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Abstract (current word count 268, AJCN limit: 300): 1 

Background: Alcohol intake influences plasma lipid levels and such effects may be 2 

modulated by genetic variants.  3 

Objective: We aimed to characterize the role of aggregated rare and low-frequency 4 

variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels. 5 

Design: In the Cohorts for Heart and Aging Research in Genomic Epidemiology 6 

(CHARGE) consortium, fasting plasma triglycerides (TG), and high- and low-density lipoprotein 7 

cholesterol (HDL-c and LDL-c) were measured in 34,153 European Americans from five 8 

discovery studies and 32,275 individuals from six replication studies. Rare and low-frequency 9 

protein coding variants (minor allele frequency ≤ 5%) measured by an exome array were 10 

aggregated by genes and evaluated by a gene-environment interaction (GxE) test and a joint test 11 

of genetic main and GxE interaction effects. Two dichotomous self-reported alcohol 12 

consumption variables, current drinker, defined as any recurrent drinking behavior, and regular 13 

drinker, defined as the subset of current drinkers who consume at least two drinks per week, 14 

were considered.  15 

Results: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci 16 

through the joint test. Eight loci (PCSK9, LPA, LPL, LIPG, ANGPTL4, APOB, APOC3 and 17 

CD300LG) remained significant after conditioning on the common index single nucleotide 18 

polymorphism (SNP) identified by previous genome-wide association studies, suggesting an 19 

independent role for rare and low-frequency variants at these loci. One significant gene-alcohol 20 

interaction on TG was discovered at a Bonferroni corrected significance level (p-value <5×10-5) 21 

and replicated (p-value <0.013 for the interaction test) in SMC5.  22 
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Conclusions: In conclusion, this study applied new gene-based statistical approaches to 23 

uncover the role of rare and low-frequency variants in gene-alcohol consumption interactions on 24 

lipid levels.  25 

Keywords: gene-environment interactions, lipid levels, alcohol consumption, genome-wide 26 

association study, rare variant test 27 

  28 
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Introduction 29 

Plasma lipid profiles, including high-density lipoprotein cholesterol (HDL-c), low-30 

density lipoprotein cholesterol (LDL-c), and triglyceride (TG) levels have been well 31 

characterized for their roles in the development and prevention of cardiovascular disease  (CVD) 32 

(1, 2). Genome-wide association studies (GWAS) and advanced DNA sequence technology have 33 

uncovered more than two hundred genetic loci influencing lipid levels (3-9), and these common 34 

(minor allele frequency [MAF] >5%) single nucleotide polymorphisms (SNPs) often reside in 35 

non-coding regions of the genome. In addition to the evidence that genetic factors affect plasma 36 

lipid profiles, environmental factors influence lipid levels as well. Epidemiologic studies have 37 

demonstrated an association between moderate alcohol consumption and improved lipid profile, 38 

including higher HDL-C levels, HDL particle concentration, and HDL-C subfractions (10, 11). 39 

However, the association between alcohol use and LDL-C or TG levels is unclear. Some studies 40 

reported positive associations while others reported negative associations (12-21).  41 

Studying gene-by-environment (G×E) interactions is important, as it extends our 42 

knowledge of the genetic architecture of complex traits and improves our understanding of the 43 

underlying mechanisms of common diseases for novel and known loci (22-24). Several large-44 

scale genome-wide G×E studies have successfully identified novel common variants accounting 45 

for the environmental effects such as alcohol consumption and smoking status on lipid levels and 46 

other CVD related traits (25-34). These studies have successfully identified common variant loci 47 

that were not detected via analysis of main effects alone. However, unlike well-established G×E 48 

interaction tests for common variants (35, 36), methods for detecting rare variant G×E 49 

interactions are emerging. Recently developed novel approaches for testing rare variant G×E 50 
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interaction effects include a joint test that allows for simultaneous testing of the genetic main 51 

effect and interaction effect as well as the ability to assess gene-based GxE interactions (37).  52 

Accounting for the effect of alcohol consumption in defining the genetic architecture of 53 

lipid levels may not only provide valuable insights into relationship between alcohol 54 

consumption and lipids, but also may help refine association signals at previously identified 55 

GWAS loci or identify new loci. This study is the first to incorporate G×E interaction in 56 

modeling rare and low-frequency variant genetic and alcohol effects on plasma lipid levels.  57 

