
 

Genetic structure is stronger across human-impacted habitats than among 
islands in the coral Porites lobata 

Kaho H. Tisthammer1,2*, Zac H. Forsman3, Robert J. Toonen3, Robert H. Richmond1 

1Kewalo Marine Laboratory, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i , United States 
of America 
2Department of Biology, San Francisco State University, United States of America  
2Hawaiʻi Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāneʻohe, Hawai‘i , 
United States of America 

*Corresponding author: kahot@hawaii.edu 

ABSTRACT  

We examined genetic structure in the lobe coral Porites lobata among pairs of highly variable 

and high-stress nearshore sites and adjacent less variable and less impacted offshore sites on the 

islands of Oʻahu and Maui, Hawai‘i. Using an analysis of molecular variance framework, we 

tested whether populations were more structured by geographic distance or environmental 

extremes. The genetic patterns we observed followed isolation by environment, where nearshore 

and adjacent offshore populations showed significant genetic structure at both locations 

(AMOVA FST = 0.04 ~ 0.19, P < 0.001), but no significant isolation by distance between islands. 

In contrast, a third site with a less impacted nearshore site showed no significant structure. 

Strikingly, corals from the two impacted nearshore sites on different islands over 100km apart 

with similar environmentally stressful conditions were genetically closer (FST ~ 0, P = 0.733) 

than those within a single location less than 2 km apart (FST = 0.041~0.079, P < 0.01). Our 

results suggest that ecological boundaries appear to play a strong role in forming genetic 

structure in the coastal environment, and that genetic divergence in the absence of geographical 

barriers to gene flow may be explained by disruptive selection across contrasting habitats. 
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Introduction 

Coral reefs are centers of marine biodiversity and productivity that provide a variety of 

ecosystem services of substantial cultural and economic value to humankind, yet coral reefs 

worldwide are under serious threat as a result of human activities1,2. Average global coral cover 

has declined dramatically in the past 100 years due to a range of impacts such as sedimentation, 

pollution, overfishing, disease outbreaks and climate change1-3.  

Such effects are particularly pronounced in nearshore marine habitats, which are increasingly 

exposed to reduced water quality due to human activities4. Recent rapid coastal development, 

along with coastal industrial and recreational activities, have resulted in introducing sediments, 

nutrients and a variety of chemical pollutants to the nearshore environments4-6. These local 

stressors often create a steep environmental gradient of water quality from nearshore toward 

offshore areas, and 'signs of coral health impairment' are usually detected along with the gradient 

(e.g.5,7,8). Additionally, very nearshore marine habitats are naturally exposed to higher 

fluctuations in temperature, pH and other environmental variables, creating contrasting 

environmental conditions relative to more stable offshore environments9,10. Some corals, 

however, continue to thrive in such nearshore 'suboptimal' habitat11, indicating that these 

individuals can withstand such stressors.  

What impact does an ecological landscape with such a strong gradient have on the genetics of the 

organisms? 'Isolation by environment' (IBE12) describes a pattern in which genetic differentiation 

increases with environmental differences, independent of geographic distance. Isolation by 

environment is a process that emphasizes the role of environmental heterogeneity and ecology in 

forming genetic structure, likely because of natural selection, in contrast to ‘isolation by distance’ 

(IBD13), which predicts that the degree of genetic differentiation increases with geographic 

distance due primarily to dispersal limits14. Importantly, IBD is a neutral process in which 

dispersal limits gene flow and the scale over which genetic structure accumulates, whereas IBE 
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explicitly takes into account environmental differences among sites12,15. Isolation by environment 

can be generated by different processes, including natural selection, sexual selection, reduced 

hybrid fitness, and biased dispersal; examples of the terms describing a specific case of IBE 

include 'isolation by adaptation' (IBA16), 'isolation by colonization' (IBC17), and 'isolation by 

resistance' (IBR18). IBA and IBC emphasize the role of selection in forming genetic structure, 

and IBR describes correlation of genetic distance and resistance distance (i.e. friction to 

dispersal)18. IBE along with related terms result in a pattern where genetic distance increases as 

ecological distance increases, but not with geographic distance for most loci12,15. Theoretically, 

IBA, IBC and other processes will result in different distributions of genetic variation across 

landscapes15, though in reality, multiple processes almost always contribute to structuring genetic 

variation, and pinpointing the possible underlying processes may be difficult14. For coastal 

marine ecosystems, often the distances between the impacted nearshore and un-impacted 

offshore sites are relatively small with no apparent dispersal barrier between adjacent sites for 

broadcast spawning species with pelagic larval development, providing an excellent opportunity 

to study IBE. 

