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Abstract: Navigated TMS mapping of cortical muscle representations allows noninvasive assessment of the 11 
state of a healthy or diseased motor system and monitoring its change with time. These applications are 12 
hampered by the heterogeneity of existing mapping algorithms and the lack of detailed information about their 13 
accuracy. We aimed to find an optimal motor evoked potential (MEP) sampling scheme in the grid-based 14 
mapping algorithm in terms of the accuracy of muscle representation parameters. The APB muscles of eight 15 
healthy subjects were mapped three times on consecutive days using a seven-by-seven grid with ten stimuli 16 
per cell. The effect of the MEP variability on the parameter accuracy was assessed using bootstrapping. The 17 
accuracy of representation parameters increased with the number of stimuli without saturation up to at least 18 
ten stimuli per cell. The detailed sampling showed that the between-session representation area changes in the 19 
absence of interventions were significantly larger than the within-session fluctuations and thus could not be 20 
explained solely by the trial-to-trial variability of MEPs. The results demonstrate that the number of stimuli 21 
has no universally optimal value and must be chosen by balancing the accuracy requirements with the mapping 22 
time constraints in a given problem. 23 

Keywords: navigated transcranial magnetic stimulation; TMS motor mapping; cortical muscle representation; 24 
bootstrapping; variability; accuracy 25 

 26 

1. Introduction 27 

Mapping cortical motor representations of muscles using navigated transcranial magnetic stimulation 28 
(nTMS) is a valuable noninvasive method providing information about the motor system that is useful for 29 
research and clinical purposes [1–3]. Its ability to localize motor eloquent cortical areas has found successful 30 
applications in preoperative planning [4,5]. Additionally, a growing body of literature is concerned with the use 31 
of nTMS mapping for assessing the state of the motor system and its plastic changes during learning of new 32 
skills [6–9], in neurological diseases, such as stroke [10], dystonia [11], spinal cord injury [12,13], amyotrophic 33 
lateral sclerosis [14], as well as in the course of treatment [15]. For identifying the possibly subtle differences 34 
in motor maps, it is essential to make the method precise and reliable. Meanwhile, the high variability of motor 35 
evoked potentials (MEPs), on which the TMS-maps are based, makes the accurate estimation of representation 36 
parameters challenging [16–18]. 37 

The interpretation of the results of TMS mapping is complicated by the lack of a standard protocol and the 38 
existence of a wide variety of approaches to the mapping procedure, the selection of the studied muscle 39 
representation parameters and methods of their calculation [10,19]. One of the most frequently used approaches 40 
is based on a predefined grid of cortical points with application of a fixed number of stimuli at each point 41 
[20,21]. The studies using this method are heterogeneous in terms of the number of grid cells, their size and the 42 
number of stimuli per cell [10,21–25]. Given the high variability of MEPs, the number of stimuli per cell is an 43 
important factor influencing the accuracy of the representation parameters [20,26]. 44 

The reproducibility of muscle representation parameters and their stability in the absence of interventions 45 
is one of the key aspects for the application of navigated TMS motor mapping for research and clinical purposes 46 
[16,27]. The studies conducted to date have obtained divergent results with regard to the intraclass correlation 47 
coefficient  (ICC) for various parameters of cortical representations, ranging from 0.36 to 0.89 [16,24,27]. A 48 
number of approaches to reducing the variability of muscle representation parameters have been proposed, such 49 
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as neuronavigation by an individual structural MRI for improving the repeatability of coil placement and 50 
orientation [28,29] and taking into account the individual topography and morphology of the cerebral cortex 51 
[30–32]. Another promising research direction is the brain-state dependent stimulation based on combining 52 
EEG and TMS in real time to align the stimulus times with EEG features, such as the μ-rhythm phase [33]. 53 

A general approach to dealing with the trial-to-trial variability of MEPs is averaging multiple 54 
measurements [34,35]. In agreement with probability theory, the accuracy of some muscle representation 55 
parameters has been reported to increase with the number of stimuli used during the mapping [20]. However, 56 
comprehensive knowledge of this dependence for all the common parameters is lacking, and it is unknown 57 
whether the increase in the accuracy saturates (reaches a plateau) after a certain number of stimuli. This is 58 
important for estimating the payoff in the quality of the data that a researcher obtains from investing the 59 
subject’s and operator’s time and effort into the detailed mapping of muscle representations.  60 

Another open question regarding the averaging approach is whether it can reduce to an arbitrary degree 61 
the session-to-session variability of muscle representation parameters in the absence of interventions. Averaging 62 
makes the parameters closer to their exact mean (expected) values in a given session, and these values will not 63 
necessarily be the same in a different session. Thus, it is important to test whether the variations of muscle 64 
representation parameters between sessions can be fully explained by the trial-to-trial MEP variability within a 65 
session and can thus be controlled by sufficient sampling of MEPs. An alternative scenario is the existence of 66 
systematic between-session changes of the MEP probability distributions, which cannot be influenced by the 67 
sampling scheme. 68 

The existing data analysis methods in TMS mapping differ in their definitions of muscle representation 69 
parameters. The area of a representation mapped using the grid-based method has been defined as the total area 70 
of the cells with at least one suprathreshold MEP out of three stimuli  [22], at least five out of ten [23], six out 71 
of ten [21,24], or two out of six [25] suprathreshold MEPs. Several studies have studied the area in which an 72 
interpolated mean amplitude function exceeds some threshold, with varying interpolation methods and 73 
thresholds [17,36,37]. Recently, a more advanced minimum-norm estimation procedure has been proposed [38]. 74 
There is a need for research comparing the statistical properties of these definitions of the representation area. 75 
This can help develop guidelines for selecting an appropriate definition, possibly depending on the particular 76 
TMS mapping application. 77 

The purpose of the present study was to determine the influence of the TMS mapping and data processing 78 
algorithms on the accuracy of estimating muscle representation parameters. Using a grid-based mapping 79 
approach, we studied the effect of MEP sampling, i.e. the size of the stimulation grid and the number of stimuli 80 
per cell, on the within-session accuracy and between-session variation of the muscle representation 81 
characteristics. We tested whether the between-session parameter changes could be explained by the within-82 
session MEP variability. Additionally, we investigated the impact of the data analysis methods by comparing 83 
several alternative definitions of the representation area, weighted area and center of gravity (COG) in terms of 84 
their estimation accuracy. The results can be applied for choosing an appropriate TMS mapping algorithm for 85 
a given research or clinical problem by finding a compromise between the accuracy requirements and mapping 86 
time constraints. 87 

