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Haplotyping is imperative for comprehensive analysis of genomes, imputation of genetic variants and 

interpretation of error-prone single-cell genomic data. Here we present a novel sequencing-based 

approach for whole-genome SNP typing of single cells, and determine genome-wide haplotypes, the 

copy number of those haplotypes as well as the parental and segregational origin of chromosomal 

aberrations from sequencing- and array-based SNP landscapes of single cells. The analytical workflow 

is made available as an interactive web application HiVA (https://hiva.esat.kuleuven.be).   

 

Technologies for single-cell whole-genome analyses allow disclosing inter-cellular genetic 

heterogeneity
1,2

, which is fundamentally changing our understanding of DNA mutation in 

development, ageing and disease
3
, and enable novel medical practice

4
, in particular for genetic 

selection of human preimplantation embryos
5,6

. Current methods for single-cell genome 

analysis require some form of whole genome amplification (WGA) to yield sufficient input 

material for microarray or next-generation sequencing (NGS) analyses
1,2,7

. However, WGA 

produces artefacts –including locus drop-out (LDO), allelic drop-out (ADO), chimeric DNA 

molecules, base replication errors, and unevenness in amplification– that challenge the 

detection of genetic variation at the single-cell level
4
.  

An effective way to alleviate WGA artefacts is haplotyping that connects variant alleles 

present on the same DNA double helix within a single cell. Several family-based
5,8-11

 and 

population-based
12-16

 methods for haplotyping of single nucleotide polymorphism (SNP)  

genotypes
5,8-11 

or SNP B-allele fractions (BAFs)
15,16

 derived from bulk DNA samples have been 

developed. However, these methods have a number of shortcomings for single-cell SNP 

haplotyping. They go awry on the error-prone single-cell SNP genotypes mainly due to ADO and 

putative base replication errors 
8
, often ignore DNA copy number aberrations

5,8
 and cannot 
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distinguish mitotic from meiotic allelic imbalances. Additionally, for methods that make use of 

sequencing data
15

, (ultra-)deep sequencing of genomes is needed, which is cost prohibitive and 

computationally demanding.  

Here we devised HiVA (Haplarithm inference of Variant Alleles; Fig. 1b and 

Supplementary Fig. 1) a web application for concurrent haplotyping and copy number typing of 

single cells
6
 in conjunction with a novel cost-effective single-cell genotyping-by-sequencing 

(scGBS) approach. scGBS generates reduced genomic representation libraries using a restriction 

enzyme (RE) that frequently cuts the amplified genome of the cell
17,18

, followed by size 

selection and PCR of the shorter fragments, and finally sequencing their both ends (Fig. 1a).  

HiVA is developed from our previous single-cell haplotyping workflow
6
 by combining 

novel analytical modules, including (i) quality control filtering of both single-cell SNP-array and 

GBS data, (ii) family-based haplotyping of single-cell genome-wide SNP genotypes and B-allele 

frequencies –the latter is termed haplarithmisis
6
–, (iii) imputation of genetic variants and their 

distances to the nearest homologous recombination site, (iv) DNA copy number analysis of SNP-

array or reduced representation genomic sequences, and (v) interactive visualization modules 

for integrative analysis of global or detailed single-cell haplotype-plus-copy number landscapes 

(Online Methods, Supplementary Figs. 1 and 2). As such the applications of the tool range from 

genome-wide haplotype reconstruction and genetic variant imputation, to deciphering the 

nature of allelic imbalances in single cells, including their parental origin as well as their mitotic 

or meiotic segregational origin
19-21

 (Fig. 2). Moreover, the methodology has been clinically 

implemented for genetic diagnosis of preimplantation embryos by imputation of Mendelian 

disease variants 
6,21,22

 (Fig. 2).  
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For performance testing of scGBS, we compared single-cell with bulk GBS sequences 

derived from siblings GM12882 (n=5 single cells) and GM12887 (n=2 single cells) of the 

CEPH/Utah 1463 HapMap family for which we also generated parental bulk GBS data. We 

evaluated ApeKI, NspI and PstI restriction enzymes to reduce the complexity of the whole-

genome amplified single-cell genome, of which ApeKI retained the most informative SNPs 