Carlon and Budd 19 described a pair of incipient species in the coral Favia fragum associated 

with strong ecological gradients. The two types are largely restricted to alternate seagrass and 

adjacent coral reef habitats, but retain phenotypic distinction in a narrow zone of ecological 

overlap 19. Subsequent work showed that the morphologies were heritable, and selection 

appeared to limit gene flow between the ectomorphs20. Carlon et al.20 postulated that divergent 

selection for “Tall” and “Short” ectomorphs of these inbreed and brooding corals was driving the 

diversification of this coral via an ecological model of speciation (sensu21). Genetic divergence 

across nearshore and offshore habitats has also been observed for broadcast spawning corals; for 

example in Seriatopora hystrix in Australia22, and Porites lobata in American Samoa23. Here we 

pose the question of whether there is reason to believe such a pattern might be observed in 

contrasting habitats in Hawai‘i, to add to a growing number of studies indicating that similar 

patterns may be more ubiquitous than previously assumed.  
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Maunalua Bay, Hawai‘i , O‘ahu, was selected as a study site due to the existence of a strong 

environmental gradients; large-scale urbanization in adjacent watersheds has caused severe 

deterioration in the health and extent of its nearshore coral reefs over the last century24. Corals 

that survive in these affected nearshore areas are under chronic stress, and a previous survey 

showed significantly different cellular stress responses of individual colonies along the 

environmental gradient of pollutants and sedimentation from the inner bay toward offshore24-26 

(Fig S1). Porites lobata (Dana, 1846), the study species, occurs over a wide geographic range in 

the tropical Pacific Ocean27, and several studies have documented a pattern of isolation by 

distance across archipelagic28 or broader scales 29, with little evidence of restricted gene flow 

among geographically proximate reefs at inter-island distances (but see23). This massive coral is 

also known for its robustness; for example, P. lobata shows a high tolerance for sedimentation30 

and bleaching31, and a colony can recover from partial mortality due to tissues residing deep 

within the perforate skeleton, a phenomenon referred to as the ‘Phoenix effect’32. Porites lobata 

is one of the most dominant scleractinian coral species in Hawai‘i33. Additionally, P. lobata 

shows high fidelity to a specific endo-symbiont, Symbiodinium Clade C1523,34-36, which allows 

us to focus on responses of the host 

coral to environmental differences.  

At the nearshore site of Maunalua 

Bay, the suspended sediment 

concentration periodically exceeds 

several hundred mg/L, and the run-off 

water introduces toxicants such as 

benzo[a]pyrene, 

benzo[k]fluoranthene, phenanthrene 

and alpha-chlordane (Fig. 1, Fig. 

S1)24,37,38. The temperature, salinity 
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and turbidity likewise all show higher fluctuations and gradients across the bay38.The distance 

between the studied offshore and nearshore sites were less than 2 km across the extent of this 

gradient, and water movement in the areas suggests no dispersal barrier between the sites33. 

Similarly, the coral reefs off West Maui have experienced a dramatic decline in their coral cover 

from land-based anthropogenic impacts over the last several decades39. Substantial deterioration 

in the health of West Maui’s coral reefs has lead Wahikuli and Honokōwai watersheds of West 

Maui to be designated as priority sites for conservation and management by the United States 

Coral Reef Task Force (USCRTF) and the State of Hawai‘i40. The Wahikuli study site is directly 

exposed to terrestrial run-off, due to its topography and current patterns 41, causing high turbidity 

especially after heavy rains. Despite their proximity, the nearshore area at Wahikuli has markedly 

different water quality than offshore reefs roughly 300m away (Fig. S2). In contrast, the 

nearshore area at the Honokōwai site is less affected by runoff, because it does not receive any 

direct stream discharge, resulting in consistently lower turbidity than the Wahikuli nearshore 

site42.  

Differences in water quality and sedimentation loads of nearshore and offshore environments in 

Maunalua Bay, Oʻahu and Wahikuli, Mauʻi represent strong gradients of anthropogenic impacts 

that create highly contrasting environments in close proximity. Therefore, we undertook a 

genetic analysis of P. lobata across these sites to explore the possibility of isolation by 

environment. By comparing corals collected from heavily impacted nearshore environments to 

nearby congeners from more oceanic conditions, we sought to distinguish the roles played by 

ecology and anthropogenic impacts to the environment on the genetics of coral populations, in 

contrast to geographical distance limiting dispersal among similar habitats on adjacent islands. 

We predicted that the genetic structure of coral populations from areas with a strong 

anthropogenic impact gradient would follow IBE, rather than IBD. Porites lobata populations 

from Maunalua Bay, Oʻahu (hereafter Oʻahu) and Wahikuli, Maui (hereafter Maui1) represented 

the sites with such a strong environmental gradient, while Honokōwai, Maui (hereafter Maui2) 
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represents a similar nearshore-offshore comparison site, but without a strong anthropogenic 

gradient (Fig. 1). At each site, we assessed the degrees of genetic differentiation and genetic 

diversity of P. lobata between adjacent strongly anthropogenically impacted ‘high-stress’ 

nearshore and ‘low-stress’ offshore sites, and compared them within and between locations to 

understand the effects of habitat types, anthropogenic impacts, and geographical distance on the 

genetic structure of reef building corals. 