 88 

2. Materials and Methods 89 

2.1. Subjects and the nTMS mapping procedure 90 

For all subjects, an MRI was acquired in the T1 multiplanar reconstruction regime on a 3T Siemens 91 
MAGNETOM Verio clinical scanner. This data was used for TMS navigation. 92 

The navigated TMS mapping was performed using the NBS eXimia Nexstim stimulator (Finland). We 93 
used a figure-of-eight biphasic coil with a diameter of 50 mm to deliver stimuli with a 280 μs duration. The 94 
maximum value of the estimated induced electric field in the cortex was 199 V/m. The electromyographic 95 
(EMG) activity of the studied muscles was recorded using skin pregelled disposable electrodes (Neurosoft, 96 
Russia). A suprathreshold MEP was defined as an EMG response having a peak-to-peak amplitude greater than 97 
or equal to 50 μV in the interval from 15 to 30 ms after the stimulus. The individual resting motor threshold 98 
(RMT) was defined as the minimum intensity of stimulation for which five out of ten stimuli produced 99 
suprathreshold MEPs. The stimulation intensity during the mapping was set to 110% of the RMT. 100 

Data from two experiments were employed for answering different research questions. The first dataset 101 
was recorded previously for different purposes. It was used here to determine an optimal size of the stimulation 102 
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point grid for the second (main) experiment. The dataset contained 121 TMS maps for the abductor pollicis 103 
brevis (APB), extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) muscles of 33 104 
healthy subjects (21 women, median age 27, age quartiles 25, 31; nine subjects were left-handed according to 105 
the Edinburgh handedness inventory [39]). In this experiment, the locations and sequence of the stimulation 106 
points were determined individually (without a grid), taking into account the responses obtained at previous 107 
points. Each point was stimulated once, and the mapping progressed in a given direction until obtaining two 108 
points without suprathreshold MEPs. 109 

In the second experiment, the cortical representations of the right APB muscle in 8 healthy volunteers (3 110 
women, median age 28, age quartiles 24, 29, all right-handed according to the Edinburgh handedness inventory 111 
[39]) were mapped three times on consecutive days. We used a stimulation point grid consisting of 7x7 square 112 
cells with a side of 7.63 mm (at the peeling depth of 20 mm), centered at the hotspot. The cells were defined 113 
with the help of the grid tool in the Nexstim stimulator software. Ten rounds of stimulation were performed, 114 
and in each round, a single stimulus was applied to the center of every grid cell in a pseudorandom order1. The 115 
total number of stimuli in every session was 490. All three sessions were performed with the same intensity 116 
equal to 110% of the individual RMT determined in the first session. The coil orientation was tangential to the 117 
surface of skull, and the induced electrical field was perpendicular to central sulcus, in the posterior to anterior 118 
direction. 119 

The study was approved by the Ethical Committee of Research Center of Neurology (protocol 9-4/17, 120 
30.08.2017), and written informed consent was obtained from all the participants. 121 

 122 
2.2. Data analysis 123 

2.2.1. Muscle representation coverage by grids of different sizes 124 

Because the first dataset was acquired without a stimulation grid, the sizes of the obtained representations 125 
were not constrained from above and provided a sample from the size distribution in the healthy population. 126 
Thus, the maps were used to estimate the fractions of the representations that would be covered by square grids 127 
of different sizes centered at the point with the maximum MEP amplitude. Conservative estimates were used, 128 
counting only the parts of the representations that were guaranteed to be covered under any grid orientation (i.e. 129 
lying within a circle of a radius equal to half the side of the square). The calculations were performed for the 130 
following grid sizes: 38, 46, 53, 61 and 69 mm (corresponding to 10, 12, 14, 16 and 18 cells in the Nexstim grid 131 
tool) at the peeling depth of 20 mm. The results were compared between the three muscles using the Kruskal-132 
Wallis test.  133 

 134 
2.2.2. Muscle representation parameters 135 

We calculated the following muscle representation parameters (the formulas are presented in Appendix 136 
A): 137 

1. the area of the cells with the mean MEP above 50 μV; 138 
2. the area of the cells with the maximum MEP above 50 μV (or, equivalently, the area of the cells with 139 

at least one suprathreshold MEP); 140 
3. the area of the cells with more than half suprathreshold MEPs; 141 
4. the area weighted by the mean MEP amplitude (amplitude-weighted area, also known as map volume 142 

[17]); 143 
5. the area weighted by the probability of a suprathreshold MEP (probability-weighted area); 144 
6. the COG with the weights defined as the mean amplitudes in each grid cell; 145 
7. the COG with the weights defined as the maximal amplitudes in each grid cell; 146 
8. the COG with the weights defined as the probabilities of suprathreshold MEPs in each grid cell. 147 

 148 
2.2.3. Simulation of mapping with different numbers of stimuli using bootstrapping 149 

                                                 
1 In a small number of cases, due to operator error, the number of stimuli in a particular grid cell differed from 

ten, being equal to 9 in 7% of the cells, 11 in 4% and 7, 8 or 12 in less than 1% of the cells. The bootstrapping-

based accuracy estimates did not significantly depend on such small variations, which was checked by repeating 

the calculations using the first eight stimuli in each cell for all the maps. 
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To simulate the mapping results that would be obtained with a different number of stimuli per grid cell, 150 
we used a bootstrapping-based method, in which we randomly chose (with replacement) a given number of 151 
values from the 10 amplitudes measured in each cell. The resulting sets of amplitudes were treated as maps, 152 
and their parameters were calculated in the same way as for the initial full datasets. Sampling with replacement 153 
allows one to simulate arbitrary numbers of stimuli per cell (not necessarily smaller than 10). We performed 154 
the calculations for the numbers of stimuli from 1 to 10. The last value corresponds to estimating the accuracy 155 
of the representation parameters for our actual protocol. The number of bootstrapping-generated maps was 156 
equal to 1000 for every condition.  157 

