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Abstract 

The Gene-Lifestyle Interactions Working Group has recently conducted series of multi-ancestry 

genome-wide association screenings (GWAS) involving up to 610,475 individuals for three lipids (total 

triglyceride, high-density lipoprotein, and low-density lipoprotein), and four blood pressure traits 

(diastolic blood pressure, systolic blood pressure, mean arterial pressure, and pulse pressure) while 

accounting for potential interaction effect with drinking and smoking exposures. These GWAS reported 

both a 1 degree-of-freedom (df) test of gene-by-exposure (GxE) interaction, and a 2 df test of main genetic 

effect and interaction effect. Here we synthetized these results and generated a number of cross-studies 

statistics, providing a global perspective on this unique initiative, and suggesting guidelines for future GxE 

studies. We first summarized the signals identified across all phenotype-exposure pairs and ancestries 

considered, highlighting similarity and specificity of gene-environment interaction effects across 

phenotypes and ancestries. We then performed several follow-up analyses using genome-wide summary 

statistics, focusing in particular on multi-SNPs approaches and the relationship between interactions 

effect and marginal genetic effect. Those analyses identified new associations and demonstrated potential 

alternatives approaches for future GxE screenings. Finally, we explored differences in heritability 

conditional on the exposures considered. Our work provides new evidences for the potential implication 

of exposure-specific pathways, opening new paths for future gene-environment interaction studies. 
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Introduction 

 

The question of the role of gene-environment interaction (GxE) in human diseases remains mostly 

open. Despite the fact that genome-wide GxE studies have been conducted for many phenotypes, the 

number of identified GxE is very small as compared to the large number of genetic variants identified in 

marginal effect screenings. A number of issues related to the identification of GxE have been well 

described in the literature1-3, in particular a very low power because of the collinearity induced between 

main and interaction parameters in standard interaction models4. As a result, the sample size needed to 

detect GxE has to be substantially larger than for GWAS of marginal genetic effect. Moreover, there have 

been very limited studies exploring potential difference in GxE association across populations, as well as 

studies assessing the contribution of GxE to the variance of human phenotypes, or studies exploring 

enrichment of GxE for specific functional mechanisms.  

The Gene-Lifestyle Interactions Working Group5 (GLIWG) is an international initiative that has the 

potential to address some of these challenges. It is a large-scale, multi-ancestry consortium that aims at 

systematically evaluating genome-wide gene–lifestyle interactions on cardiovascular disease related traits 

using genotypic data from up to 610,475 individuals. The consortium recently published several GxE 

genome-wide screenings focusing on four blood pressure phenotypes: diastolic blood pressure (DBP), 

systolic blood pressure (SBP), pulse pressure (PP), mean arterial pressure (MAP), and three lipids level: 

triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). For each phenotype, a 

systematic genome-wide association study (GWAS) using the 1 degree of freedom (df) test for GxE 

interaction and the 2 df joint test of genetic and interaction effects6 has been conducted.  The results from 

these analyses have been published in four papers: SNP-by-alcohol interaction7 and SNP-by-smoking 

interaction8 on blood pressure, and SNP-by-alcohol interaction9 and SNP-by-smoking interaction on 

lipids10.  

Here we first synthesize the GWAS results for all phenotype-exposure combinations. We highlight 

the importance of our large-scale initiative to discover new loci and identify loci involved in interaction 

effect, comparing our results against previous marginal effect screening on these phenotypes. We then 

show the importance of using diverse populations, providing qualitative data showing that interacting loci 

and variants might differ by genetic ancestry. We present power calculations for several testing 

procedures, highlighting both the challenges and opportunities that exist for detecting GxE interactions 

in a GWAS setting.  Finally, we translate the effect size into variance explained of the outcomes under 

study, showing that in general, GxE does not explain a substantial amount of phenotypic variance for these 

traits. However, we show that the limited variance explained by interaction effect alone does not rule out 

the importance of GxE, and use the stratified LDscore11 to show that the environmental exposure might 

indeed induce a specific and important genetic response. 

Results 

Overview 

Our GWAS scans to date have focused on three lipid (LDL, HDL, and TG) and four blood pressure (DBP, 

SBP, MAP, and PP) phenotypes, each examining GxE interaction with two smoking (current smoking and 

ever smoking) and two alcohol (current drinking and drinking habits) exposures, for a total of 28 GWAS 
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(Table 1).  All outcome-exposure pairs considered were analyzed using a two-stage approach involving up 

to 610,475 individuals. In stage 1, genome-wide interaction analysis was performed in up to 29 cohorts 

with a total of up to 149,684 individuals from multiple ancestries: European-Ancestry (EA), African-

Ancestry (AA), Asian-Ancestry (ASA), and Hispanic-Ancestry (HA). In stage 2, involving up to an additional 

71 studies with 460,791 individuals also from multiple ancestries, studies focused on the replication of a 

subset of variants from stage 1 with a p-value threshold of 1.0 x 10-6. Note that the total sample size 

(discovery + replication) varied substantially across the trait analyzed, with an average of 330K for lipids 

and 460K for blood pressure traits. To ensure a fair comparison across all analyses, we re-processed all 

GWAS results using the same pipeline. Note that the results from the original studies and our analyses are 

highly concordant, but some minor differences might exist. 

