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Since its discovery almost three decades ago, the Janus ki-
nase (JAK)-signal transducer and activator of transcription
(STAT) pathway has paved the road for understanding inflam-
matory and immunity processes related to a wide range of hu-
man pathologies including cancer. Several studies have demon-
strated the importance of JAK-STAT pathway components in
regulating tumor initiation and metastatic progression, yet, the
extent of how genetic alterations influence patient outcome is
far from being understood. Focusing on 133 genes involved in
JAK-STAT signaling, we found that copy number alterations
underpin transcriptional dysregulation that differs within and
between cancer types. Integrated analyses on over 18,000 tu-
mors representing 21 cancer types revealed a core set of 28 JAK-
STAT pathway genes that correlated with survival outcomes in
brain, renal, lung and endometrial cancers. High JAK-STAT
scores were associated with increased mortality rates in brain
and renal cancers, but not in lung and endometrial cancers
where hyperactive JAK-STAT signaling is a positive prognos-
tic factor. Patients with aberrant JAK-STAT signaling demon-
strated pan-cancer molecular features associated with misex-
pression of genes in other oncogenic pathways (Wnt, MAPK,
TGF-β, PPAR and VEGF). Brain and renal tumors with hyper-
active JAK-STAT signaling had increased regulatory T cell gene
(Treg) expression. A combined model uniting JAK-STAT and
Tregs allowed further delineation of risk groups where patients
with high JAK-STAT and Treg scores consistently performed
the worst. Providing a pan-cancer perspective of clinically-
relevant JAK-STAT alterations, this study could serve as a
framework for future research investigating anti-tumor immu-
nity using combination therapy involving JAK-STAT and im-
mune checkpoint inhibitors.

JAK-STAT | pan-cancer | tumor immunity | glioma | renal cancer

Correspondence: alvina.lai@ndm.ox.ac.uk

Introduction

In their quest to survive and prosper, tumor cells are
armored with a unique ability to manipulate the host’s
immune system and promote pro-inflammatory pathways.
Inflammation can both initiate and stimulate cancer progres-
sion, and in turn, tumor cells can create an inflammatory
microenvironment to sustain their growth further(1, 2).
Cytokines are secretable molecules that influence immune
and inflammatory processes of nearby and distant cells.

Although cytokines are responsible for inflammation in
cancer, spontaneous eradication of tumors by endoge-
nous immune processes rarely occurs. Moreover, the
dynamic interaction between tumor cells and host immu-
nity shields tumors from immunological ablation, which
overall limits the efficacy of immunotherapy in the clinic.

Cytokines can be pro- or anti-inflammatory and are inter-
dependent on each other’s function to maintain immune
homeostasis(3). Discovered as a critical regulator of cytokine
signaling, the Janus kinase (JAK) - signal transducer and
activator of transcription (STAT) pathway allows cytokines
to transduce extracellular signals into the nucleus to regulate
gene expression implicated in a myriad of developmental
processes including cellular growth, differentiation and host
defense(4). JAK proteins interact with cytokine receptors to
phosphorylate signaling substrates including STATs. Unlike
normal cells which phosphorylate STATs temporarily,
several STAT proteins were found to be persistently phos-
phorylated and activated in cancer(5). Studies have shown
that persistent activation of STAT3 and STAT5 promote
inflammation of the microenvironment, tumor proliferation,
invasion and suppress anti-tumor immunity(5). Particularly
in cancers associated with chronic inflammation such as liver
and colorectal cancers(6, 7), STAT3 activation by growth
factors or interleukins suppresses T cell activation and
promotes the recruitment of anti-immunity factors such as
myeloid-derived suppressor cells and regulatory T cells(8, 9).