Results 

Nearshore vs. offshore comparison of genetic structure and diversity of 
P. lobata populations 

Oʻahu (Maunalua Bay) 

For Oʻahu P. lobata populations, the degree of genetic differentiation was estimated using 

analysis of molecular variance (AMOVA43) between the nearshore and offshore sites using three 

genetic markers; existing nuclear ITS1-5.8S-ITS2 region (ITS), mitochondrial putative control 

region (CR), and novel nuclear histone region spanning H2A to H4 (H2), developed for this 

study. The AMOVA results for both nuclear makers revealed clear genetic differentiation 

between the two sites (ITS, FST = 0.1918, P < 0.001; H2, FST = 0.0715, P < 0.001) (Table 1). The 

mitochondrial marker (CR) did not detect significant differentiation (FST = 0.086, P = 0.148), 

which was not 

surprising due to its 

extremely low 

variability in corals 

and cnidarians in 

general 44. The 

numbers of shared 

haplotypes (alleles) 

between the nearshore 

#  6

Source of Variation Variance 
components

% 
Variance FST

ITS Between populations 2.27 19.18
0.1918***

(n=70) Within populations 9.56 80.82

H2 Between populations 0.29 7.15

0.0715***(n=43) Within populations 1.30 31.88

Within individuals 2.49 60.96

CR Between populations 0.034 8.49 0.08595 
(P = 0.148) (n=20) Within populations 0.370 91.5

Table 1. AMOVA results of P. lobata from Oʻahu (Maunalua Bay).
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and offshore Oʻahu populations were also low; out of 37 ITS haplotypes identified from the 70 

total sequences, only three (8.1%) were shared between the sites. For H2, there were 54 unique 

haplotypes out of 86 total phased sequences, and only 5 sequences (9.3%) were shared between 

the sites (Table 2). The pattern of genetic structure was visualized using network analysis, which 

revealed sequences clustering into three major groups in both ITS and H2 markers, which 

consisted of one cluster dominated by the nearshore individuals, the second one dominated by 

the offshore individuals, and the last group with approximately mixed origins (Fig. 2). For CR, 

three haplotypes were identified from 27 sequences, all of which were present at both sites. 

Interestingly, the most common haplotype was the most dominant one at the nearshore site, while 

the second common haplotype was the dominant haplotype at the offshore site, though the 

AMOVA results were not significant (Fig. 3). 

The pattern of genetic diversity also differed between the nearshore and offshore populations. 

The degree of genetic diversity was higher at the offshore site; percent private alleles (pA),  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Fig. 2. Diagrams of neighbor-net tree networks generated by SplitsTree v.4.14.2
for O‘ahu (Maunalua Bay) P. lobata populations, based on (a) ITS and (b) H2. Pie charts represent the 
proportion of sequences in each cluster.
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ITS (707 bp)

Sites n A pA poly DA DP i π θπ θs

Oʻahu 
Nearshore

28 13 
(46
%)

10 
(36%)

45 
(6.4%

)

 1.0 ± 
0.0095

 0.259  
±0.182

31 0.0167 
±0.009

11.64  
±5.44

3.60 
±1.45

Oʻahu 
Offshore

42 27 
(64
%)

24 
(57%)

70 
(10%)

1.0 ± 
0.0052 

0.343 
 ±0.192

50 0.0340 
±0.017

24.03  
±10.78

6.04  
±2.06

Oʻahu 
Offshore*

(28) 21.7 
(78
%)

19.3 
(69%)

65.2 
(9.2%

)

48.5 0.0337 
±0.017

23.7 
±11.96

5.37  
±2.00

H2 (1352 bp)

n A pA poly Ho He 
(DA)

DP hom π θπ θs

Oʻahu 
Nearshore

22 
(44)

28 
(64%)

23 
(52%)

27 
(2.0%

)

0.77
3

0.96
5

0.120 
±0.151

5  
(23%)

0.00553 
±0.003

7.483 
±3.96

6.207  
±2.09

Oʻahu 
Offshore

21 
(42)

31 
(74%)

26 
(62%)

27 
(2.0%

)

0.81
0

0.97
7

0.162 
±0.179

4  
(19%)

0.00558 
±0.003

7.554 
±4.00

6.275  
±2.12

CR (366 bp)

n A pA poly DA DP π θπ θs

Oʻahu 
Nearshore

13 3 
(23%

)

0 
(0%)

2  
(0.5%)

1.0 ±  
0.0302

0.282  
±0.000

0.00154 
±0.0015

0.5641 
±0.551

0.6445 
±0.485

Oʻahu 
Offshore

14 3 
(21%

)

0 
(0%)

2 
(0.5%)

0.45 ±  
0.0270

0.451  
±0.124

0.0056 
±0.003

0.9011 
±0.747

0.6289 
±0.474

#  8

Table 2. Population genetic statistics of P. lobata from Oʻahu (Maunalua Bay). Sample size (n, for H2, 
the number in ( ) represents the number of phased sequences.), number of haplotypes (A), number of 
private haplotypes (pA), number of polymorphic sites (poly), mean overall gene diversity (DA ± SD), 
mean gene diversity for polymorphic sites only (DP ± SD), observed heterozygosity (HO), expected 
heterozygosity (He), number of indels (i), number of homozygous individuals (hom), nucleotide 
diversity (π ± SD), theta estimator 1 (θπ: expected heterozygosity at a nucleotide position estimated 
from the mean π), theta estimator 2 (Watterson estimator, θs). *Standardized values to the minimum 
sample size of 28.
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percent polymorphic sites (poly), and 

nucleotide diversity level (π) were almost 

twice as high in the offshore population as in 

the nearshore one based on ITS (Table 2). 