(Online Methods, Supplementary Fig. 3, Supplementary Note). Following alignment of the GBS 

data and in silico digestion of the reference genome
23

 (Online Methods), the mean depth and 

breadth of sequencing coverage for the ApeKI targeted regions in the bulk DNA and single cells 

were 100.5 X (± 65.02 X SD) and 88.65 X (± 5.22 X SD), and 25 X (± 10.6 X SD) and 83.69 X (± 5.72 

X SD), respectively (see also Supplementary Table 1). We first genotyped the bulk GBS 

sequences of individuals GM12877 and GM12878, and compared them with the available high-

confidence variant calls from the Platinum genomes
24

, which showed that 7X depth of coverage 

produces over 98% accurate heterozygous SNP calls while retaining the majority of those SNPs 

(97.22% ± 0.0 SD). Using this bulk GBS as a reference, the single-cell GBS sequences produced a 

call rate of 73.84% (±4.11% SD) and an accuracy of 83.23% (± 7.35% SD) (Fig. 2a). Subsequently, 

we determined the minimal depth of coverage for scGBS by comparing its heterozygous SNP 

calls with the multi-cell calls in function of sequencing coverage (Fig. 2b, Supplementary Note), 

and found that 11X gives 74.71% (±15.73 SD) accurate heterozygous SNP calls while retaining 

the majority of those SNPs (69.67% ± 10.52 SD) (see also Supplementary Fig. 4). Our data 

showed comparable genotyping efficacy of scGBS genotype calls when compared to SNP array 

data of the same single-cell samples (Supplementary Tables 2 and 3). This single-cell and bulk 

SNP-information was fed to HiVA, producing single-cell haplotypes that are 99.63% (±0.63% SD) 
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accurate when compared to bulk derived haplotypes (Fig. 2c and d). Furthermore, after 

transforming single-cell haplarithms to discrete haplotypes
6
, scGBS delivered comparable 

accuracies as compared to SNP array data (Supplementary Tables 4 and 5, Supplementary Fig. 

5). 

To further validate scGBS and HiVA on primary tissue, we processed 15 single 

blastomeres and 3 trophectoderm samples biopsied from cleavage- and blastocyst-stage 

human preimplantation embryos, respectively. These samples, derived from 6 families with 

various genetic indications (Supplementary Table 6), previously underwent SNP-typing with 

arrays for preimplantation genetic testing (PGT). All of the scGBS and SNP-array based HiVA 

analysis results were concordant with the clinical PGT approach (Fig. 2d and Supplementary 

Table 6). 

 In conclusion, here we develop a reduced representation genome 

sequencing approach (scGBS), enabling haplotype-specific genomic landscape profiling of single 

cells –without requiring full-genome deep sequencing– in combination with an innovative, user-

friendly, and interactive web platform for single-cell SNP-data analysis. The methodology 

delivers novel understanding of chromosome instability and can potentially be translated to the 

clinic. 

 

Online content 

Methods and any associated references are available in the online version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the online version 

of the paper. 
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Figure legends 

 

Figure 1 | Integrative wet- and dry-lab single-cell haplotyping and copy-number profiling 

approach. a, schematic illustration of scGBS assay. b, overview of the interactive HiVA web 

application (see also Supplementary Fig. 1). 

 

Figure 2 | scGBS proof-of-concept assay and its application as a comprehensive PGT method. 

a, accuracy and amount of heterozygous SNP calls derived from multi-cell DNA samples when 

compared to their platinum SNP calls in function of depth of coverage. b, accuracy and amount 

of heterozygous SNP calls derived from single cells when compared to their multi-cell reference 

in function of depth of coverage. c, homologous recombination detection plot representing the 

accuracy of five single-cell haplotypes when compared to their multi-cell reference following 

scGBS. d, comparison of SNP array and scGBS haplarithms. e, monosomy ChrX. f, mitotic loss 

and gain of Chr1. In panels d, e, and f from top to bottom, we show chromosomes’ ideogram, 

parent-of-origin profile, raw BAF values, raw discrete paternal haplotypes, interpreted discrete 

paternal haplotypes, paternal haplarithms, raw discrete maternal haplotypes, interpreted 

discrete maternal haplotypes, maternal haplarithms and copy number profiles.  
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METHODS 