 58 

Methods 59 

Overview of participating studies 60 

This study includes 66,428 men and women between 18-80 years of age from 11 61 

European-ancestry population studies that are part of the CHARGE Gene-Lifestyle Interactions 62 

Working Group (24). The participating studies include the Atherosclerosis Risk in Communities 63 

(ARIC) study, the Coronary Artery Risk Development in Young Adults (CARDIA) study, the 64 

Framingham Heart Study (FHS), the Netherlands Epidemiology of Obesity (NEO) study, the 65 

Women’s Health Initiative (WHI) study, the Cleveland Family Study (CFS), the Cardiovascular 66 

Health Study (CHS), the Family Heart Study (FamHS), the Genetic Epidemiology Network of 67 

Arteriopathy (GENOA) study, the Multi-Ethnic Study of Atherosclerosis (MESA), and the 68 

Women’s Genome Health Study (WGHS). Additional detail for these studies is provided in the 69 

Supplemental Materials. Each study obtained informed consent from participants and approval 70 

from the appropriate institutional review boards. A total of 34,153 participants from five studies 71 

participated in the discovery phase (ARIC, FHS, NEO, WHI and CARDIA), and six studies 72 
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involving 32,275 participants were used for replication (WGHS, CFS, CHS, FamHS, GENOA 73 

and MESA).  74 

 75 

Plasma lipids and alcohol consumption 76 

Three fasting (≥ 8 hours) lipid measures were analyzed separately. HDL-C and TG were 77 

directly assayed, while LDL-C was either directly assayed (WGHS, FamHS if TG > 400 mg/dL) 78 

or estimated using the Friedewald equation (38) (ARIC, FHS, NEO, WHI, CARDIA, CFS, CHS, 79 

FamHS, GENOA, MESA) in samples with TG ≤ 400 mg/dL. LDL-C levels were adjusted for 80 

use of statins: if LDL-C levels were directly assayed, LDL-C levels were adjusted for lipid-81 

lowering medication use by dividing the original levels by 0.7, otherwise, LDL-C levels were 82 

adjusted by first dividing total cholesterol by 0.8, and then using the corrected total cholesterol 83 

level in the Friedewald equation. When information on statin-specific use was unavailable, LDL-84 

C levels were adjusted for use of unspecified lipid-lowering medication, but only if lipid 85 

measurements were performed after 1994. Due to their skewed distributions, HDL-C and TG 86 

were natural log transformed prior to analyses. 87 

Alcohol consumption was assessed using two dichotomized self-reported alcohol 88 

consumption variables: “current drinker” status, defined as any recurrent drinking behavior, and 89 

“regular drinker” status, as the subset of current drinkers who consume at least two drinks per 90 

week (33). For this study, definition of “a drink” is approximately 13g of pure ethanol, and this 91 

measure was used to standardize the definitions across studies. 92 
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Genotyping and quality control 93 

Genotyping was performed using the Illumina or Affymetrix Human Exome array v1 or 94 

v1.1. To improve accurate calling of rare variants, genotyped data from 10 CHARGE 95 

Consortium studies were jointly called (39). Using the curated clustering files from the 96 

CHARGE joint calling effort, several cohorts within our study re-called their genotypes. For the 97 

remainder of participating studies, genotypes were determined using either BeadStudio or Zcall 98 

(40). Detailed information regarding the genotyping platform for each study is presented in 99 

Supplemental Table 1. All studies performed the following sample-level quality control steps: 100 

call rate <95%, autosomal heterozygosity outliers, gender discordance, GWAS discordance (if 101 

GWAS data available), ethnic outlier in a principal components analysis. Variants were removed 102 

by filtering for Hardy-Weinberg equilibrium test p-value (pHWE) < 5×10-6, call rate <95%, and 103 

poorly clustering variants. 104 

Study-specific association analyses 105 

Statistical analyses were performed within each study using the gene-based rareGE R 106 

package (37), and were performed for each lipid/alcohol consumption combination for a total of 107 

six combinations. Two types of analyses were considered: 1) a GxE test that considers the 108 

genetic main effects as fixed/random effects, and 2) a joint analysis of the genetic main and the 109 

GxE interaction effects. Rare and low-frequency (MAF ≤ 5%) functional variants (i.e. 110 

frameshift, nonsynonymous, stop/gain, stop/loss, and splicing) were aggregated within genes. 111 