 

Summary of main results 

We first synthesized the results obtained from the four studies, reporting all independent loci 

identified in the trans-ancestry meta-analysis in Table1 and per ancestry in Table S1. Overall, the 2df joint 

tests trans-ancestry analyses identified a total of 5961 association signals in 1689 loci of approximately 

1Mb (see Methods). A total of 52% (N=874) loci harbored a single association signal. For the other 

remaining loci, the number of independent signals ranged from 2 to 72 (Figure S1), and the average over 

all regions equaled 3.5. However, as the 2df approach tests jointly the main genetic effect and interaction 

with the specific exposure considered, most loci overlapped across the exposures tested. Merging 

overlapping loci identified by different exposure scans, our studies found a total of 113 loci for HDL, 97 

loci for LDL, 79 loci for TG, 75 loci for SBP, 76 loci for DBP, 76 loci for MAP, and 58 loci for PP. Interestingly, 

there was variability in the identification of loci per exposure considered. On average, 13% of the loci were 

identified by a single exposure scan, while conversely, 42% were identified by all four exposure association 

studies for each phenotype (Figure 1a). Looking at each GWAS exposure scan separately, current drinking 

captured 80% of all loci, drinking habits captured 61% loci, while both smoking scans identified 

approximately 70% of all loci (Figure 1b). Note that the lower number of signals for drinking habits might 

be partly explained by the smaller sample size on average.  

The standard 1df interaction trans-ancestry test identified a much smaller number of associations. 

There were 23 independent association signals at 20 loci. All except two were found for HDL and LDL and 

drinking exposures (Table S2), although the sample sizes for these lipid phenotypes tended to be slightly 

smaller than for BP traits. The interaction effects for the top variants tended to be in the opposite direction 

compared to the main genetic effects (60% opposite, Pbin=0.1). Most of these loci were also identified by 

the 2df test, which is expected as the latter approach is supposed to have a much higher power to detect 

variants displaying both main and interaction effects (Table S2). We found two loci where this was not 

the case, although in both cases the joint test provided suggestive genome-wide significant.  

A major novelty of the GLIWG is the inclusion of a large proportion of non-European individuals. More 

precisely, over the two stages there was 64% (N=390,757) of European (EA), 27% (N=162,369) of Asian 

(ASA), 5% (N=33,606) of African (AA) and 4% (N=22,612) of Hispanic (HA) ancestries. For the 2df test, the 

total number of significant associations per ancestry was proportional to the available sample size (Table 

S1). There was 1570, 254, 152, and 150 loci identified by this approach in EA, ASA, AA, and HA ancestries, 

respectively. Deriving the overlap across ancestries for the significant loci, we found that almost all ASA 

and HA loci were also identified by the larger EA studies (Figure 2a). The only exception was for AA, for 
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which half of the loci were exclusively identified in this population. To account for sample size differences 

and assess whether top variants were persistent across populations, we also looked at independent 

associated single nucleotide polymorphism (SNP). We extracted for each ancestry-specific signal the p-

value at the same top SNP for the other ancestries, and assume replication if that p-value was smaller 

than 0.05. Figure 2b shows this overlap over all phenotypes and per-phenotype, and confirm the 

enrichment for ancestry specific variants in African-ancestry population. For the 1df interaction test, and 

only a few loci reach genome-wide significance, with 3, 30, 13, and 0 loci identified in EA, ASA, AA, and HA 

ancestries, respectively. The number of significant loci was not correlated with sample size per ancestry 

and indicates the potential presence of ancestry specific interaction effects.  

 

Comparison against marginal effect screening 

We retrieved from the literature loci exhibiting significant marginal genetic effect on blood pressure 

traits12-14 and lipid traits15-18, and compared those associations against both 1df and 2df test from our stage 

1 analysis (as some SNPs were not available at stage 2). Description of these references are provided in 

Table S3, and the list of SNPs used in Table S4. We derived in terms of regions defined as 500kb around 

the top associated variant. Overall, GLIWG identified 239 new loci-outcome associations. Among the 360 

associations retrieved from the literature, 230 were also found in our studies, while 130 associations were 

not replicated at genome-wide significance. Most of the new association results for lipids were identified 

when accounting for interaction with drinking exposures, while the majority of new blood pressure 

associations were identified when accounting for interaction with smoking exposures (Table 2). For 

example, 94% (N=46) of the 49 new associations with HDL were found in the gene-by-current drinking 

GWAS, when only 45% (N=22) were identified in the gene-by-current smoking GWAS. Conversely 92% 

(N=44) of the 48 new associations with PP were found in the gene-by-ever smoking GWAS, while 31% 

(N=15) were identified in the gene-by-drinking habits GWAS.  