 158 
2.2.4. Bias of the area and weighted area 159 

An important and often overlooked fact is that the accuracy of an estimator is determined not only by its 160 
variance but also by the bias, i.e., the difference between the mean value of the estimator and the true value of 161 
the estimated parameter. It is necessary to characterize the bias because it can produce spurious effects and 162 
make the results obtained using different mapping protocols difficult to compare [40]. The evaluation of the 163 
bias is complicated by the inaccessibility of the ‘true values’ of the muscle representation parameters, i.e. those 164 
that would be obtained from a hypothetical mapping providing the full knowledge of the MEP probability 165 
distributions at every cortical location.  166 

Our approach to estimating both the bias and variability of representation parameter estimates is based on 167 
bootstrapping [41]. Mathematically, the method simulates the mapping results for a muscle representation in 168 
which the actual probability distributions of MEP amplitudes in each cell coincide with the empirical 169 
distributions obtained in the experiment. It is important, however, that the validity of the estimates does not 170 
require exact equality between the empirical and the real MEP distributions, but is based on their approximate 171 
similarity, which can be expected with the ten-stimulus sampling.  172 

The normalized (relative) bias was estimated by the following formula: 173 

𝐵𝑛𝑜𝑟𝑚(𝑃) =
𝑚𝑒𝑎𝑛(𝑃) − 𝑃0

𝑃0

 , 174 

where 𝑃 is a muscle representation parameter (such as the area), 𝑃0 is the parameter value for the experimental 175 
map, and 𝑚𝑒𝑎𝑛(𝑃) is the mean parameter value over the maps generated by bootstrapping with a certain 176 
number of stimuli per grid cell (ranging from one to ten).  177 

 178 
2.2.5. Within-session variability of the area and weighted area 179 

The within-session variability of muscle representation parameters was characterized by the coefficient of 180 
variation (CV) of the parameter values for the maps generated by bootstrapping from a given experimental map: 181 

𝐶𝑉(𝑃) =
𝑠𝑡𝑑(𝑃)

𝑚𝑒𝑎𝑛(𝑃)
 , 182 

where 𝑠𝑡𝑑(𝑃) is the sample standard deviation for the bootstrapping-generated maps. 183 
 184 

2.2.6. Between-session variability of the area and weighted area 185 

The variability of muscle representation parameters between the three mapping sessions was characterized 186 
by a variability index equal to one-half of the relative difference of the maximum and minimum values: 187 

𝑉(𝑃) =
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛

 , 188 

where 𝑃𝑚𝑎𝑥  and 𝑃𝑚𝑖𝑛 are maximal and minimal values of the parameter in the three sessions. This quantity 189 
measures the relative deviation of these values from their mean. The values of this index were calculated and 190 
averaged by 1000 triples of maps generated by bootstrapping from the three mapping sessions. 191 

 192 
2.2.7. Sensitivity of the protocol to changes between sessions 193 

The MEP amplitudes in the three mapping sessions were compared in a cell-by-cell manner. Importantly, 194 
only the amplitudes above 50 μV could be reliably detected. Thus, the values of all smaller responses were 195 
unknown - a situation called ‘data censoring’ in statistics [42]. Accordingly, the samples of MEP amplitudes 196 
from every grid cell were compared between the sessions using Gehan’s generalization of the Mann-Whitney 197 
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test for censored data [43]. To compare the within-session and between-session variability of MEPs, we 198 
performed similar tests between the two halves of each sample obtained in a given session (five MEPs in each 199 
half for every grid cell). To keep the same statistical power in the between-session tests, we limited them to the 200 
first half of each session (five MEPs per grid cell). The test results were visualized using 2D diagrams showing 201 
the locations of significant amplitude changes at uncorrected p<0.05. The diagrams are analogous to statistical 202 
parametric maps in neuroimaging [44]. 203 

To assess whether the representation parameter changes between sessions had the same magnitude as the 204 
within-session fluctuations, the parameter distributions for maps generated by bootstrapping from each session 205 
were computed. The degree of similarity between pairs of distributions was measured by the overlaps of their 206 
histograms, with unit overlap corresponding to identical distributions and zero overlap - to completely 207 
incompatible distributions, with no common possible values. If the distributions in two sessions had a small 208 
overlap, this was interpreted as a significant change of the parameter between sessions, which could not be 209 
explained by the within-session variability. 210 

In addition to the overlap values, it is useful to characterize the parameter heterogeneity in different 211 
sessions by a single number. To this end, we calculated the intraclass correlation coefficient (ICC) applied to 212 
the three parameter samples generated by bootstrapping from each session. We used the version of the ICC for 213 
the one-way random effects model [45] because the ordering of bootstrapping-generated maps is irrelevant. We 214 
call the resulting quantity the bootstrapping-based between-session intraclass correlation coefficient (BICC). 215 
In a given subject, this index measures the proportion of the parameter variance attributable to systematic 216 
session differences. Zero BICC corresponds to a situation in which the changes between sessions can be fully 217 
explained by the variability within a session, and high BICC indicates stronger variation between than within 218 
sessions. This measure should be distinguished from the ICC applied in the way common in reliability studies, 219 
where it is computed for the sets of values obtained in different subjects and quantifies the ability to distinguish 220 
the characteristics of different individuals in the presence of variability [45]. Conversely, BICC is calculated 221 
for a single subject and measures the ability to discriminate between sessions in the presence of within-session 222 
inaccuracy. 223 

 224 
2.2.8. Accuracy of the center of gravity 225 

The accuracy of the COG was measured by the mean distance between the COG calculated from the 226 
experimental map and the COGs of 1000 maps generated by bootstrapping. 227 

  228 

3. Results 229 

3.1. Muscle representation coverage by grids of different sizes 230 

For every percentage value X, we calculated the fraction of all healthy subjects for whom at least X per 231 
cent of their representation is covered by the grid of a given size (Fig. 1). This analysis was performed for the 232 
maps from the first dataset obtained without a grid. The coverage fractions were not significantly different 233 
between the three muscles (APB, EDC and FDS) for every grid size (p>0.05, Kruskal-Wallis test). Based on 234 
this analysis, we selected for the main experiment a grid size of 53 mm (14 cells in the Nexstim grid tool), 235 
covering on average 97.9% of the area of the representations. 236 
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 237 