 

Definitions. Haplarithmisis (Greek for haplotype numbering) is a concept that enables 

haplotyping, copy number typing, parent of origin typing, and reveals segregational and 

mechanistic origin of genomic anomalies. nPat and nMat represent paternal and maternal copies, 

respectively. nPat:nMat denotes the allelic ratio of a genomic region. P1 and P2 are two 

subcategories in the paternal haplarithm; M1 and M2 are two subcategories in the maternal 

haplarithm, these subcategories are determined on the basis of different parental genotype 

combinations 
9
. dPat represents the overall distance between P1 and P2 in a paternal 

haplarithm; dMat represents the overall distance between M1 and M2 in a maternal haplarithm.  

Haplarithmisis. Haplarithmisis uses categorization, conversion, and segmentation of BAFs from 

informative loci, producing P1 and P2 phased BAF segments in the paternal haplarithm 

(Supplementary Fig. 2) and similarly, M1 and M2 phased BAF segments in the maternal 

haplarithm. When the paternal haplotype 1 (H1) is inherited, the P1 BAF segment embodies a 

series of homozygous SNPs (P1 BAF = 0), while the P2 BAF segment across the same DNA locus 

a series of heterozygous SNPs (P2 BAF = 0.5) that are expected in the context of a diploid 

genome of the cell with a paternal H1 and a maternal H1 or H2 inheritance. If paternal 

haplotype 2 (H2) is inherited instead, the P1 BAF segment embodies a series of heterozygous 

SNPs (P1 = 0.5) and the P2 BAF segments a series of consecutive homozygous SNPs (P2 BAF = 1) 

(Supplementary Fig. 2). Hence, co-localizing breakpoints in the P1 and P2 segments locate 

homologous recombination sites from paternal meiosis, while deviations of expected P1 and P2 

BAF values from an expected diploid context denote DNA copy number and ploidy anomalies 

(Supplementary Fig. 2). The vertical distance between segmented P1 and P2 in the paternal 
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haplarithm (hdPAT) should complement the vertical distance between M1 and M2 in the 

maternal haplarithm (hdMAT) to the total sum amount of 1 (i.e. hdPAT + hdMAT = 1). These 

distances in combination with copy number values represent the copy number state and 

parental origin. For instance, for a normal diploid chromosome, hdPAT and hdMAT should be both 

0.5. While, a chromosome that shows a copy number gain and has a hdPAT value of 0.67 that is 

complemented with a hdMAT value of 0.33 (0.67+0.33=1), represents a maternal trisomy 

(Supplementary Fig. 2).  

Human subjects. We used single-cell and multi-cell DNA samples from the lymphoblastoid cell 

lines derived from a HapMap Family (CEPH/Utah Pedigree 1463). We validated HiVA for single-

cell analysis using single cells derived from individuals GM12882 and GM12887 of the 

CEPH/Utah 1463 HapMap family, as well as single-cell and few-cell biopsies from 

preimplantation embryos of six different PGT families. 

High-throughput single-cell genotyping-by-sequencing (scGBS). Restriction enzyme digestion 

and library preparation are carried out as described previously
19

 with the following 

modifications to the protocol: 500ng of input DNA is used for both multi-cell DNA and single-

cell WGA product, pooling occurs at equal amounts of DNA (100ng) and an additional size-

selection step (140-240 bp) is performed prior to a PCR amplification of 8 cycles. Barcodes are 

generated through the module Barcode Generator of GBSX
12

. For in silico restriction enzyme 

digestion and subsequent determination of the amount of expected target sequence (125 

nucleotides surrounding the restriction site), we applied the Restriction Enzyme Predictor tool 

of GBSX
12

. For HapMap samples and three PGT-M families paired-end (2x125bp) sequencing 

was performed on a HiSeq2500 system (Illumina) in multiple runs. For the remaining PGT-M 
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samples, paired-end (2x150bp) sequencing was performed on a NextSeq 550 system (Illumina) 

with 20 samples on one run in High Output mode. Paired-end sequencing data was 

demultiplexed using the Demultiplexer module of GBSX
23

. Subsequently, paired-end reads were 

flashed (i.e. reads of fragments that in size are smaller than 2x read length that are found to be 

overlapping are merged) using FLASH
25

. Afterwards, both flashed and non-flashed reads could 

be merged and mapped to the reference genome (hg19 genome build) with BWA
26

 MEM 

(Supplementary Note). We applied GATK’s
27

 Depth of Coverage module for determining the 

depth across the targeted regions.  

