing imposed on 

the TkS. The (Cx26
+/-

/ Cx30
+/-

) digenic mutation, which decreases that bias, results in high 

frequencies hearing loss: 
 Mei L et al., A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of 

endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall, 

Neurobiol Dis. 108, 195-203 (2017). 
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