Figure 1. The effect of the grid size on the completeness of muscle representation coverage. For every 238 
percentage value X, the corresponding Y value is the fraction of all the maps in which at least X per cent of the 239 
representation is covered by the grid of a given size. The simulated grids were located at the peeling depth of 240 
20 mm, centered at the point with the maximum MEP amplitude, had a square shape, and their side lengths were 241 
chosen as even integer multiples of a cell in the Nexstim grid tool (10 to 18 cells). The TMS maps used in this 242 
calculation were obtained without a grid in healthy subjects (13 maps for APB, 54 for EDC, and 54 for FDS). 243 
There was no significant difference in the representation size between the muscles for every grid size (p>0.05, 244 
Kruskal-Wallis test). Note: The estimates of the coverage are conservative in that stimulation points were 245 
counted as covered by the grid only if their distance from the hotspot was smaller than one-half of the side of 246 
the grid (i.e. excluding the coverage by the corners of the square, which is possible, but not guaranteed under 247 
varying grid orientations). The green line corresponds to the grid size used in the present study. 248 

 249 
3.2. Visualization of TMS maps obtained with a stimulation grid 250 

The mapping results from the grid-based experiment were visualized by representing each grid cell by a 251 
square with the color defined by the fraction of the 10 stimuli that produced a suprathreshold MEP (Fig. 2A). 252 
The muscle representations were generally composed of a region of varying size having a high probability of a 253 
suprathreshold response (0.9 and above, colored yellow) and a surrounding area with an intermediate 254 
probability (ranging from 0 to 0.9, colored green to dark violet). 255 
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 256 

Figure 2. A. TMS maps of the APB muscle from three sessions performed on consecutive days. The squares 257 
represent the stimulation grid cells, and the color encodes the fraction of the applied 10 stimuli that produced 258 
suprathreshold MEPs (above 50 μV). B. Results of the comparison of the first five MEP amplitudes in each cell 259 
between sessions using Gehan’s generalization of the Mann-Whitney test for censored data. The red cells had 260 
significantly greater amplitudes in the second session of the compared pair (with uncorrected p<0.05), and the 261 
blue cells - significantly smaller amplitudes. C. Results of the comparison of the first and the second five MEP 262 
amplitudes in each cell. The test and the color code are the same as in B. 263 

 264 
3.3. Bias of the area and weighted area 265 

The biases of the different variants of the area and weighted area were calculated using the bootstrapping-266 
based map simulation, and their median values from all sessions in all subjects are shown in Fig. 3 as functions 267 
of the number of stimuli per grid cell. A considerable bias exists in the (unweighted) area parameters, which 268 
were defined using thresholding: the area of the cells with the mean MEP above 50 μV, the area of the cells 269 
with the maximum MEP above 50 μV and the area of the cells with more than half suprathreshold MEPs. In 270 
contrast, the amplitude-weighted area and probability-weighted area have very small biases. 271 

For the area of the cells with more than half suprathreshold MEPs, the bias showed different patterns for 272 
even and odd numbers of stimuli per cell, shown separately by the solid and dashed green lines respectively. 273 
Moreover, as shown in Appendix C, for particular structures of the representations, the bias of this parameter 274 
can be a non-monotonic function of the number of stimuli. The sign of the bias can be negative or positive, 275 
depending in a non-trivial way on the details of the representation and the number of stimuli. This suggests 276 
interpreting this parameter with caution. 277 
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 278 

Figure 3. The dependence of the normalized bias of the representation parameters on the number of TMS stimuli 279 
per grid cell. The values of the parameters were averaged by 1000 maps generated by bootstrapping (with 280 
replacement) from every experimental map obtained with 10 stimuli per cell in each subject. The median values 281 
from all maps of all subjects are depicted. The area of the cells with more than half suprathreshold MEPs showed 282 
different patterns for even and odd numbers of stimuli per cell, shown by the solid and dashed green lines 283 
respectively (here and in Figs. 4, 5). The biases of the mean amplitude-weighted and probability-weighted areas 284 
(red and purple curves) are close to zero. 285 

 286 
3.4. Within-session variability of the area and weighted area 287 

The within-session CVs were calculated using the same method as the biases and plotted depending on 288 
number of stimuli per grid cell in the maps generated by bootstrapping (Fig. 4). For all the parameters, the CV 289 
significantly decreased with the number of stimuli per cell (p<0.001, Page's trend test for ordered alternatives). 290 
The parameters having the smallest CVs were the area of the cells with at least one suprathreshold MEP and 291 
the probability-weighted area. 292 

 293 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 12, 2019. ; https://doi.org/10.1101/573220doi: bioRxiv preprint 

https://doi.org/10.1101/573220


 

Figure 4. Within-session variability of area parameters measured by the coefficient of variation (CV) of the 294 
parameter values obtained in 1000 maps generated by bootstrapping from every initial 10-stimuli-per-cell map 295 
of every subject. The median values of the CVs from all maps of all subjects are depicted. For all the parameters, 296 
the CV significantly decreases with the number of stimuli per cell (p<0.001, Page's trend test for ordered 297 
alternatives). 298 

 299 
The probability-weighted area was characterized by the highest overall accuracy among the considered 300 

definitions of the area and weighted area, having a negligible bias and a small CV. This parameter was selected 301 
for further analysis of its sensitivity to the between-session map changes (section 3.6). 302 
 303 
3.5. Between-session variability of the area and weighted area 304 

The between-session variability index demonstrated a pattern similar to that of the within-session CV (Fig. 305 
5). The variability index significantly decreases with the number of stimuli per cell (p<0.001, Page’s trend test) 306 
for all the parameters except the area of the cells with more than half suprathreshold MEPs, which can have a 307 
non-monotonic, subject-dependent bias and should be interpreted with caution (see Appendix C). The 308 
parameters with the smallest between-session variability were the area of the cells with at least one 309 
suprathreshold MEP and the probability-weighted area (the same parameters that had the smallest within-310 
session CV) as well as the area of the cells with the mean MEP above 50 μV. 311 