Standardizing sample size by random 

resampling confirmed that this was not an 

artifact of a larger sample size of the 

offshore population (Table 2). Rarefaction 

analysis of ITS sequences also confirmed that allelic richness of the offshore population 

(Richness = 21.6 ± 2.1 at n=28, 95% CI, 18.8 to 24.5) was clearly higher than that of the 

nearshore population (Richness = 13) (Fig.4). The level of genetic diversity in H2 was also 

higher in the offshore populations, but the difference was not as large as in ITS; the number of 

haplotypes (A), the number of private allele (pA), the heterozygosity level (HO), the number of 

heterozygous individuals, and mean gene 

diversity (DA, DP) all had marginally 

higher values in the offshore samples 

(Table 2). In both nuclear markers, θπ (the 

expected heterozygosity estimated from 

the average nucleotide diversity) was 

higher than θs (the theta estimated from the 

number of segregating sites).  

Maui 

At the two study locations on the island of 

Maui, patterns of genetic structure of P. 

lobata populations between the nearshore 

and offshores sites were analyzed using the 

#  9
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Fig. 3. Haplotype network using the mitochondrial 
putative control region (CR) for the O‘ahu (Maunalua 
Bay) P. lobata populations.
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novel H2 marker (see Material and Methods). At Maui1, where a strong environmental gradient 

exists, significant genetic differentiation was detected (FST = 0.0415, P = 0.0308), but the level of 

genetic diversity was comparable between the two sites (Table 3). At Maui2, which had much 

less contrasting environmental conditions between the nearshore and offshore sites, the AMOVA 

results found no significant genetic differentiation between the nearshore and offshore sites (FST 

= 0.0019, P = 0.991). The level of genetic diversity at Maui2 appeared slightly higher in the 

nearshore population, which had higher numbers of haplotypes (A), polymorphic sits (poly), and 

heterozygous individuals (Table 3). The theta estimators of Maui2 also showed a different pattern 

from the Oʻahu and Maui1 populations, with higher values of θs than those of θπ at both 

nearshore and offshore sites.  

 

O‘ahu vs. Maui 
Inter-island genetic structure, as well as comparison of nearshore and offshore populations were 

conducted using H2 marker. The hierarchical AMOVA did not detect significant structure 

between the O‘ahu and Maui populations (FCT = 0.0069, P = 0.272), but the two Maui 

H2 (1221 bp)

n A pA poly hom Ho He π θπ θs

Maui1  
Nearshor
e

18 
(36)

31 
(86%)

15 
(83%)

27 
(2.2%)

3 
(17%) 0.833 0.987 0.00596 

±0.0032
7.271 
±3.87

6.511 
±2.25

Maui1 
Offshore

22 
(44)

35 
(80%)

18 
(82%)

31 
(2.5%)

4 
(18%) 0.818 0.986 0.00590 

±0.0031
7.209 
±3.82

7.126 
±2.34

Maui2 
Nearshor
e

23 
(46)

38 
(86%)

43 
(93%)

65 
(5.3%)

3 
(13%) 0.870 0.988 0.00614 

±0.0035
7.494 
±3.96

14.790 
±4.48

Maui2 
Offshore

20 
(40)

30 
(75%)

37 
(93%)

33 
(2.7%)

4 
(20%) 0.800 0.967 0.00481 

±0.0026
5.878 
±3.19

7.758 
±2.57

#  10

Table 3. Population genetic statistics of P. lobata from Maui1 and Maui2 sites based on H2 (1319 bp). 
See Table 2 for symbols and abbreviations.
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populations showed significant differentiation (FSC = 0.0630, P = 0.000) based on H2 (Table 

S2A). The patterns of genetic diversity suggested an overall lower variability in the O‘ahu 

population; the numbers of haplotypes (A), polymorphic sites (poly), and heterozygous 

individuals were all smaller on O‘ahu , although nucleotide diversity (π) levels were relatively 

similar between O‘ahu and Maui (Table 4).  

Table 4. Population genetic statistics of P. lobata from Oʻahu and Maui based on H2 (1221bp). See Table 
2 for symbols and abbreviations.