Given its fundamental roles in interpreting environmental
cues to drive a cascade of signaling events that control
growth and immune processes, it is essential to dissect
cell type-specific roles of the JAK-STAT pathway in a
pan-cancer context. This is made possible by advances in
high-throughput sequencing initiatives and as many genetic
alterations have become targetable, detail understanding on
genetic variations would be essential to identify particular
weaknesses in individual tumors in order to boost therapeutic
success. We predict that genetic alterations in JAK-STAT
pathway genes do not occur equally between and within
cancer types. Moreover, detection of rare alterations would
require a large sample size to unravel genes that are altered
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within specific histological subtypes of cancer. With over
18,000 samples representing 21 cancer types, we took the
opportunity to systematically characterize genetic alterations
within 133 JAK-STAT pathway genes to uncover shared
commonalities and differences. To identify functionally
relevant alterations, genetic polymorphisms were overlaid
with transcript expression profiles and correlated with clin-
ical outcomes. Our study identifies a core set of candidate
JAK-STAT drivers that correlated with tumor progression
and that predict overall survival outcomes in brain, re-
nal, lung and endometrial cancers converging on similar
downstream oncogenic pathways. This work provides a
rich source of cancer type-dependent alterations that could
serve as novel therapeutic targets to support underexploited
treatment initiatives targeting JAK-STAT signaling in cancer.

Methods
All plots were generated using R
packages (pheatmap and ggplot2).

Cancer cohorts and JAK-STAT pathway genes: 133
JAK-STAT pathway genes were obtained from the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) database listed
in Table S1. Genomic, transcriptomic and clinical datasets of
21 cancer types (n=18,484) were retrieved from The Cancer
Genome Atlas (TCGA)(10). The following is a list of cancer
cohorts and corresponding TCGA abbreviations in parenthe-
ses: bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), cholangio-
carcinoma (CHOL), colon adenocarcinoma (COAD),
esophageal carcinoma (ESCA), glioblastoma multiforme
(GBM), glioma (GBMLGG), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), pan-
kidney cohort (KIPAN), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pancreatic
adenocarcinoma (PAAD), sarcoma (SARC), stomach ade-
nocarcinoma (STAD), stomach and esophageal carcinoma
(STES) and uterine corpus endometrial carcinoma (UCEC).

Copy number variation analyses: Level 4 GISTIC copy
number variation datasets were downloaded from the
Broad Institute GDAC Firehose(11). Discrete amplifica-
tion and deletion indicators were obtained from GISTIC
gene-level tables. Genes with GISTIC values of 2 were
annotated as deep amplification events, while genes with
values of -2 were annotated as deep (homozygous) deletion
events. Shallow amplification and deletion events were
annotated for genes with values of +1 and -1 respectively.

Calculating JAK-STAT and regulatory T cell scores: A
JAK-STAT 28-gene signature was developed from putative
gain- or loss-of-function candidates. For each patient, 28-
gene scores were calculated from the average log2 expression

of signature genes: IL7, IFNG, MPL, IL11, IL2RA, IL21R,
OSMR, IL20RA, IFNGR1, CDKN1A, CISH, SOCS1, IL10,
IL10RA, STAT2, IL24, IL23A, PIAS3, IFNLR1, EPO,
TSLP, BCL2, IL20RB, IL11RA, PTPN6, IL13, IL17D and
IL15RA. Regulatory T cell (Treg) scores were determined
by taking the mean expression of 31 Treg genes identified
from the overlap of four Treg signatures to generate a more
representative gene set that is cell type-independent(12–15).

Multidimensional scaling, survival and differential
expression analyses: We previously published detailed
methods on the above analyses(16–18) and thus the methods
will not be repeated here. Briefly, multidimensional scaling
analyses based on Euclidean distance in Fig. 2F were
performed using the vegan package in R(19). Permuta-
tional multivariate analysis of variance (PERMANOVA)
was used to determine statistical significance between
tumor and non-tumor samples. Survival analyses were
performed using Cox proportional hazards regression
and the Kaplan-Meier method coupled with the log-rank
test. Predictive performance of the 28-gene signature
was assessed using the receiver operating characteristic
analysis. To determine the prognostic significance of a
combined model uniting the JAK-STAT signature and IRF8
expression or Treg scores, patients were separated into four
survival categories based on median 28-gene scores and
IRF8 expression or Treg scores for Kaplan-Meier and Cox
regression analyses. To determine the transcriptional effects
of aberrant JAK-STAT signaling, differential expression
analyses were performed on patients within the 4th versus
1st survival quartiles (stratified using the 28-gene signature).