 312 

Figure 5. Between-session variability of the area parameters measured by an index equal to one-half of the 313 
relative difference of the maximum and minimum values among the three mapping sessions performed on 314 
consecutive days. These indices were calculated and averaged by 1000 triples of maps generated by 315 
bootstrapping from the MEPs obtained in the three sessions. The median values from all subjects are shown in 316 
the plot. The variability index significantly decreases with the number of stimuli per cell (p<0.001, Page’s trend 317 
test) for all the parameters except the area of the cells with more than half suprathreshold MEPs, which can have 318 
a non-monotonic, subject-dependent bias and should be interpreted with caution (see Appendix C).  319 

 320 
3.6. Sensitivity of the protocol to changes between sessions 321 

The results of the amplitude comparisons for each grid cell between the first halves of pairs of sessions 322 
and between the first and second halves of each session indicate that, on average, the number of significant 323 
changes was greater between sessions than within a session (Fig. 2 B,C). 324 
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The relationship between the within-session and between-session variability of the probability-weighted 325 
area was characterized by calculating its probability distributions for the maps generated by boostrapping from 326 
each session (Fig. 6). Five of the eight subjects had a between-session distribution overlap of less than 0.05 in 327 
at least one pair of sessions, indicating a significant difference in the probability-weighted area.  328 

We quantified the ability to distinguish the values of the probability-weighted area between sessions using 329 
the BICC, i.e. the intraclass correlation coefficient applied to the three parameter samples generated by 330 
bootstrapping from each session. The BICC ranged from 0.61 to 0.99. High BICC values (above 0.9) were 331 
observed in the three subjects (with numbers 4, 5 and 8) who had zero distribution overlaps in some pairs of 332 
sessions. Both measures indicate that in these subjects, the between-session changes of the probability-weighted 333 
area were greater than the within-session fluctuations and thus were unlikely to be explainable solely by the 334 
trial-to-trial variability of MEPs. 335 

 336 

Figure 6. Comparison of the between-session and within-session variability for the probability-weighted area 337 
(sum of grid cell areas multiplied by the probabilities of suprathreshold MEPs in them). Each plot corresponds 338 
to one subject and shows three histograms for different mapping sessions. Each histogram shows the within-339 
session distribution of the values of the probability-weighted area obtained from 1000 maps generated by 340 
bootstrapping from a given map. Above the plots, the measures of the possibility to discriminate between 341 
sessions are shown: the bootstrapping-based between-session intraclass correlation coefficient (BICC) and the 342 
pairwise distribution overlaps. 343 

Additionally, to compare the alternative definitions of the area and weighted area by their ability to find 344 
significant differences between sessions at the individual level, we computed the BICC values for all the 345 
parameters and all subjects (Fig. 7). In five of the eight subjects, the highest BICC was shown by the probability-346 
weighted area, and in the remaining three subjects – by the amplitude-weighted area. 347 
 348 
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 349 

Figure 7. Bootstrapping-based between-session intraclass correlation coefficient (BICC) calculated for all the 350 
area and weighted area variants in all subjects. 351 

 352 
3.7. Accuracy of the center of gravity 353 

The COG accuracy was measured by the mean distance between the COG calculated from the initial map 354 
with 10 stimuli per cell and the COGs of 1000 maps generated by bootstrapping. The results are shown in Fig. 355 
8 depending on number of stimuli per grid cell in the bootstrapping-generated maps. For all the COG variants, 356 
this error measure significantly decreased with the number of stimuli (p<0.001, Page’s trend test). The highest 357 
accuracy was obtained for the probability-weighted COG, although the accuracy differences with the other two 358 
definitions were small (less than 1 mm). 359 

 360 

Figure 8. Accuracy of the COG estimates computed using three alternative methods of assigning weights to the 361 
stimulation points. The accuracy is measured by the mean distance between the COG calculated from the full 362 
map and the COGs of 1000 maps generated by bootstrapping. The median values from all maps of all subjects 363 
are shown. The differences in the COG accuracy between the three methods are statistically significant for all 364 
numbers of stimuli smaller than 8 (p<0.05, Friedman test). The highest accuracy is achieved by the approach in 365 
which the stimulus location vectors are weighted by the probability of a suprathreshold MEP in them (purple 366 
curve), although the accuracy differences between the methods are small (less than 1 mm). For all the COG 367 
variants, the error significantly decreases with the number of stimuli per cell (p<0.001, Page’s trend test). 368 
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4. Discussion 369 

We have studied the impact of the TMS mapping algorithm and data processing on the accuracy of 370 
estimating muscle representation parameters. The considered aspects of the mapping procedure were the size 371 
of the stimulation grid and the number of stimuli per cell. As regards data processing, several alternative 372 
definitions of the muscle representation area, weighted area and COG were compared in terms of the accuracy 373 
of their estimation. Among the considered variants of area and weighted area, the highest overall accuracy was 374 
shown by the area weighted by the probability of a suprathreshold MEP. This parameter was further investigated 375 
with respect to its sensitivity to the motor map changes between the three sessions recorded on consecutive 376 
days. The results show that such changes can be greater than the fluctuations within a session, and thus can be 377 
reliably detected in individual subjects using the present protocol. The causes of these changes, including 378 
possible physiological and methodological explanations, require further research. 379 

 380 
4.1. Muscle representation coverage by grids of different sizes 381 

The optimal choice of the stimulation grid size has rarely been discussed in the literature. Classen et al. 382 
[20] calculated the increasing accuracy of the COGs obtained using square grids with side lengths of 3, 5 and 7 383 
cm. Since the main expected effect of an insufficiently large grid is likely to be the missing of some excitable 384 
sites at the periphery, we based our analysis on the percentage of the points with suprathreshold MEPs covered 385 
by a grid. The obtained dependence of this characteristic on the grid dimensions can be used to choose an 386 
appropriate size that is large enough to ensure the required representation coverage. At the same time, an 387 
unnecessarily large grid is undesirable due to the increased mapping time (if the stimulation point density is 388 
fixed). 389 