High-throughput genotyping by SNP-array. The HumanCytoSNP-12v2.1 (Illumina; GEO: 

GPL13829) BeadChips were performed according to manufacturer’s instructions using genomic 

DNA isolated from a large number of cells. For the HapMap samples, 600 ng of single-cell 

single-cell WGA DNA and 200 ng multi-cell DNA isolated from a large number of cells was used. 

Subsequently, for genotype calling, the signal intensities were analyzed by the GenCall 

algorithm (http://www.illumina.com/software/genomestudio_software.ilmn) as described 

previously
6
. 

Genotype inference following GBS. We applied GATK’s
27

 Haplotypecaller (Best Practice) to the 

BAM files of each sample. For haplotype reconstruction, we applied only those SNVs having a 

depth of coverage of � 7 for multi-cell samples and � 11 for single-cell samples. A multi-

sample genotyping file was created using GATK’s GVCFs. The SNV calls were then transformed 

to bi-allelic calls (i.e. AA, AB and, BB) with a custom R script using the following Bioconductor 

libraries: SNPlocs.Hsapiens.dbSNP144.GRCh37, VariantAnnotation and vcfR. BAF values were 

calculated based on allele-specific depth of coverage (Supplementary Note).  
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For computation of (relative) copy number values, we applied a modified version of our 

previous focal read-depth analysis
42, 

but enabled user definable bin sizes in HiVA.  

Web interface. We used ASP.NET C# as an open source language to develop our MVC (Model-

View-Control) based web application (see also Supplementary Fig. 1).  

Back-end application and database management.  HiVA’s application server runs multiple 

projects concurrently. Therefore, we devised a job scheduler to make sure that all the requests 

are processed in an efficient way. The job controller is responsible for scheduling requests and 

transferring files and results between the application server, database, and web server. 

However, processing data by HiVA generates 28 different data files. The size of the data is 

thereby increased to more than two gigabytes (GB). To tackle this, we optimized a database 

structure to store the results and serve the web application. Our database server is a virtual 

machine shared on a normal server with 4 cores and 4 GB of memory, indicating the adequacy 

of our database structure. 

Data visualization. HiVA visualizes different QC metrics and provides genome- and 

chromosome-specific interactive plots with the capacity of adapting to screen sizes and 

adjusting the amount of visualized data points. It also provides instant access to the exact 

coordinates in the UCSC Genome Browser and the possibility to export the view selected by the 

user. Furthermore, deletions, insertions, duplications, translocations, and inversions across the 

genome are distinguished by employing representative glyphs and links over the chromosome 

ideogram. The visualization module is developed in JavaScript and renders the output directly 

in the HTML5 canvas element. This allows plotting hundreds of thousands of data points in a 

single HTML page and optimizes the performance of HiVA.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/564914doi: bioRxiv preprint 

https://doi.org/10.1101/564914
http://creativecommons.org/licenses/by-nc-nd/4.0/


QC metrics. HiVA provides different QC metrics on genotype SNP calls and logR values. It makes 

use of parental genotype calls and determines Mendelian inconsistencies, including ADO, LDO, 

ADI. For evaluation of noise in logR values, median absolute pairwise difference (MAPD) value is 

determined that measures the absolute difference of two consecutive normalized logR values
28

 

as well as the cumulative standard deviation (CSD) that is summed standard deviation of each 

chromosome per cell. 

 

25. Magoc, T. & Salzberg, S.L. FLASH: fast length adjustment of short reads to improve 

genome assemblies. Bioinformatics 27, 2957-2963 (2011). 

26. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants 

using mapping quality scores. Genome Res 18, 1851-1858 (2008). 
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