Functional enrichment and transcription factor anal-
yses: Differentially expressed genes (DEGs) identified
above were mapped to KEGG and Gene Ontology
(GO) databases using GeneCodis(20) to determine sig-
nificantly enriched pathways and biological processes.
DEGs were also mapped to ENCODE and ChEA
databases using Enrichr(21, 22) to identify transcrip-
tion factors that were significant regulators of the DEGs.

Results
Copy number and transcriptome analyses reveal con-
served driver mutations in JAK-STAT pathway genes

We interrogated genomic and transcriptomic landscape of
133 JAK-STAT pathway genes in 18,484 patients across
21 cancer types (Table S1). To investigate the effects of
JAK-STAT pathway genomic alterations on transcriptional
output, we first analyzed copy number variation (CNV) of all
133 genes. CNVs were classified into four categories: low-
level amplifications, deep amplifications, low-level deletions
(heterozygous deletions) and deep deletions (homozygous
deletions). Lung squamous cell carcinoma (LUSC) and
papillary renal cell carcinoma (KIRP) had the highest and
lowest fraction of samples with deleted JAK-STAT pathway
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Fig. 1. Pan-cancer genomic and transcriptomic alterations of JAK-STAT pathway genes. Stacked bar charts depict the fraction of altered samples for each of the 40 putative
driver genes. Heatmap in the center illustrates the fraction of somatic gains and losses per gene within each cancer type. Heatmap below illustrates differential expression
profiles (tumor vs. non-tumor) for each gene. Hierarchical clustering is performed on columns (genes) using Euclidean distance metric. Cancer abbreviations are listed in the
Methods section.

genes respectively (Table S2). In terms of gene amplification,
this was also the highest in lung squamous cell carcinoma
(LUSC) and the lowest in pancreatic adenocarcinoma
(PAAD) (Table S2). To identify pan-cancer CNV events,
we focused on genes that were deleted or amplified in at
least one-third of cancer types ( 7 cancers). We identified
71 and 49 genes that were recurrently deleted and amplified
respectively in at least 20% of samples within each cancer
type and at least 7 cancer types (Table S2). Esophageal
carcinoma (ESCA) had 70 genes that were recurrently
deleted while only four recurrently deleted genes were found
in papillary renal cell carcinoma (KIRP). When considering
recurrent gene amplifications, lung adenocarcinoma (LUAD)
had the highest number of gains (48 genes), while the lowest
number of gene gains was observed in glioma (GBMLGG)
(3 genes) (Table S2). CNV events associated with tran-
scriptional changes could represent candidate driver genes.
Loss-of-function genes can be identified from genes that
were recurrently deleted and downregulated at the transcript
level. Similarly, genes that were concomitantly gained and
upregulated could represent a gain-of-function. Differential
expression profiles (tumor vs. non-tumor) were intersected

with CNV profiles and we identified 40 driver genes rep-
resenting potential loss- or gain-of-function (Fig. 1). In at
least 7 cancer types, 18 genes were recurrently deleted and
downregulated (log2 fold-change < -0.5, P < 0.01), while a
non-overlapping set of 22 genes were recurrently amplified
and upregulated (log2 fold-change > 0.5, P < 0.01) (Fig. 1).