We also used these known variants derived in external data to assess potential enrichment of 

interaction effects. The distribution of the interaction effect at those variants did not indicated any strong 

enrichment (Figs S1-S2). We next considered three approaches previously described19: an omnibus test 

that combines chi-squared statistics to form a 𝐾 degree of freedom statistics, where 𝐾 is the number of 

SNPs tested jointly; an unweighted genetic risk score (uGRS)-by-exposure interaction, and a weighted 

genetic risk score (wGRS) where SNPs are weighted by the marginal effect reported in the original studies. 

Our analysis did not find any enrichment for the majority of studies except for TG and current smoking 

(Table S5). Our multi-SNP test showed a strong overall enrichment with the Omnibus approach (P=2.6x10-

8) for this exposure. Out of the 28 variants considered, 8 were nominally significant, with the smallest p-

value achieved for rs4810479 (P=4.8e-4) (Table S6). This variant is 4kb upstream the gene PLTP, that 

encode a phospholipid transfer protein. Interestingly, several studies showed an effect of smoking on the 

expression of this gene20,21. More precisely, they highlighted an increased PLTP activity in smokers.  

 

Power 

We plotted in Figure 3 the number of identified loci for both the 1df interaction test and the 2df joint 

test as a function of the sample size at discovery stage for both ancestry-specific GWAS and the trans-

ancestry meta-analysis. The pattern for the 2df test clearly shows the expected increased number of 

detected signals as sample size increases, similar to trend observed for marginal effect GWAS22. The 1df 
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interaction test also showed an increasing trend. However, the gain in power was minimal, highlighting 

the need for even larger sample size to further increase statistical power. Looking at power per analysis, 

we observed several interesting features. First, there are substantial differences in performance across 

phenotypes-exposure pairs. Drinking and lipids appear to be the best candidates for an increase in power 

for both 1df and 2df tests for future studies, as opposed to e.g. lipids and smoking that show a smaller 

increase rate. Second, while we found that trans-ancestry meta-analysis to be beneficial for the 2df test, 

this was not the case for the 1df test. For example, the 1df test meta-analysis for HDL and LDL identified 

respectively 6 and 8 GxE interactions with current drinking, when the Asian-ancestry analyses identified 5 

and 19 interactions for the same outcome-exposure pair, respectively. In general, some of these 

interactions seem to be ancestry-specific, and increased sample size in specific populations can potentially 

lead to new discoveries that might be missed by trans-ancestry analyses. Some of the ancestry-specific 

results might be explained by differences in allele frequencies across populations (Table S2). However, 

other factors might be involved, and, for example, most of the SNP identified in the Asian-specific lipids-

drinking interaction appear to be common in other populations. 

Power of future studies might also be potentially increased using new methods. In particular, several 

2-step approaches have been proposed in the literature23-25. In brief, these approaches screen SNPs in 

Step 1 based on some test and pre-defined Step-1 significance threshold,  and then test GxE interaction 

in Step 2 for only those SNPs that pass the screen (Figs S3).  A key requirement of these approaches is the 

use of independent tests for Step 1 and Step 2.  For example, one can screen in Step 1 based on the 

standard marginal (G only) test at the 1 significance threshold, and for those SNPs that pass the screen 

apply the independent GxE test in Step 2.  A Bonferroni correction to the desired overall significance level 

is based on only the number of SNPs tested in Step 2, which can translate into greater power to detect 

GxE interaction.  Most models of GxE interaction induce a marginal G effect (ref.), which gives this G 

followed by GxE 2-step approach the potential to identify novel signals that may be missed by a standard 

GxE scan of all SNPs. As an example, Figure X shows a comparison of power to detect GxE interaction in a 

genomewide scan using the standard 1-df GxE test and the abovementioned 2-step procedure with 

marginal G screening in Step 1. The power of the 2-step approach is substantially greater than the 

standard 1-df GxE test, and is nearly as high as power for the 2-df joint test of G and GxE.  The main 

limitation is that power relies on the relevance of the criteria used at the first step.  