Pairwise FST comparisons between all combinations revealed that the nearshore populations from 

O‘ahu and Maui1 with a high level of environmental stress were genetically closer to each other 

than to their respective, nearby offshore populations, and similarly the offshore populations from 

O‘ahu and Maui1 were genetically closer to each other than to their respective offshore 

populations (Table 5, O‘ahu and Maui1 populations). Assessing by habitat types, the nearshore 

and offshore populations of O‘ahu and Maui1 also resulted in significant genetic differentiation 

(FST = 0.0646, P = 0.000, Table S2B). The results also revealed that Maui2 corals, which showed 

no significant structure between the nearshore and offshore sites, turned out to be rather 

genetically unique compared to the rest of the populations. However, the FST values indicated 

H2 (1221 bp)

n A pA poly hom Ho He π θπ θs

Maui1 
(pooled)

40 
(80)

63 
(79%)

76 
(95%)

38 
(3.1%)

7 
(15.9%

)

0.825 0.986 0.0060 
±0.0032

7.385 
±3.87

7.672 
±2.26

Maui2 
(pooled)

43  
(86)

68 
(79%)

82 
(95%)

82 
(6.7%)

7 
(16.2%

)

0.837 0.983 0.00571 
±0.0030

6.972 
±3.67

16.316 
±4.38

Maui 
(pooled)

83 
(166)

126 
(76%)

159 
(81.5%

)

96 
(7.9%)

14 
(16.1%)

0.831 0.987 0.00604 
±0.0031

7.380 
±3.84

16.355 
±3.96

Oʻahu  
(pooled)

43  
(86)

54 
(62.7%)

47 
(87%)

35  
(2.9%)

9  
(20.9%)

0.791 0.974 0.00643 
±0.0033

7.844 
±4.08

6.964 
±2.06
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that the Maui2 nearshore population was genetically closer to other offshore populations (FST = 

0.027-0.035) than to other nearshore populations of O‘ahu and Maui1 (FST = 0.139-0.177), 

suggesting collectively that Maui2 corals at both sites were genetically closer to the offshore 

populations (Table 5). 

 

Genetic structure of P. lobata across islands was also visualized using network analysis, which 

revealed three major clusters of H2 sequences, similar to the results from the Oʻahu populations 

(Fig. 5). Grouping by habitat-based genetic groups, Cluster 1 was dominated by the offshore type 

(including Maui2-nearshore) (88 %), Cluster 2 was dominated by nearshore individuals (74%), 

and Cluster 3 had approximately same proportion of nearshore and offshore types, depicting 

separation of offshore and nearshore individuals, especially for O‘ahu and Maui1 populations. 

No clear pattern was observed based on geographic locations (Fig. S3) 

Oʻahu 
N

Oʻahu 
O

Maui1 
N

Maui1 
O

Maui2 
N

Maui2 
O

Oʻahu 
N

- 0.0002 0.3243 0.0000 0.0000 0.0000

Oʻahu 
O

0.0791*** - 0.0079 0.6663 0.0121 0.0462

Maui1 
N

0.0006 0.0545** - 0.0040 0.0000 0.0000

Maui1 
O

0.0774*** -0.0073 0.0517** - 0.0151 0.0143

Maui2 
N

0.1765*** 0.0348* 0.1387*** 0.0268* - 0.0716

Maui2 
O

0.2047*** 0.0258* 0.1697*** 0.0303* 0.0132 -

#  12

Table 5. Pairwise FST values for all populations from Oʻahu and Maui. The values were estimated 
using AMOVA in Arlequin with 5000 permutations. Below diagonal = FST values, Above diagonal = 
P values. The aster risks refer to the level of statistical significance. N: Nearshore, and O: 
Offshore.
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Discussion  

Previous work at the Archipelagic scale28 found IBD, although habitat-level variation was not 

examined. At a much smaller spatial scale considered here, with explicit sampling of contrasting 

habitats from across this strong anthropogenic gradient, the pattern of genetic structure we 

observed for P. lobata in Hawaiʻi did not follow IBD (Mantel Test, r = -0.0911, P = 0.535). 

Instead, a clear pattern of IBE was revealed with a correlation between habitat types irrespective 

of geographic distance; the pairwise FST values revealed that offshore individuals from two 

separate islands (>100 km) were genetically closer to each other than to their geographically 

closest nearshore individuals (300m – 2km), and nearshore individuals from two islands were 

also typically genetically closer to each other than to adjacent offshore sites (Table 5, Fig. 5).  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Fig.	5.	Diagrams	of	neighbor-net	tree	networks	generated	by	SplitsTree	v.4.14.2	for	O‘ahu	and	
Maui	P.	lobata	populations	based	on	unphased	H2	sequences.	Colors	are	based	on	habitat-based	
genetic	clusters:	Blue	color	represents	the	offshore	group	(including	Maui2-nearshore	population),	
and	tan	color	represents	the	two	genetically-close	nearshore	populations	of	O‘ahu	and	Maui1.	
The	pie	charts	show	the	proportion	of	sequences	present	in	each	group.	The	gray	numbers	in	(	)	
represent	the	proportion	of	Maui2	nearshore	population.
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Similar patterns of genetic structure have been observed in several reef building corals41,42. In the 