JAK-STAT driver genes predict over-
all survival in diverse cancer types

Focusing on the 40 driver genes identified above, we next
analyzed whether expression levels of individual genes were
associated with overall survival outcomes. Cox proportional
hazards regression analyses demonstrated that all 40 genes
harbored prognostic information in at least one cancer type.
IL11, PTPN6 and CISH were significantly associated with
survival outcomes in patients from 9 cancer cohorts (Fig.
2A). In contrast, IL19, CNTFR and JAK2 were some of
the least prognostic genes (Fig. 2A). When deciphering
the contribution of individual genes across cancer types,
we observed that the glioma (GBMLGG) cohort had the
highest number of prognostic genes (31/40 genes) (Fig.
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Fig. 2. Prognostic significance of JAK-STAT driver genes. (A) Heatmap illustrates hazard ratio values obtained from Cox proportional hazards regression on 40 candidate
drivers across all cancer types. (B) Heatmap illustrates Spearman’s correlation coefficient values comparing hazard ratios of the 40 driver genes. Highly correlated genes are
highlighted in red and are demarcated by a red box. (C) Box plots represent the distribution of 28-gene scores derived from highly correlated JAK-STAT driver genes. Cancers
are ranked from high to low median scores. (D) Heatmap depicts the Z-scores for each of the 28 genes by cancer types. (E) Kaplan-Meier analyses confirmed prognosis of
the 28-gene signature in five cancer cohorts. Patients are separated into 4th and 1st survival quartiles based on their 28-gene scores. P values are obtained from log-rank
tests. (F) Ordination plots of multidimensional scaling analyses using signature genes reveal significant differences between tumor and non-tumor samples. P values are
obtained from PERMANOVA tests. (G) Expression distribution of 28-gene scores in tumors stratified by stage (s1, s2, s3 and s4). P values are determined using ANOVA.
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Fig. 3. The 28-gene signature is independent of tumor, node and metastasis (TNM) stage. (A) Receiver operating characteristic analysis is used to assess the predictive
performance of the signature and TNM stage. For glioma patients, area under the curves (AUCs) are compared between histological subtypes. (B) Kaplan-Meier analyses of
patients stratified by tumor stage or, in the case of glioma, by histological subtype and the 28-gene signature. For histological subtypes of glioma, log-rank tests are used to
compare patients within the 1st and 4th survival quartiles. For the other cancers, patients are first stratified according to TNM stage followed by median-stratification into low-
and high-score groups using the 28-gene signature. P values are obtained from log-rank tests.

2A). On the other hand, none of the 40 driver candidates
were prognostic in esophageal carcinoma (ESCA) and
cholangiocarcinoma (CHOL), which suggests the minimal
contribution of JAK-STAT signaling in driving tumor
progression in these cancer types (Fig. 2A). To identify a
core set of prognostic genes denoting pan-cancer signifi-
cance, we performed Spearman’s correlation analyses on
hazard ratio (HR) values obtained from Cox regression and
identified 28 highly-correlated genes: IL7, IFNG, MPL,
IL11, IL2RA, IL21R, OSMR, IL20RA, IFNGR1, CDKN1A,
CISH, SOCS1, IL10, IL10RA, STAT2, IL24, IL23A, PIAS3,
IFNLR1, EPO, TSLP, BCL2, IL20RB, IL11RA, PTPN6,
IL13, IL17D and IL15RA (Fig. 2B). These genes were col-
lectively regarded as a pan-cancer JAK-STAT signature. To
determine the extent of JAK-STAT pathway variation across
cancer types, we calculated an activity score based on the
mean expression of the 28 genes. When cancers were sorted
according to their pathway activity scores, chromophobe
renal cell cancer (KICH) had the lowest median score while
the highest median score was observed in head and neck
cancer (HNSC) (Fig. 2C). Hierarchical clustering of the 28