 390 
4.2. Visualization of TMS maps obtained with a stimulation grid 391 

The mapping protocol used in this study produced samples of 10 MEP amplitudes from every grid cell in 392 
each session. This allowed a statistical comparison of the maps in a cell-by-cell manner - an approach that is 393 
widespread in MRI-based neuroimaging, but not so common in TMS mapping (although is occasionally applied 394 
[7]). We found a considerable number of significant changes of amplitude distributions between sessions and 395 
visualized the spatial configurations of these effects. Significant changes between sessions were more numerous 396 
than alterations within a session (i.e. between its first and second halves). This motivates further application of 397 
the described methodology for testing location-specific MEP changes with and without interventions based on 398 
the MEP samples of considerable size obtained in each grid cell in different mapping sessions. 399 

 400 
4.3. Bias of the area and weighted area 401 

One of the problems in the field of TMS mapping is the difficulty of comparing results obtained by 402 
different groups using a variety of mapping protocols and data processing methods. The performed analysis of 403 
the biases of the different variants of area and weighted area indicates that the values of the thresholding-based 404 
(unweighted) area definitions have considerable biases. This means that these parameters can systematically 405 
differ between protocols with different numbers of stimuli per grid cell. Additionally, every subject is 406 
characterized by a particular bias, depending on the details of the MEP probability distributions in all the grid 407 
cells (see Appendix B). This means that the influence of the bias cannot be eliminated by a single bias correction 408 
procedure. Moreover, if a study applying TMS mapping with a limited number of stimuli compares the 409 
representation areas in two groups with systematically different area biases, a totally spurious difference in the 410 
area can be obtained. The amplitude-weighted and probability-weighted areas have negligible biases, and thus 411 
do not present the above problems. 412 

It should be stressed, however, that the choice of the parameters to focus on in a given study cannot be 413 
based solely on their accuracy. Indeed, a parameter may be estimated very accurately, but show no effect in the 414 
considered problem. Thus, all muscle representation characteristics can potentially be informative, particularly 415 
if their statistical properties are understood and taken into account. 416 

 417 
4.4. Within-session variability of the area and weighted area 418 

The extreme variability of MEP amplitudes (which can span more than two orders of magnitude [46]) 419 
leads to the within-session variability of muscle representation parameters [35]. The characteristics considered 420 
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here involve integration of data from repeated stimulation of many cortical locations, which makes the 421 
representation parameters more stable than a single MEP. This effect of stabilization due to averaging was 422 
found to vary depending on the exact definition of the representation area or COG. We estimated the variability 423 
using a bootstrapping-based method, in which we simulated maps by subsampling MEPs from the datasets 424 
recorded in the experiment.  425 

The results show that the three alternative definitions of the muscle representation area produce different 426 
degrees of relative variability (measured by the CV). One of the variants is the area of the cells with at least 6 427 
suprathreshold MEPs (out of 10 stimuli), which was recommended in the protocol proposed in [21] and named 428 
“the golden standard” in [40]. This parameter had a larger CV than the other two (unweighted) area variants: 429 
the area of the cells with the mean MEP above 50 μV and the area of the cells with at least one suprathreshold 430 
MEP. As noted above, this does not imply that any of the parameters should not be used, because although all 431 
the three area variants depend on the representation extent, they do not measure exactly the same property and 432 
may be sensitive to different effects of interest. The higher variability of the area of the cells with at least 6 433 
suprathreshold MEPs leads to the requirement of larger effect sizes and/or samples for statistical significance 434 
as compared to the other two area definitions. Thus, it is important to take into account the accuracy of the 435 
different parameters for planning the experiments, even though the accuracy cannot serve as the only basis for 436 
parameter selection. 437 

The probability-weighted area has the highest overall accuracy among the area and weighted area variants. 438 
It depends on both the extent of the representation and the distributions of MEPs at the included points. Further 439 
studies are warranted to assess the utility of this parameter in fundamental and clinical problems. 440 

The obtained decreasing dependencies of errors on the number of stimuli per grid cell can be used for 441 
appropriately choosing this number in a given application of TMS mapping. A compromise should be reached 442 
between the requirements for high accuracy and reasonable study duration. Several methodological studies of 443 
TMS mapping have focused on the number of stimuli sufficient for reliable estimation of representation 444 
parameters [20,26,34,36,40,47], and their results may be considered to mean that any further increase in this 445 
number is pointless. The obtained dependencies (Fig. 4) demonstrate that, although the slopes are largest in the 446 
left parts of the curves, the errors continue to decrease for all the considered numbers of stimuli. Thus, a study 447 
with a small effect size may benefit from a larger number of stimuli than the minimum one required for 448 
reliability. 449 

High parameter accuracy may be especially relevant to investigations of the changes in TMS maps 450 
between two time points due to an intervention or spontaneous directed alteration such as disease progression. 451 
In such a study, the measured change of a parameter is composed of (1) the constant mean effect of interest, (2) 452 
the random change in the mean parameter value between the sessions and (3) the within-session random errors. 453 
The error terms (2) and (3) can contain both physiological components (such as excitability fluctuations) and 454 
methodological factors (e.g., navigation inaccuracies).  The ability to detect the effect (i.e. the statistical power) 455 
depends on its size in relation to the error terms (2) and (3). The purpose of sufficient MEP sampling studied in 456 
this paper is to reduce the component (3) so that it is small compared to the component (2) and thus does not 457 
limit the statistical power. Meanwhile, it is known that the between-session variability (2) is smaller than the 458 
between-subject variation, as indicated by the reported ICC values above 0.5 [47,48]. Thus, even a small 459 
accuracy gain irrelevant for group comparisons may be essential in pre-post studies. 460 

 461 
4.5. Between-session variability of the area and weighted area 462 

Similarly to the within-session CV, the between-session variability indices of the area and weighted area 463 
decreased with the number of stimuli. However, this decrease showed a more pronounced flattening for numbers 464 
of stimuli greater than five, in comparison with the decrease of the CV. This is in agreement with the 465 
interpretation that increasing the number of stimuli reduces the effect of the short-term MEP variability and 466 
brings representation parameters closer to their mean values in a particular session, but these mean values may 467 
differ between sessions due to physiological and/or methodological factors. This means that the between-468 
session variability will approach a (nonzero) plateau determined by the differences between the mean values in 469 
the sessions. In other words, it is impossible to eliminate the between-session changes by collecting more data 470 
in each session. 471 