To assess for the potential of this 2-step method based on our data, we quantified the enrichment 

for variants nominally significant (i.e. P<0.05) for GxE interaction effect after filtering based on marginal 

G effect p-value derived both within CHARGE, and from external GWAS studies (Figure 4). Some 

phenotype/exposure pairs show evidence of enrichment for significant GxE interaction, particularly as the 

threshold for marginal G significance becomes more strict.  The most extreme examples include 

TG/smoking, and DBP/current drinking. Results for the former pair is in strong agreement with our multi-

SNP test of interaction using genome-wide hits (see previous section), indicating a strong correlation 

between marginal genetic effect and interaction effect with this exposure. The absence of enrichment for 

other phenotype-exposure pairs does not rule out the relevance of two-step approach, but suggests that 

alternative metrics might be used at step 1. 
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Variance explained 

We used a tool we recently developed26 to estimate the variance explained by marginal genetic 

effects, the joint G and GxE interaction effects, and the interaction effect only, which corresponds to the 

difference between the two latter estimates. Here, we included all genome-wide significant variants with 

an r-squared lower than 0.2 and derive our estimate across all phenotype-exposure-ancestry analysis sets 

(Table S7). Overall, marginal genetic effects explain between 0.11% and 13.12% of the total phenotypic 

variance with an average of 3.12%. On the other hand, the interaction terms explain between 0% and 

1.14% of the phenotypic variance, corresponding to an average increase of 9.11% of the total variance 

explained as compared to the marginal model. The largest amount of variance explained were observed 

for lipids traits, (average of 4.5%, as compared to 0.65% for blood pressure phenotypes). We did not 

observe any major qualitative differences across populations for the marginal genetic effect and the joint 

parameters. Conversely, the contributions of the interaction effect display substantial heterogeneity for 

some phenotype-exposure pairs. In particular, the variance explained by SNP-by-current drinking 

interaction on LDL was markedly higher for Asian ancestry as compared to other ancestries (1.14% for 

ASA, 0.20% for AA, 0.14% for EA, and 0.11% for HA). This is in agreement with the results from previous 

sections indicating an enrichment for interaction signal in that specific analysis. 

Our results are in agreement with previous studies, showing that the contribution of GxE terms on 

top of marginal genetic effect is relatively modest27, and confirm the likely limited impact of discovering 

GxE for prediction purposes in general. However, further work would be needed to assess special cases, 

such as the prediction performances in strata defined by environmental exposure, which might in some 

situation lead to gain in predictive power28. Importantly, we derived the contribution of GxE following 

standard29 –i.e. as the additional variance explained on top of the marginal genetic effect. This does not 

necessarily reflect the actual biological contribution of potential interaction effect, as GxE effect might be 

projected on the marginal genetic effect and thus accounted for by the marginal terms. Alternative 

approaches might address this limitation by assessing e.g. differences in genome-wide genetic effects 

conditional on the exposures considered (see next section about Enrichment for specific annotation). 

 

Heritability analyses 

As discussed in the previous section, the relative importance of gene-by-environment (GxE) 

interactions to multifactorial traits might not be well characterized by the variance explained, as the latter 

parameter only expresses the deviation of genetic effect relative to the mean of the exposure. 

Understanding the role of GxE in human traits and diseases can be challenging, because human genetic 

studies relies on observational data. Here, we suggest that differences in genetic mechanisms conditional 

on the individual exposome can be partly assessed by fine phenotypic heritability  

We first estimated the heritability of the three lipids and two blood pressures (DBP and SBP) traits 

across all individuals and in subset defined by exposure, using the LDscore approach30 applied to summary 

statistics from the trans-ancestry analyses (Figure 5). The heritabilities across the three groups (all, 

exposed and unexposed) were similar for ever smoking and current drinking for all phenotypes. 

Conversely, we found substantial differences for the two other exposures. Heritability among current 

smokers was systematically smaller than among unexposed, especially for lipids phenotypes (11%, 12% 

and 2%, on average for all, unexposed and exposed, respectively). On the other hand, heritability among 

high drinkers was also smaller than among low drinkers for both DBP and SBP. Both patterns might seems 
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surprising as several of our previous analyses indicated a higher detection rate for gene-by-smoking 

interaction on blood pressure and gene-by-drinking interaction on lipids. However, this pattern is 

concordant with our results for TG and current smoking, which shows a negative correlation of effects 

between marginal and interaction terms. Indeed, one naive explanation for these differences is a 

systematic decrease in genetic effect size in exposed individual. Previous work showed that the detection 

of such signal can be challenging, but future larger studies with higher power might confirm this 

hypothesis for TG, and other traits.  

We next perform a second heritability analysis, partitioning the genetic contribution by functional 

annotation, also using the LDscore approach11,31. We focused here on off-the-shelf baseline annotations, 

but we also considered the Genoskyline32, a recently proposed annotation set integrating a rich collection 

of epigenomic data from the Roadmap Epigenomics Project. We derived for the same three lipids, and the 

two blood pressure (SBP and DBP) traits the enrichment score for all annotations (Figs S4). Overall, we did 

not observe any major difference across the phenotype-exposure pairs considered, expect for TG and 

drinking habits. For that pair, numerous Genoskyline annotations were strongly enriched only in exposed 

individuals. This pattern suggests a potential change in the genetic architecture of TG conditional on 

drinking habits (i.e. the variants involved differs depending on the exposure). If valid, this hypothesis could 

explain the increase in power observed in our GWAS result for this exposure with TG, while at the same 

time the absence of correlation between marginal genetic effect and interaction effects. 