driver genes demonstrated that they exhibited a wide range
of expression depending on the cellular context where they
could serve as potential candidates for therapy. For example,
IL7, IL15RA, IL21R, IL10, OSMR, IFNGR1, IL10RA,
IL2RA, IFNG, IL24, SOCS1, IL20RA, IL11 and IL23A
were highly expressed in gastrointestinal cancers (PAAD,
STAD and STES) (Fig. 2D). When the 28-gene scores
were employed for patient stratification, we observed that
the JAK-STAT signature conferred prognostic information
in five diverse cancer cohorts (Fig. 2E). Intriguingly, the
significance of the signature in predicting overall survival
was cancer type-dependent. Kaplan-Meier analyses and
log-rank tests revealed that patients with high scores (4th
quartile) had higher death risks in glioma (P<0.0001),
pan-kidney (consisting of chromophobe renal cell, clear
cell renal cell and papillary renal cell cancers; P<0.0001)
and clear cell renal cell (P<0.0001) cohorts (Fig. 2E). In
contrast, high expression of signature genes was linked to
improved survival rates in lung (P=0.025) and endometrial
(P=0.032) cancers (Fig. 2E). These results were indepen-
dently corroborated using Cox regression analyses: glioma
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(HR=6.832, P<0.0001), pan-kidney (HR=3.335, P<0.0001),
clear cell renal cell (HR=4.292, P<0.0001), lung (HR=0.624,
P=0.028) and endometrium (HR=0.504, P=0.027) (Table
S3). Since high expression of signature genes was associated
with poor survival outcomes in brain and renal cancers, as
expected, we observed a significant increase in expression
scores according to tumor stage (Fig. 2G). An opposite
trend was observed in lung and endometrial cancers where
more aggressive tumors had lower expression scores (Fig.
2F). Lastly, multidimensional scaling analyses of signature
genes in the five cohorts revealed significant differences
between tumor and non-tumor samples, implying that
dysregulated JAK-STAT signaling may serve as a diagnostic
marker for early detection in pre-cancerous lesions (Fig. 2F).

The JAK-STAT 28-gene signature
is an independent prognostic factor

Multivariate Cox regression analyses confirmed that the sig-
nature was independent of tumor, node and metastasis (TNM)
stage: glioma (HR=2.377, P=0.018), pan-kidney (HR=2.468,
P<0.0001), clear cell renal cell (HR=2.552, P=0.00047),
lung (HR=0.636, P=0.031) and endometrium (HR=0.434,
P=0.033) (Table S3). Given that the signature was an in-
dependent predictor of overall survival, we reasoned that its
predictive performance could be increased when used in con-
junction with TNM staging. Employing the receiver oper-
ating characteristic (ROC) analysis, we demonstrated that
a combined model uniting the signature and TNM staging
could outperform the signature (higher area under the curve
[AUC] values) when it was considered alone: pan-kidney
(0.838 vs. 0.800), clear cell renal cell (0.836 vs. 0.789),
lung (0.724 vs. 0.703) and endometrium (0.760 vs. 0.713)
(Fig. 3A). Independently, Kaplan-Meier analyses and log-
rank tests confirmed that the signature allowed further delin-
eation of risk groups within similarly-staged tumors: pan-
kidney (P<0.0001), clear cell renal cell (P<0.0001), lung
(P<0.0001) and endometrium (P<0.0001) (Fig. 3B).
High JAK-STAT scores were associated with decreased
survival rates in glioma patients. We confirmed that this was
also true for histological subtypes of glioma: astrocytoma
(P=0.015) and oligoastrocytoma (P=0.037) (Fig. 3B).
Independently confirmed using Cox regression, patients
within the 4th survival quartile had lower survival rates:
astrocytoma (HR=2.377, P=0.018) and oligoastrocytoma
(HR=2.730, P=0.038) (Table S3). In terms of the signa-
ture’s predictive performance, ROC analyses revealed that
it performed the best in oligoastrocytoma (AUC=0.951),
followed by astrocytoma (AUC=0.878) and glioma patients
when considered as a full cohort (AUC=0.853) (Fig. 3A).

Consequences of dysregulated JAK-STAT signal-
ing and significant crosstalk with tumor immunity