case of Favia fragum, the “Tall” ecomorph is a seagrass specialist with morphological 

adaptations to minimize sediment impacts, whereas the “Short” ecomorph shows morphological 

specializations for coral reef habitats that decrease its fitness in seagrass beds19. These traits are 

highly heritable and divergent selection appears to be driving reproductive isolation among these 

morphs and ongoing diversification in these incipient species45. Here, we find a similar pattern of 

repeated genetic differentiation across strong ecological gradients driven by anthropogenic 

impacts (between adjacent sites 300m - 2km apart), but little evidence of differentiation among 

similar habitats more than 100km distant. Moreover, corals from a control site that lacks such a 

strong anthropogenically driven environmental gradient (Maui2) did not show the significant 

genetic structure documented at the other sites, which further supports the likely role of 

environment in forming the observed genetic patterns (IBE). 

It is particularly interesting to find that not only this pattern of clear genetic partitioning within a 

bay is repeated on a neighbor island, but also the genetic similarity exists between 

anthropogenically-impacted nearshore populations from the two separate islands that have been 

exposed to similar environmental pressures (O‘ahu and Maui1). These nearshore sites have 

experienced deteriorating water and substrate quality due to terrestrial runoff from urbanization 

of adjacent watersheds over the past century. This environmental decline is likely to limit new 

recruitment 46 and place the population under strong local selection, similar to what was seen in 

the Caribbean coral F. fragum19,45. The repeated pattern among bays that share a strong 

anthropogenic impact gradient also implies that similar selective forces may be operating at both 

locations; these nearshore coral populations may be selected for their survivorship under local 

conditions that have been altered by human impacts. Furthermore, there is reduced genetic 

diversity in the nearshore habitats (Table 2, Table S1), which represents a subset of the standing 

genetic variation of the larger population, consistent with there being a limited number of 

individuals capable of surviving in the nearshore habitats. 
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Additionally, for the O‘ahu populations, differences in microskeletal morphology have been 

reported between the nearshore and offshore sites47. The most noticeable difference was the 

height of pali (inner vertical skeletal structure that usually exists in a set of eight in P. lobata) 

within a corallite (the structure associated with individual polyps); nearshore corals had taller 

and more pronounced pali than the offshore ones. The study suggested that the differences might 

be due to potential beneficial roles played by larger pali in shedding sediments in turbid water47, 

similar to the case of F. fragum. Because exact functions and heritability of these traits are 

unknown, whether the observed morphological differences are due to divergent selection, as in 

the case of F. fragum, cannot be answered at this point. However, correlation between the 

morphological and genetic distances reported here is consistent with the idea that divergent 

natural selection is driving such differences. 

Additional work is also needed to determine the specific environmental drivers likely to result in 

selection across these environmental gradients that generate the observed IBE pattern. As 

discussed earlier, there are many factors, both natural and anthropogenic, that contrast between 

nearshore and offshore environments (e.g. salinity, irradiance, UV exposure, temperature, pH, 

wave exposure, nutrients, and biological community) and any of these could contribute to create 

genetic partitioning between nearshore and offshore sites. For example, a comparable pattern of 

genetic structure has been observed across a particularly strong temperature gradient between the 

back-reef and forereef P. lobata populations in the areas with negligible terrestrial runoff or 

pollution in American Samoa23. However, in Hawaiʻi we see no such differentiation between 

nearshore and offshore sites at our unimpacted control (Maui2), supporting the hypothesis that 

the primary driver of differentiation is anthropogenic. It will be important to continue to observe 

whether this differentiation is transient and of little evolutionary importance, or whether it 

progresses towards incipient speciation, as it appears to have done in the Caribbean coral F. 

fragum19,45.  

Our results show that the broadly distributed broadcast spawning coral P. lobata exhibits very 
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fine-scale (300m to 2km) genetic structure, and environmental drivers across habitat types have a 

stronger effect in forming such genetic structure (IBE) than geographic distances (IBD) in these 

coastal areas. Without thorough sampling among habitats at small-scales, we could easily 

overlook such important local genetic differences, and may mistakenly conclude that populations 

are uniform across the landscape. In fact, this finding may shed light on the common pattern of 

'chaotic genetic patchiness'48 so commonly reported among population genetic studies of marine 

organisms, in which geographically proximate populations show greater genetic differentiation 

than those from distant sites (e.g.19,45,47). Although our samples are from geographically limited 

locations, our results demonstrate that understanding small-scale genetic variation and diversity 

provide important information on the ecological basis of genetic diversity and differentiation, 

which must be understood to effectively implement future coral reef conservation efforts.  