 

Discussion 
In this study, we assembled and synthesized the results from 28 gene-by-environment interaction 

GWAS on lipid and blood pressure phenotypes performed across four ancestries, which were recently 

published by the Gene-Lifestyle Interactions Working Group5,7-10. This transversal analysis highlighted a 

number of features regarding large-scale GxE analysis and trans-ancestry studies. Overall, we found the 

trans-ancestry 2df test to be the most powerful approach for SNP discovery, although power depended 

substantially on the exposure considered. Conversely, for interaction effect analysis, all our analyses 

pointed toward more ancestry-specific patterns, which might be due to differences in allelic frequencies 

at causal variants, but also to other unmeasured factors. For example, African-ancestry analyses displayed 

several interaction effects across all phenotypes-exposure pairs, not detected by the 2df test, and 

involving variants almost absent in other populations. On the other hand, Asian-ancestry cohorts showed 

a very specific enrichment for interaction effect between lipids –and LDL in particular– and drinking, 

involving variants common in all populations. Our study also found differences across the exposures 

considered. We noted a greater increase in detection for lipid associated variants when accounting for 

interaction with drinking, and a greater increase in detection for blood pressure associated variants when 

accounting for interaction with smoking, thus stressing the potential importance of these phenotype-

exposure pairs. 

Comparing our results against previous GWAS of marginal genetic effect, we found strong 

concordance of effects for lipid analyses, with most of the previously identified phenotype-loci association 

being replicated in GLIWG, and over 190 new association identified in GLIWG. Results for blood pressure 

were more heterogeneous, with approximately half of the known associations being replicated, and as 

many associations being only found either in GLIWG or in previous GWAS. Our data did not highlight any 
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specific explanation, but the heterogeneity of results for blood pressure might potentially involve 

heterogeneity of genetic effect across population. Indeed, the vast majority of unreplicated loci for DBP 

and SBP were found in the UK Biobank cohorts. Using top associated SNPs from these GWAS, we next 

performed series of multi-SNP analyses to assess the presence of interaction effect at top genetic variants 

with marginal effect. We did not observe much enrichment for interaction effects among those variants, 

except for TG and current smoking. While the univariate GLIWG studies did not found genome-wide 

significant interaction in this analysis, the joint analysis of the 30 top TG SNPs was highly significant. This 

highlight the presence of likely small, but persistent interactions between many TG associated variants 

and current smoking. An additional analysis exploring the correlation between marginal genetic effects 

and SNP-by-TG interaction confirmed this enrichment, highlighting a particular relation between genetics 

and smoking on this phenotype. 

We also used the GLIWG summary data to derive more global GxE parameters. We first estimated 

the overall phenotypic variance explained by marginal genetic effect and interaction effect across all 

identified variants. In agreement with the previous literature, we found a relatively limited contribution 

of interaction effect, confirming that GxE would be of limited interest for prediction purposes in the 

general population. However, correlation between main and interaction, as observed for example for TG 

and smoking and DBP and current drinking, highlights the potential for developing improved polygenic 

risk score in strata defined by exposures for those phenotypes. Importantly, a modest contribution of GxE 

to phenotypic variance does not rule out the potential importance role of GxE in the etiology of these 

traits –for example, marginal model can simply capture most of the variance explained by interaction 

effect, thus masking more complex biological mechanism4.  

To address this possibility, we derived heritability estimates conditional on the exposure. Our analysis 

suggested the presence of two different patterns. First, some exposures might affect the overall effect 

size of the genetic variants of some phenotypes (e.g. drinking habits and blood pressure, or smoking and 

lipids). Such interactions are difficult to detect using agnostic screening, but other approaches such as the 

2-step method might substantially boost power. Second, we found one example (TG and drinking habits) 

where the genetic variants involved are likely different depending on the individual exposure, suggesting 

heterogeneity in the biological mechanism involved in the phenotype. In this alternative model, large 

differences in genetic effect between exposure strata imply larger power –which is in agreement with our 

power plot for that specific phenotype-exposure pair–, and at the same time, the absence of correlation 

between marginal genetic effect and interaction effects. Future studies with larger sample size and 

individual level data might help validating these hypotheses and assess the relevance of others competing 

models. For example, differences in phenotypic variance between exposure strata might potentially 

explain some of the observed differences in heritability estimates.   