Since dysregulated JAK-STAT signaling was associated
with survival outcomes (Fig. 2 and Fig. 3), we reasoned
that patients from diverse cancer types might harbor similar

transcriptional defects caused by aberrant activation of
JAK-STAT. Differential expression analyses performed
between the 4th and 1st quartile patients revealed that a
striking number of over 200 differentially expressed genes
(DEGs) were shared between all five prognostic cohorts
(Fig. 4A; Table S4). Significant overlaps were observed in
DEGs where 555 genes were found in at least four cohorts,
1,009 genes in at least three cohorts and 2,034 genes in
at least two cohorts (Fig. 4A; Table S4). The highest
number of DEGs was observed in glioma (2,847 genes),
followed by pan-kidney (2,810 genes), lung (1,221 genes),
clear cell renal cell (1,161 genes) and endometrial (782
genes) cancers (Fig. 4A; Table S4). To determine their
functional roles, the DEGs were mapped to Gene Ontology
(GO) and KEGG databases. All five cohorts exhibited
remarkably similar patterns of enriched biological processes
(Fig. 4B). Pan-cancer enrichments of ontologies related to
inflammation and immune function were observed, e.g.,
cytokine and chemokine signaling, T cell and B cell receptor
signaling, natural killer cell-mediated processes, Toll-like
receptor signaling and NOD-like receptor signaling (Fig.
4B). Additionally, genes associated with other oncogenic
pathways (Wnt, MAPK, TGF-β, PPAR and VEGF)(23–25)
were frequently altered at both transcriptional and genomic
levels (Fig. 4B and 4C). CNV analyses performed on
DEGs that were found to be in common in at least three
cohorts demonstrated that transcriptional dysregulation of
the aforementioned oncogenic pathways was attributed to
activating or inactivating CNVs (Fig. 4C). For instance,
except for THBS1 and THBS2, a vast majority of TGF-β
DEGs exhibited somatic gains (Fig. 4C). To further explore
which upstream transcriptional regulators were involved, we
mapped the DEGs to ENCODE and ChEA databases (Fig.
4B). Interestingly, we observed significant enrichment of
transcription factors (TFs) involved in modulating immune
function: IRF8(26), RUNX1(27), RELA(28) and EZH2(29)
(Fig. 4B). Taken together, our analyses revealed that
pan-cancer JAK-STAT drivers underpin numerous aspects
of tumor oncogenesis and immunity, which play important
roles in tumor progression and ultimately patient prognosis.

IRF8 and JAK-STAT pathway synergistically in-
fluence survival outcomes in glioma and renal cancer

IRF8 was among one of the most enriched TFs implicated
in the regulation of transcriptional outputs of patients with
dysregulated JAK-STAT signaling (Fig. 4B). As a member
of the interferon regulatory factor family, IRF8 is needed for
the development of immune cells and is often regarded as a
tumor suppressor gene since a loss of function is associated
with increased metastatic potential(30, 31). Thus, we predict
that tumors with low expression of IRF8 would be more
aggressive. To evaluate the combined relationship between
JAK-STAT signaling and IRF8 expression, patients were
categorized into four groups based on median IRF8 and JAK-
STAT scores: 1) high-high, 2) low-low, 3) high IRF8 and low
28-gene score and 4) low IRF8 and high 28-gene score. The
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Fig. 4. Aberrant JAK-STAT signaling drives malignant progression through crosstalk with other oncogenic pathways. (A) Venn diagram depicts the number of overlapping
differentially expressed genes (DEGs) in five cohorts. Differential expression analyses are performed between patients stratified into the 4th and 1st survival quartiles using
the JAK-STAT signature in five cancer cohorts. (B) Functional enrichment analyses are performed by mapping DEGs to the Gene Ontology and KEGG databases. Mapping
of DEGs to ENCODE and ChEA databases identify enriched transcription factor binding associated with DEGs. (C) Somatic copy number alteration frequencies for DEGs
identified from enriched pathways in B. Heatmaps depict the fraction of somatic gains and losses for DEGs found within five oncogenic pathways. Only genes that are altered
in more than 10% of samples within each tumor type are shown.

combined model encompassing JAK-STAT and IRF8 offered
an additional resolution in patient stratification: glioma (full-
cohort, P<0.0001), astrocytoma (P=0.0007), pan-kidney
(P<0.0001) and clear cell renal cell (P<0.0001) (Fig. 5A).
Indeed, patients with low IRF8 and high 28-gene scores
performed the worst in cancers where hyperactive JAK-
STAT signaling was linked to adverse survival outcomes:
glioma (full-cohort: HR=5.826, P<0.0001), astrocytoma
(HR=3.424, P=0.0032), pan-kidney (HR=5.131, P<0.0001)
and clear cell renal cell (HR=5.389, P<0.0001) (Fig. 5B).
Our results support a model in which IRF8 influences
the behavior of tumors with aberrant JAK-STAT signaling.