The relationships between the alternative area definitions were similar to those observed for the within-472 
session CV, with two exceptions. First, the CV was smaller for the amplitude-weighted area than the area of 473 
the cells with more than half suprathreshold MEPs, whereas their between-session variability indices were 474 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 12, 2019. ; https://doi.org/10.1101/573220doi: bioRxiv preprint 

https://doi.org/10.1101/573220


 

similar. Second, the between-session variability was higher for the probability-weighted area than the area of 475 
the cells with at least one suprathreshold MEP, whereas their CVs were similar. This may correspond to a 476 
greater day-to-day stability of the representation ‘footprint’ (the area of the region able to produce MEPs) than 477 
its ‘height’ in terms of MEP probability (i.e. the average degree of certainty with which a suprathreshold 478 
response will be elicited in each location).  479 

 480 
4.6. Sensitivity of the protocol to changes between sessions 481 

An optimal TMS mapping protocol for a given study must be sensitive to the effect being investigated. As 482 
mentioned above, an important type of research question concerns the changes of TMS maps with time, e.g. in 483 
the course of disease progression [14] or as a result of neuroplasticity caused by therapeutic interventions [15]. 484 
To reliably detect such changes at the level of individual subjects, the within-session variability should be small 485 
compared to the between-session effect size. In the present study, we compared three mapping sessions without 486 
any interventions between them. The changes in the probability-weighted area between the consecutive days 487 
were shown to be greater than the within-session fluctuations. This suggests that the day-to-day changes in this 488 
parameter cannot be fully explained by the inaccuracy produced by the trial-to-trial MEP amplitude variability. 489 

 490 
4.7. Accuracy of the center of gravity 491 

Similarly to the CV of the extent-related representation parameters, the within-session errors in the center 492 
of gravity decreased with the number of stimuli. They were within the nominal accuracy of the navigation 493 
system (5.7 mm). The probability-weighted COG showed a slightly higher accuracy than the COGs weighted 494 
by the mean and maximum MEPs, which may be due to its independence of large fluctuations in the MEP 495 
amplitudes known to have a heavy-tailed distribution [46]. 496 

 497 

5. Conclusions 498 

We have studied the dependence of the accuracy of muscle representation parameters on the aspects of the 499 
grid-based TMS mapping experiment and data processing. The grid size impacted the completeness of the 500 
muscle representation coverage, and a square grid with a side of 53 mm (at the peeling depth of 20 mm) centered 501 
at the hotspot covered on average 97.9% of the representation area for the APB, EDC and FDS muscles. The 502 
within-session accuracy of the representation area, weighted area and COG improved with the increasing 503 
number of stimuli without saturation up to at least ten stimuli per cell. For the area definitions based on 504 
thresholding, a considerable bias was observed for small numbers of stimuli, while for the probability-weighted 505 
and mean amplitude-weighted areas the bias was negligible. The area weighted by the probability of a 506 
suprathreshold MEP showed the highest overall accuracy among the considered definitions of the area and 507 
weighted area (surpassing the accuracy of the commonly considered area of the cells with more than half 508 
suprathreshold MEPs). The protocol was found to have sufficient sensitivity to distinguish the between-session 509 
changes of the probability-weighted area from its within-session fluctuations. The results can guide the choice 510 
of the grid size, the number of stimuli per cell and the investigated representation parameters in studies applying 511 
TMS mapping to research and clinical problems. 512 

 513 
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Appendix A. Formulas for the muscle representation parameters 518 

The muscle representation parameters were defined by the following formulas: 519 

1. The area of the grid cells with the mean MEP amplitude above 50 μV: 520 

𝐴𝑚𝑒𝑎𝑛 𝑡ℎ𝑟 = 𝐴𝑐𝑒𝑙𝑙𝑁𝑚𝑒𝑎𝑛 𝑡ℎ𝑟 . 521 
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Here 𝐴𝑐𝑒𝑙𝑙 is the area of a grid cell, and 𝑁𝑚𝑒𝑎𝑛 𝑡ℎ𝑟  is the number of cells for which mean(𝑀𝑖) > 𝑡, 522 
where 𝑀𝑖 represents the MEP amplitudes obtained in a cell, and 𝑡 is the amplitude threshold (50 μV). 523 
The number of the averaged amplitudes 𝑀𝑖 is the number of stimuli per cell 𝑛𝑠𝑡𝑖𝑚, which was equal 524 
to ten in our experimental maps and ranged from one to ten in the bootstrapping-generated maps. 525 

2. The area of the cells with the maximum MEP above 50 μV (or, equivalently, the area of the cells with 526 
at least one suprathreshold MEP): 527 

𝐴𝑚𝑎𝑥 𝑡ℎ𝑟 = 𝐴𝑐𝑒𝑙𝑙𝑁𝑚𝑎𝑥 𝑡ℎ𝑟 , 528 

where 𝑁𝑚𝑎𝑥 𝑡ℎ𝑟 is the number of cells for which max(𝑀𝑖) > 𝑡. 529 

3. The area of the cells with more than half suprathreshold MEPs: 530 

𝐴ℎ𝑎𝑙𝑓 𝑡ℎ𝑟 = 𝐴𝑐𝑒𝑙𝑙𝑁ℎ𝑎𝑙𝑓 𝑡ℎ𝑟 , 531 

where 𝑁ℎ𝑎𝑙𝑓 𝑡ℎ𝑟 is the number of cells for which more than half of the stimuli produced amplitudes 532 

𝑀𝑖 > 𝑡. 533 

4. The area weighted by the mean MEP amplitude (amplitude-weighted area): 534 

𝐴𝑚𝑒𝑎𝑛 𝑤 = 𝐴𝑐𝑒𝑙𝑙 ∑ mean(𝑀𝑖) .