The ecological diversification of reef building corals over a small spatial scale, despite ongoing 

gene flow, also provides a rare example of genetic divergence in the absence of spatial barriers to 

gene flow, indicating that divergent natural selection can act as an evolutionary driver of 

reproductive isolation23,47. Here, we extend these findings to include P. lobata in Hawaii, which 

shows likely occurrence of similar diversification process across steep environmental gradients 

driven by anthropogenic impacts. This may represent the initial stages of adaptive 

diversification, as seen in other marine species from the Hawaiian Archipelago (e.g. limpets49,50). 

There is clearly some genetic connectivity among adjacent islands, congruent to previous 

studies28, and hence the observed divergence across these steep ecological gradients in spite of 

high dispersal potential26,51 appears consistent with the early phases of speciation with gene 

flow52. Whether this initial stage of divergent selection among habitats is transient or has the 

potential to progress to later stages remains to be seen, but our results and others49,50 indicate that 

this initial stage can be realized even in a broadcasting species with high dispersal potential. 

Together, these results add to the growing evidence that the initial phase of speciation is possible 

without geographic isolation, and lend support to the hypothesis that ecological speciation 

(sensu53) may be more common in the sea than believed previously. 
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Methods 

Species identification 

Due to its high morphological plasticity, the genus Porites is notorious for its difficulties in 

distinguishing between its species (e.g.27,54-56). Genetic delineation of some Porites, including P. 

lobata, has been challenging due to cryptic species and polymorphic or hybrid species complexes 

(e.g.56,57). Although Porites corallites are small, irregular and can be highly variable, micro-

skeletal (corallite) structures have been proposed to be more reliable for species identification, 

therefore, we examined the corallites of all collected samples to confirm our taxonomic 

identifications27,57. In Hawai‘i , the only Porites species with a similar colony morphology to P. 

lobata is Porites evermanni (there are no records of Porites lutea in Hawai‘i , although Fenner58 

synonymized P. evermanni and P. lutea, they represent two distinct genetic clades56. P. 

evermanni is genetically distinct from P. lobata56, Clade V), and P. lutea has a distinct corallite 

skeletal morphology, compared to P. lobata27. 

Coral Sampling 
Small fragments (1 cm2) of P. lobata tissue samples were collected from live colonies between 

February 2013 to May 2017 at the following sampling sites in Hawaiʻi; a) 'O‘ahu'- nearshore 

(n=22) and offshore (n=21) sites at Maunalua Bay, O‘ahu (21.261~21.278°N, 157.711°W), b) 

'Maui1' – nearshore (n=21) and offshore (n=23) sites off the Hanakaoʻo Beach Park, West Maui 

(Wahikuli, 20.95°N, 156.68°W), and c) Maui2 – nearshore (n=23), and offshore (n=20)  sites off 

the Honokōwai Beach Park, West Maui (Honokōwai , 20.90°N, 156.69°W) (Fig. 1, Fig.S1). 

Samples were taken from coral colonies at least two meters apart at each site, and after sampling, 

each coral colony was photographed and tagged to avoid resampling of the same colony. The 

collected tissue samples were either flash frozen in liquid nitrogen on shore and subsequently 

stored at -80, preserved in DMSO buffer (Gaither et al. 2011), or stored in 100% ethanol. 

Genomic DNA was extracted from each coral tissue sample using the Qiagen® DNeasy Blood & 

Tissue Kit. Coral samples were collected under the State of Hawai‘i Division of Aquatic 
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Resources, Special Activity Permit 2013-26, 2014-64, 2015-06, and 2017-16. 

PCR 
For the samples from O‘ahu, the following three regions of coral host DNA were PCR-amplified: 

1) ~ 400 bp coral mitochondrial CR with primers CRf and CO3r59, 2) ~ 700 bp coral nuclear ITS 

with primers ITSZ1 and ITSZ256, and 3) ~1,500 bp coral nuclear H2 with novel primers 

zH2AH4f (5’-GTGTACTTGGCTGCYGTRCT -3’) and zH4Fr (5‘-

GACAACCGAGAATGTCCGGT-3’). H2 was developed to create a genetic marker that allow 

direct sequencing of post PCR products to efficiently assess small-scale population genetic 

structure, because 1) the mitochondrial genome of P. lobata exhibits very little sequence 

variability (< 0.02% polymorphic sites60 due to its extremely slow evolutionary rate44, and 2) 

even though high polymorphism in ITS is a desirable trait, sequencing of ITS requires time-

consuming cloning, and analyzing the multi-copy gene poses analytical challenges, as it deviates 

from a standard diploid model. H2 was amplified under the following conditions: 96 °C for 2 

min (one cycle), followed by 34 cycles consisting of 96 °C for 20 s, 58.5 °C for 20 s, and 72 °C 

for 90 s, and a final extension at 72 °C for 5 min. H2 amplifications (25 µl) consisted of 0.5 µl of 

DNA template, 0.2 µl of GoTaq® DNA Polymerase (Promega, Madison, WI), 5 µl of GoTaq® 

Reaction Buffer, 1.6 µl of 50mM MgCl2, 2 µl of 10 mM dNTPmix, 1.6 µl of each 10mM primer, 

and nuclease-free water to volume. For samples with multiple bands, approximately 1500-bp 