Hyperactive JAK-STAT signal-
ing attenuates tumor immunity

Given the wide-ranging effects of JAK-STAT signaling on
immune-related functions, we hypothesized that JAK-STAT
activity would correlate with immune cell infiltration. We re-

trieved genes implicated in regulatory T cell (Treg) function
from four studies and isolated 31 genes that were common in
all four Treg signatures(12–15). Treg scores were calculated
for each patient based on the mean expression levels of
the 31 genes. Remarkably, we observed strong positive
correlations between Treg and JAK-STAT scores, suggesting
that tumor tolerance was enhanced in patients with hyper-
active JAK-STAT signaling: glioma (rho=0.85, P<0.0001),
pan-kidney (rho=0.88, P<0.0001) and clear cell renal cell
(rho=0.83, P<0.0001) (Fig. 6A). As in the previous section,
patients were stratified into four categories based on median
JAK-STAT and Treg scores for survival analyses. Log-rank
tests and Cox regression analyses confirmed that elevated
Treg activity further exacerbated disease phenotypes in
patients where JAK-STAT scores were already high: glioma
(full cohort, HR=6.183, P<0.0001), astrocytoma (HR=3.035,
P=0.00042), pan-kidney (HR=3.133, P<0.0001) and clear
cell renal cell (HR=2.982, P<0.0001) (Fig. 6B and 6C).
Taken together, elevated JAK-STAT signaling may increase
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Fig. 5. Prognostic relevance of the crosstalk between JAK-STAT signaling and IRF8.
(A) Patients are grouped into four categories based on median 28-gene and IRF8
expression values. Kaplan-Meier analyses are performed on the four patient groups
to determine the ability of the combined JAK-STAT-IRF8 model in determining over-
all survival in glioma and renal cancers. P values are obtained from log-rank tests.
(B) Table inset shows univariate Cox proportional hazards analyses of the relation-
ship between JAK-STAT signaling and IRF8. Significant P values are highlighted in
bold. CI = confidence interval.

the ability of tumors to escape immunosurveillance, resulting
in more aggressive tumors and increased mortality rates.

Discussion
Tumor-promoting and tumor-suppressing roles of JAK-STAT
signaling is very much cell type-dependent (Fig. 1, Fig. 2,
Fig. 3). JAK-STAT activation appears to drive oncogenic
progression in liver cancer(32) and infection with hepati-
tis viruses could also induce pathway activation(33, 34).
Moreover, liver tumors with downregulated SOCS proteins
(inhibitors of JAK-STAT signaling) are associated with poor
prognosis(32). JAK and STAT3 promote cell proliferation,
invasion and migration in colorectal cancer through the reg-
ulation of cell adhesion molecules and growth factors(35).
In contrast, phosphorylated STAT5 promotes cellular
differentiation and inhibits invasive properties in breast
cancer cells(36, 37). A decrease in STAT5 is also linked to
poorly differentiated morphology and advance histological
grades in breast tumors(38, 39). Similarly, in rectal cancers,
patients with tumors positive for phosphorylated STAT3 had
improved survival outcomes(40). In contrast, high levels of
phosphorylated STAT3 is associated with reduced survival
rates in glioblastoma(41) and renal cancer(42), which inde-
pendently corroborates our findings on the tumor-promoting
effects of JAK-STAT signaling in these cancer types (Fig. 2
and 3). Given its ambiguous role, understanding the function
of JAK-STAT signaling in a pan-cancer context would
be necessary to increase the success of therapy in tumors
with abnormal pathway activity. In an integrated approach
employing genomic, transcriptomic and clinical datasets,
we elucidated pan-cancer patterns of JAK-STAT signaling
converging on a core set of candidate driver genes known as
the JAK-STAT 28-gene signature (Fig. 2). We demonstrated
prognosis of the signature in five cancer cohorts (n=2,976),
where its performance was independent of TNM stage
(Fig. 2 and 3). Patients with aberrant JAK-STAT signaling
exhibited interactions with other major oncogenic pathways,
including MAPK, Wnt, TGF-β, PPAR and VEGF (Fig. 4).
This suggests that co-regulation of intracellular signaling
cascades could have direct functional effects and combi-
natorial therapies simultaneously targeting these pathways
may improve treatment efficacy and overcome resistance.