𝑐𝑒𝑙𝑙𝑠

 535 

5. The area weighted by the probability of a suprathreshold MEP (probability-weighted area); 536 

𝐴𝑝𝑟𝑜𝑏 𝑤 = 𝐴𝑐𝑒𝑙𝑙 ∑ p(𝑀𝑖 > 𝑡) ,

𝑐𝑒𝑙𝑙𝑠

 537 

where p(𝑀𝑖 > 𝑡) is the fraction of all the amplitudes in a cell that are greater than 𝑡. 538 

6. The COG with the weights defined as the mean amplitudes in each grid cell: 539 

𝐶𝑚𝑒𝑎𝑛 𝑤 = ∑ (mean(𝑀𝑖) 𝑟)

𝑐𝑒𝑙𝑙𝑠

 /  ∑ mean(𝑀𝑖) ,

𝑐𝑒𝑙𝑙𝑠

 540 

where 𝑟 is the position vector of a cell, mean(𝑀𝑖) is the mean MEP amplitude in this cell. 541 

7. The COG with the weights defined as the maximal amplitudes in each grid cell; 542 

𝐶𝑚𝑎𝑥 𝑤 = ∑ (max(𝑀𝑖) 𝑟)

𝑐𝑒𝑙𝑙𝑠

 /  ∑ max(𝑀𝑖) .

𝑐𝑒𝑙𝑙𝑠

 543 

8. The COG with the weights defined as the probabilities of suprathreshold MEPs in each grid cell. 544 

𝐶𝑝𝑟𝑜𝑏 𝑤 = ∑ (p(𝑀𝑖 > 𝑡) 𝑟)

𝑐𝑒𝑙𝑙𝑠

 /  ∑ p(𝑀𝑖 > 𝑡) .

𝑐𝑒𝑙𝑙𝑠

 545 

Appendix B. Biases of the area and weighted area for the individual maps 546 

The biases of the area and weighted area variants displayed considerable dependence on the details of the MEP 547 
distributions in a particular TMS map. Figs. 9-13 show the biases of the extent-related representation parameters 548 
for each of the three sessions in every subject. The heterogeneity of the bias of each parameter precludes its 549 
elimination by a universal bias correction procedure. 550 
 551 
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 552 

Figure 9. Bias of the area of the cells with the mean MEP above 50 μV for each TMS map obtained in a given session of a 553 
particular subject, shown for all subjects and sessions. Here and below, every map corresponds to one line in the plot. 554 

 555 

 556 

Figure 10. Bias of the area of the cells with the maximum MEP above 50 μV for all sessions of all subjects. 557 

 558 

 559 

Figure 11. Bias of the area of the cells with more than half suprathreshold MEPs for all sessions of all subjects. 560 

 561 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 12, 2019. ; https://doi.org/10.1101/573220doi: bioRxiv preprint 

https://doi.org/10.1101/573220


 

 562 

Figure 12. Bias of the area weighted by the mean MEP amplitude for all sessions of all subjects. 563 

 564 

 565 

Figure 13. Bias of the area weighted by the probability of a suprathreshold MEP for all sessions of all subjects. 566 
 567 

Appendix C. Bias structure of the area of the cells with more than half suprathreshold MEPs 568 

Investigation of the area of the cells with more than half suprathreshold MEPs (Ahalf) showed that this parameter 569 
has unintuitive statistical properties for particular structures of muscle representations. We illustrate this with 570 
the following example. Consider a muscle representation consisting of two grid cells of unit area, with the 571 
probabilities of suprathreshold MEPs equal to 0.4 and 0.7. Since one of the cells has the probability above 0.5, 572 
the true value of Ahalf is equal to 1. The mapping of this representation with nstim stimuli per cell produces 573 
samples of the size nstim from the Bernoulli distributions with the success probabilities of 0.4 and 0.7. The 574 
number of suprathreshold MEPs in each cell is the corresponding binomial variable. Let us define two random 575 
variables that are equal to 1 if the corresponding binomial variable is greater than 0.5 * nstim and 0 otherwise. 576 
These variables are Bernoullian, and their success probabilities can be calculated from the binomial 577 
distributions. The estimate of Ahalf obtained from the mapping is the sum of these variables.  578 

Fig. 14A shows the dependence of the bias of the estimate of Ahalf on the number of stimuli per cell, nstim. The 579 
oscillations correspond to the difference in the bias between the even and odd numbers of stimuli. If we restrict 580 
this number to be even (or odd), the dependence remains non-monotonic, with an initial increase followed by a 581 
decrease. This pattern is explained by the fact that the area estimate is the sum of the contributions of each cell. 582 
The first cell (with the suprathreshold MEP probability of 0.4) produces a mean area estimate that slowly 583 
decreases with nstim (Fig. 14B), whereas the contribution of the second cell (having probability 0.7) shows a 584 
faster increase with the number of stimuli (Fig. 14C). The sum of these functions produces the complex 585 
dependence of the total area bias shown in Fig. 14A. 586 
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 587 

Figure 14. A. Non-monotonic dependence of the bias of Ahalf (the area of the cells with more than half suprathreshold 588 
MEPs) on the number of stimuli per cell. The bias is calculated for a model muscle representation consisting of two grid 589 
cells with the probabilities of suprathreshold MEPs equal to 0.4 and 0.7. B. Contribution of the first cell to the estimate of 590 
Ahalf. C. Contribution of the second cell to the estimate of Ahalf. 591 

 592 

It is important to note that the decrease of the absolute value of the bias in Fig. 14A is slow. Reducing the bias 593 
to below 0.1 requires approximately 40 stimuli per cell, which is arguably impractical for real mapping with a 594 
considerable number of grid cells. The slow decrease is related to the presence of cells with probabilities of 595 
suprathreshold MEPs not far from the threshold probability (0.4 and 0.5 in the considered case). The TMS map 596 
visualizations in Fig. 2A indicate that the cells cover the whole span of MEP probability. Thus, the definitions 597 
of the representation area based on a threshold on the fraction of positive MEPs (such as Ahalf) can generally 598 
produce considerable subject-dependent biases and should be used with caution, especially regarding the 599 
interpretation of group comparisons, as well as area estimates obtained with different numbers of stimuli per 600 
cell. 601 

 602 
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