Finally, we performed several analyses using GxE summary statistics, including multi-SNPs analysis, 

estimation of variance explained, and assessment of enrichment for cell-type specific genetic effect 

depending on the exposure. The summary data provided by the GLIWG consortium provide opportunities 

for numerous additional follow-up analyses. Our research group has started several multi-traits and multi-

exposures analyses that can help detecting new associated variants missed by univariate analyses. Future 

studies, extending methodologies developed for marginal genetic effect GWAS can be used to gain further 

knowledge on GxE, using fine-mapping33, co-heritability34, or conditional analyses35 approaches. 
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The Gene-Lifestyle Interactions Working Group is a unique initiative that aims at understanding 

better the interplay between genetics and lifestyle on human phenotypes across various ancestries. Here 

we presented an overview of the early GxE screenings involving SNP by drinking and smoking exposures 

interactions on lipid and blood pressure traits. The characteristics we identified across phenotypes, 

exposures, and ancestries will provide the community with new working hypothesis and guidelines for 

future GxE studies. 

 

 

Methods 

Data pre-processing 

For each outcome-exposure, we had access to meta-analyses summary statistics of genome-wide 

GxE screenings in both the discovery and the replication stages for different populations (European, 

African, Asian and Hispanic ancestries). Details regarding the conduct of each study can be found 

elsewhere (REFS). In the discovery stage, we excluded SNPs with a MAF below 1% and with significant 

heterogeneous effects across individual cohorts (P < 10-6). SNPs present in only one ancestry were 

excluded from trans-ancestries analyses. Variants with a p-value below P < 10-6 were further considered 

in the replication stage. Trans-ancestry summary statistics in the replication stage were filtered similarly 

to the discovery stage. Finally, we computed meta-analyses results for the combined analyses (discovery 

stage + replication stage) in each individual ancestry and trans-ancestry. For each ancestry and each 

phenotype-exposure combination, only SNPs included in both stages were retained in the final combined 

dataset. All meta-analyses were computed using the METAL software (REF) 

 

Identification of independent signals and loci 

For each outcome-exposure and in each ancestry, we identified genome-wide significant variants in 

the combined meta-analyses (P < 5x10-8). Independent signals were defined using the clumping 

framework implemented in the PLINK software (REF), using a LD threshold of 0.2 and a maximum physical 

distance from the top SNP of 500 kb. We used 1000 Genomes individual data as a reference panel 

accounting for ancestry. We kept the EUR, AFR, EAS and AMR samples as proxy for the European, African-

American, Asian and Hispanic individuals. We merged all those individuals to be used as a reference panel 

for the trans-ancestry analyses. In addition, we also defined loci by clustering SNPs located less than 500 

kb upstream or downstream the lead SNP. 

 

Univariate and multivariate interaction test at known loci 

We aimed to test whether SNPs previously identified at genome-wide significance level in marginal 

effect GWAS tend to display interaction effects. We retrieved from the literature loci exhibiting significant 

marginal genetic effect on blood pressure traits12-14 and lipid traits15-18.  For each locus, we selected only 

the most associated variants so that all candidate SNPs considered are independent from each other. We 
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first extracted single SNP interaction p-values and regression coefficients in order to assess the presence 

of nominally significant interactions after correction for multiple testing based on the number of selected 

candidates. 

We next assessed the presence of potential enrichment for interaction that would be missed by the 

univariate approach. We considered three complementary approaches to test jointly interaction effects 

from multiple SNP: an omnibus test, an unweighted genetic risk score (uGRS) test, and a weighted genetic 

risk score (wGRS). Consider a vector of 𝐿 single SNP interaction coefficient 𝑺 = ⌈𝛾1, … 𝛾L⌉ and their 

corresponding variance-covariance matrix 𝐐, which off-diagonal term equal 0, and diagonal equals to the 

variance of each estimate 𝚪 = [𝜎�̂�1

2 , … 𝜎�̂�𝐿

2 ]. In the standard omnibus test, all interaction effects, are tested 

jointly, by forming the statistics 𝑺𝑻𝐐−1𝑺, which follows a chi-square distribution with L degree of freedom. 

For GRS-based interaction tests, we assume the GRS are built as the (weighted or unweighted) sum of risk 

alleles of the 𝐿 candidate SNPs. Explicitly, 𝑢𝐺𝑅𝑆 = ∑ 𝐺𝑖𝑖=1…𝐿 , and 𝑤𝐺𝑅𝑆 = ∑ 𝑤𝑖 × 𝐺𝑖𝑖=1…𝐿 , where 𝑤𝑖 is 

defined as marginal genetic risk estimates of the SNP. We aim at testing the significance of the 𝑢𝐺𝑅𝑆 × 𝐸 

and 𝑤𝐺𝑅𝑆 × 𝐸.  As previously demonstrated4, the corresponding statistical tests can be respectively 

approximated using interaction summary statistics as (∑
�̂�i

𝜎�̂�i

2𝑖=1…𝐿 )

2

∑
1

𝜎�̂�i

2𝑖=1…𝐿⁄ , and 

(∑
𝑤𝑖�̂�i

𝜎�̂�i

2𝑖=1…𝐿 )

2

∑
𝑤i

2

𝜎�̂�i

2𝑖=1…𝐿⁄ , and both follow a 1 degree of freedom chi-square under the null. 