We demonstrated that hyperactivation of JAK-STAT signal-
ing promotes the loss of anti-tumor immunity in glioma and
renal cancer patients (Fig. 6). In tumor cells, constitutive
activation of STAT3 inhibits anti-tumor immune response
by blocking the secretion of proinflammatory cytokines
and suppressing dendritic cell function(43). Furthermore,
hyperactivation of STAT3 is linked to abnormal differen-
tiation of dendritic cells in colon cancer cells(44). STAT3
promotes interleukin-10-dependent Treg function(45) while
STAT5 promotes Treg differentiation(46). We demonstrated
that in glioma and renal cancer, JAK-STAT scores were
strongly correlated with Treg expression scores, suggesting
that persistent activation of JAK-STAT could promote tumor
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Fig. 6. Tumors with hyperactive JAK-STAT signaling are hypoimmunogenic. (A) Scatter plots depict significant positive correlations between 28-gene and regulatory T cell
(Treg) scores in glioma and renal cancer patients. Patients are grouped into four categories based on median 28-gene and Treg scores. Density plots at the x- and y-axes
show the distribution of 28-gene and Treg scores. (B) Kaplan-Meier analyses are performed on the four patient groups to determine the ability of the combined JAK-STAT-Treg
model in determining overall survival in glioma histological subtypes and renal cancer. P values are obtained from log-rank tests. (C) Table inset shows univariate Cox
proportional hazards analyses of the relationship between JAK-STAT signaling and anti-tumor immunity. Significant P values are highlighted in bold. CI = confidence interval.
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immune evasion in these cancers (Fig. 6). Moreover, in tu-
mors with high levels of JAK-STAT signaling and low IRF8
expression (a TF involved in regulating innate and adaptive
immune responses), we observed a dramatic decrease in
overall survival rates (Fig. 5). IRF8 is essential for dendritic
cell development and proatherogenic immune responses(47).
Moreover, IRF8 is crucial for NK-cell-mediated immunity
against mouse cytomegalovirus infection(48). Promoter
hypermethylation and gene silencing of IRF8 abrogates
cellular response to interferon stimulation and overexpres-
sion of IRF8 in nasopharyngeal, esophageal and colon
cancer cell lines could inhibit clonogenicity(31). IRF8
expression is also negatively correlated with metastatic
potential by increasing tumor resistance to Fas-mediated
apoptosis(30). Together, our results and those of others
support the tumor suppressive roles of IRF8. Importantly,
loss of IRF8 may further suppress tumor immunity in
patients with hyperactive JAK-STAT signaling. A number
of JAK inhibitors (tofacitinib, ruxolitinib and oclacitinib)
have been FDA-approved and along with 2nd-generation
JAKinibs and STAT inhibitors currently undergoing
testing(49), our signature can be used for patient stratifi-
cation before adjuvant treatment with these inhibitors to
enable selective targeting of tumors that are likely to respond.

Conclusion
What started as an initiative to understand JAK-STAT path-
way genes that are somatically altered in varying combina-
tions and frequencies across diverse cancer types has now
resulted in a framework that supports selective targeting
of novel candidates in a broad spectrum of cancers. Our
study also reveals important crosstalk between JAK-STAT
and other oncogenic pathways and when targeted together,
this could radically improve clinical outcomes. Other re-
searchers can harness this novel set of data and the JAK-
STAT gene signature in the future for prospective validations
in clinical trials and functional studies involving JAK-STAT
inhibitors and immune checkpoint blockade.
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