PCR products were extracted from agarose gels after electrophoresis and purified using the 

UltraClean® 15 DNA Purification Kit (MO BIO Laboratories, Carlsbad, CA) according to the 

manufacturer’s instruction. The rest of the PCR products were purified with UltraClean® PCR 

Clean-Up Kit (MO BIO Laboratories) and sequenced directly in both directions on the ABI 

3730xl DNA Analyzer. Clone libraries were created for each amplified ITS region using the 

pGEM®-Easy Vector System (Promega). Positive inserts were verified by PCR using SP6 and T7 

primers, and plasmids (2–5 per library) were treated with UltraClean® 6 Minute Mini Plasmid 

Prep Kit (MO BIO Laboratories) and sequenced on an ABI-3130XL Genetic Analyzer sequencer. 

For Maui samples, H2 was amplified and sequenced using the same method as described above.  
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Sequence analyses 
Resulting DNA sequences were aligned using Geneious® 6.1.8 (Biomatters Ltd., Auckland, New 

Zealand). Polymorphic sites within H2 regions were identified using Geneious® (Find 

Heterozygotes option) and confirmed by eye. Middle sections, as well as both ends of H2 were 

then trimmed to 1,352 bp (for O‘ahu sequences) or 1,221 bp (for combined O‘ahu and Maui 

analysis) due to many having low quality and/or missing nucleotides. H2 was phased using the 

program PHASE 2.1 61 and SeqPHASE 62. The analysis of molecular variance and other 

population genetic statistics were estimated in Arlequin 3.5 43 and TCS 1.21 63. The global 

AMOVA with a weighted average over loci with permutation tests was used as implemented in 

Arlequin 3.5. For H2, both phased and non-phased sequences were run with AMOVA, which 

produced the same statistical results, and therefore only the results from the phased sequences 

are presented here. Up to five coral ITS sequences were successfully cloned and sequenced per 

colony, and the entire data set was used for calculation of population statistics, treating each 

cloned sequence as a haplotype. Attempts have been made to conduct genetic analysis using ITS 

by a) treating each sequence as a haplotype (inclusivity), b) making a consensus sequence per 

individual (consensus by plurality), or c) using a hierarchal PERMANOVA 23. In this study, we 

ran AMOVA using ITS by both a) and b) methods, which produced the same statistical outcome, 

and hence, the results from inclusivity (a) are presented in this paper. To address the unequal 

sample sizes (28 vs 44) between the sites in Maunalua Bay, the analysis was repeated after 

resampling to the equal sample size (28) for 10 times. All DNA sequences were inspected for 

possibility of multi-sampled individuals, and all sampled colonies were considered as separate 

individuals (genets) since no two individuals from a single site shared the same haplotypes (H2). 

Mantel’s test for isolation by distance was run on the samples in R64 using pairwise genetic 

distance with 5000 bootstrap permutations. Rarefaction anaysis was conducted in Analytic 

Rarefaction 2.1.165.  
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Table S1. Genetic diversity comparison between the nearshore and offshore P. lobata populations 
from Maunalua Bay, Hawaii (Oʻahu) based on 17,850 single nucleotide polymorphic loci. The 
number of heterozygous sites per individual was obtained using VCFtools, and the total number 
of polymorphic loci was obtained using Arlequin (for the nearshore population, showing the 
average over two individuals).  

1 t-test: t = -2.0942, df = 4.6575, p-value = 0.09451 
2 no statistical test since n=1 for Offshore 

�1

SampleID Population Heterozygous 
sites (HET)1

Ave. no. of 
polymorphic loci 
across 2 individuals2

Offshore
(O)

Coral1 (C6) O 7621

Coral2 (C16) O 7518

Average (O) 7569.5 11105

Nearshore
(N)

Coral6 (N1) N 7267

Coral7 (N3) N 6631

Coral8 (M2) N 7200

Coral9 (M7) N 7345

Coral10 (M12) N 7622

Average (N) 7213.0 10255.4 ± 43.3
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Table S2. AMOVA results of P. lobata populations across islands (A), and across habitat types:  
nearshore vs offshore pooled individuals from Oʻahu and Maui1 (B), and Oʻahu and Maui 1 & 2 
(C).  

A Source of Variation Variance 
components % Variance Fixation indices

Among groups (islands) 0.00135 0.03 FCT = 0.00034

Among populations 
within groups 0.24897 6.35 FSC = 0.06349***

Among individuals 
Within populations 1.51485 38.62 FIS = 0.41248***

Within individuals 2.15769 55.00 FIT = 0.44997***

B Source of Variation Variance 
components % Variance FST

Between sites 0.2360 5.96
0.0596***Within sites 1.3906 35.12

Within individuals 2.3333 58.92

�2

C Source of Variation Variance 
components % Variance FST

Between sites 0.1074 2.73
0.0273***Within sites 1.6703 42.44

Within individuals 2.1577 54.82
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