 

Power calculation 

We first explored the number of identified locus as a function of sample size. We extracted both the 

number of identified loci and the sample size at the discovery stage from both Table 1 (for the trans-

ancestry meta-analysis) and Table S1 (for ancestry-specific analyses). Note that we used sample size at 

discovery because of the strong heterogeneity of sample size at the replication stage. We then derived 

the proportion of interaction effect significant at an alpha threshold of 0.05, after filtering the SNPs based 

on their marginal effect. In this analysis we considered only individual of European ancestry, in order to 

maximize the sample size while limiting issue due to genetic heterogeneity, where the top variants might 

differ across populations. We used two panels to determine marginal genetic effects: i) in-sample 

estimates derived from The Gene-Lifestyle Interactions Working Group dataset, and ii) GWAS summary 

statistics from external consortium data which are partly independent (i.e. some of the individuals from 

these consortia might come from CHARGE). 

 

Variance explained 

We estimated the fraction of phenotypic variance explained by the main effects, the interaction 

effects and those effects jointly 𝑓𝐺, 𝑓𝐼, 𝑓𝐽 respectively using the R package VarExp [PMID=29726908]. 

Considering a joint regression model including interaction terms fitted in a sample of 𝑁 individuals, the 

fraction of phenotypic variance explained by the genetic main effects of a set of SNPs, their interaction 

effect and jointly can be estimated using only summary statistics from the joint model by 𝑓𝐺 =

𝑁(𝛼𝐺
′ 𝑇

Σ−1𝛼𝐺
′ )−𝑞

(𝑁−𝑞)𝑣𝑎𝑟(𝑌)
, 𝑓𝐼 =

𝑁(𝛼𝐼𝑁𝑇
′ 𝑇

Σ−1𝛼𝐼𝑁𝑇
′ )−𝑞

(𝑁−𝑞)𝑣𝑎𝑟(𝑌)
 and 𝑓𝐽 =

𝑁(𝛼𝐺
′ 𝑇

Σ−1𝛼𝐺
′  + 𝛼𝐼𝑁𝑇

′ 𝑇
Σ−1𝛼𝐼𝑁𝑇

′ )−𝑞

(𝑁−𝑞)𝑣𝑎𝑟(𝑌)
 respectively; where 𝛼𝐺

′  and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/562157doi: bioRxiv preprint 

https://doi.org/10.1101/562157


11 
 

𝛼𝐼𝑁𝑇
′  denote the standardized main genetic and interaction effects and 𝑞 is the rank of the SNP correlation 

matrix Σ. In this analysis, we estimated, for each ancestry and each phenotype-exposure combination, the 

fraction of genotypic variance explained by independent SNPs identified in the combined meta-analyses. 

The SNP correlation matrix was derived using relevant unrelated individuals from the 1000 Genomes data 

as a reference panel. Individuals from the EUR, AFR, EAS and AMR samples were included in the reference 

panel for analyses in European, African, Asian and Hispanic ancestries respectively. To avoid dealing with 

singular SNP correlation matrices, we only considered independent SNPs (𝑟 < 0.2) in the analyses, each 

SNP with an absolute value of correlation greater than 0.2 with another SNP was removed.  
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Figures 

Figure 1. Loci identified by the 2df joint test across the four exposures 

We assessed the relative performance of the joint 2df test across the four exposures. Panel a) shows 
overlapping loci for the 2df test across the four exposures GWAS. Panel b) further decomposes these 
results. It shows for each of the four exposures (highlighted by four different colors), the proportion of 
loci identified per phenotype divided by the total number of loci identified for that same phenotype.  
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Figure 2. Overlapping associations for the 2df test across ancestries 

We derived the overlap in association signal for the joint 2df test of main and interaction effects across 
the four ancestries: Asian (ASA), African American (AA), European (EA), and Hispanic (HA). In panel a) we 
focused on loci found at genome-wide significance level. In panel b) we extracted genome-wide significant 
and independent SNPs per ancestry (i.e. reference population) and extracted the p-value for those SNPs 
in other population (i.e. the matching population). The barplot shows for each reference population, the 
proportion of SNPs in the matching population that achieve a p-value below 0.05.  
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Figure 3. Observed number of hits as a function of sample size 

We plotted the number of loci identified at genome-wide significance level as a function of the sample 

size for both each ancestry-specific analysis and for the trans-ancestry meta-analyses, and for the 1df 

interaction test (right panels), and the 2df joint test (left panels). Exposures were merged in smoking 

(bottom panels), and drinking (top panels), and phenotypes are highlighted by different colours.  
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Figure 4. Potential power for 2-step approach 

We plotted the proportion of SNPs displaying an interaction p-value below 0.05 in the CHARGE summary 

statistics after stepwise filtering based on the marginal genetic effect extracted from the CHARGE data (a) 

and from an independent analysis (b). Under the null, we expect that proportion to be close to 0.05, 

independently of the threshold consider. 
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Figure 5. Heritability by exposure group 

Heritability of the three lipids and two blood pressure phenotypes (DBP and SBP) derived using the 

LDscore applied to summary statistics from the trans-ancestry meta-analysis. Heritability was derived for 

all individuals (MARG, grey bar) and for subset of unexposed (UNEXP, green bar) and exposed (EXP, blue 

bar) individuals. Vertical dark lines represent the 95% confidence intervals.  
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Tables 
 

Table 1. Summary of GWAS results for 2df joint and 1df interaction. 

Outcome Exposure #variants 
Sample Sizea 

(disc) 
Sample 

Sizea(rep) 
#hit 2dfb #hit 1dfb 

Li
p

id
s 

HDL 

Current Drinking 7,505,310 127,252 231,043 110 (583) 6 (8) 

Regular Drinking 6,848,811 118,899 217,468 107 (536) 2 (3) 

Current Smoking 6,306,314 133,508 253,467 68 (343) 0 (0) 

Ever Smoking 7,269,995 133,816 251,711 71 (373) 0 (0) 

LDL 

Current Drinking 7,448,913 118,654 171,142 91 (502) 8 (8) 

Regular Drinking 6,834,699 111,093 155,280 76 (461) 1 (1) 

Current Smoking 6,261,354 125,629 188,109 52 (262) 0 (0) 

Ever Smoking 7,251,615 125,638 186,230 45 (165) 1 (1) 

TG 

Current Drinking 7,410,534 104,716 221,722 72 (408) 0 (0) 

Regular Drinking 6,839,760 103,214 210,623 73 (362) 1 (1) 

Current Smoking 7,122,377 111,900 241,140 49 (213) 0 (0) 

Ever Smoking 8,438,564 111,909 238,972 49 (219) 0 (0) 

B
lo

o
d

 P
re

ss
u

re
 

SBP 

Current Drinking 7,489,960 121,948 426,121 55 (108) 1 (1) 

Heavy Drinking 10,639,279 62,479 114,058 29 (44) 0 (0) 

Current Smoking 6,849,695 127,730 474,475 68 (136) 0 (0) 

Ever Smoking 7,928,860 127,733 458,034 70 (140) 0 (0) 

DBP 

Current Drinking 7,490,269 121,947 426,177 57 (101) 0 (0) 

Heavy Drinking 10,639,829 62,479 114,111 30 (41) 0 (0) 

Current Smoking 6,784,799 127,730 474,531 72 (140) 0 (0) 

Ever Smoking 7,930,829 127,730 458,089 67 (142) 0 (0) 

MAP 

Current Drinking 7,489,903 121,947 426,112 47 (72) 0 (0) 

Heavy Drinking 10,639,231 62,479 113,287 31 (47) 0 (0) 

Current Smoking 6,848,964 127,730 474,465 71 (144) 0 (0) 

Ever Smoking 7,932,503 127,730 458,024 68 (140) 0 (0) 

PP 

Current Drinking 7,489,921 121,947 420,767 39 (70) 0 (0) 

Heavy Drinking 10,639,279 62,479 114,111 17 (26) 0 (0) 

Current Smoking 7,934,402 127,730 473,514 53 (92) 0 (0) 

Ever Smoking 7,934,402 127,730 457,073 52 (91) 0 (0) 

Abbreviation: HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein, TG, Triglycerides; SBP, Systolic Blood Pressure; DBP, 

Diastolic Blood Pressure; MAP, Mean Arterial Pressure; PP, Pulse Pressure; 1df, 1 degree of freedom interaction test; 2df, 2 

degrees of freedom joint test; disc, Discovery stage; rep, Replication stage. 
a Maximum sample size 
b Independent loci 
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Table 2. Association signal overlap between the 2df test and previous GWAS of marginal genetic effect. 

 

Phenotype 

Overall  CHARGE only, per exposure 

External GWAS 
only 

both CHARGE only  CurDrink DrinkHabits CurSMK EverSMK 

HDL 2 55 49  46 41 22 22 

LDL 2 41 52  45 31 15 14 

TG 2 37 35  30 32 15 14 

SBP 37 43 29  16 2 21 22 

DBP 47 46 26  16 4 22 17 

MAP - - -  - - - - 

PP 40 8 48  33 15 45 44 

all 130 230 239  186 125 140 133 
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