Genes with 0 or only 1 rare and low-frequency variant, or genes with a cumulative minor allele 112 

count ≤ 10 were not analyzed within each study. Models were adjusted for age, sex, principal 113 

components (PCs) and additionally study-specific covariates as presented in Supplemental Table 114 

1.  115 
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Meta-analyses  116 

A weighted Z-test using square root of sample sizes as weights was used to meta-analyze 117 

study-specific p-values for genes present in at least 2 discovery studies (41). Genes of interest 118 

from the discovery phase with a p-value < 5×10-5 were pursued for replication. For these select 119 

genes, we used the same approaches as in discovery studies to perform meta-analysis of the 120 

replication studies. Significance was determined using a Bonferroni correction for the number of 121 

gene-lipid pairs taken forward to replication (p-value < 0.05/30 = 0.0017 for analysis of the joint 122 

test of genetic main and interaction effects, p-value <0.05/4 = 0.013 for analysis of the 123 

interaction effects).  124 

Additional analyses: conditional and single variant tests 125 

For each replicated gene-lipid pair, additional analyses were conducted following the 126 

flowchart shown in Figure 1. For genes +/-500kb bp from previously reported lipid loci (42), 127 

conditional analyses were performed to identify aggregated rare and low-frequency variants 128 

associated with lipids independent of the previously reported common index single nucleotide 129 

polymorphism (SNP) (42). Results from study-specific conditional analyses were meta-analyzed 130 

using a weighted Z-test, separately in discovery and replication. For novel genes and known 131 

genes that remained significant after conditional analyses, we performed single variant tests for 132 

each variant (MAF ≤ 5% and minor allele count ≥ 5) that was included in the aggregate test in 133 

order to identify the driving variants within these genes. We obtained robust estimates of 134 

covariance matrices and robust standard errors from each study and implemented METAL to 135 

jointly meta-analyze the genetic main and interaction effects (36, 43), and to meta-analyze the 136 

interaction coefficients alone using inverse-variance weighted meta-analysis for each single 137 

variant within selected genes.  138 
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 139 

Results 140 

Descriptive statistics for the discovery and replication studies are summarized in Table 1 141 

and Supplemental Table 1. On average, two thirds of the study participants were current drinkers 142 

and 39.5 percent were regular drinkers. The proportion of current and regular drinkers was 143 

greater for the discovery studies as compared to the replication studies.  144 

Overall, meta-analysis showed highly consistent results across current drinker and regular 145 

drinker (Supplemental Table 2). Distributions of QQ plots for meta-analyzing discovery studies 146 

are shown in Supplemental Figure 1. In the discovery phase, we observed 31 gene-lipid 147 

associations (p-value < 5×10-5) in the joint analysis and 5 gene-lipid associations (p-value < 148 

5×10-5) in the interaction test, with 3 genes overlapping between the two approaches 149 

(Supplemental Table 2). These gene-lipid pairs were taken forward for replication, one of which 150 

(IDNK) was only available in one replication study (the CHS). Therefore, we evaluated 30 gene-151 

lipid associations for replication using the joint test and 4 using gene-alcohol interaction 152 

(Supplemental Table 2). Thirteen known lipid loci (21 gene-lipid associations) were replicated 153 

and one novel interaction were replicated for the SMC5-by-current drinker interaction on TG 154 

levels (Table 2). Among the replicated genes, 4 were shared between TG and HDL-C but none 155 

were shared between LDL-C and TG or HDL-C, as shown in a Venn diagram (Figure 2). 156 

For the 13 known lipid loci that were replicated through the joint test, we performed 157 

conditional analyses in order to examine whether the gene-based rare variant effects are 158 

independent of the common index SNP identified by previous GWAS. In total, 8 loci (PCSK9, 159 

LPA, LPL, LIPG, ANGPTL4, APOB, APOC3 and CD300LG) (10 gene-lipid associations) 160 

remained significant after conditioning on a common index SNP. However, genes at known lipid 161 
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loci yet these genes themselves were not previously reported to be associated with lipids, such as 162 

BCAM and CBLC on LDL-C, were strongly attenuated after adjusting for rs7412, the index SNPs 163 

of APOE identified by previous GWAS (Supplemental Table 3).  164 

Single variant analyses were performed for the 5 gene-lipid associations that were not 165 

evaluated in the conditional analyses because they did not have previously reported common 166 

SNPs and for the 10 gene-lipid pairs that remained significant following conditional analyses 167 

(Figure 1, Supplemental Table 3). Single variant tests at these genes confirmed previous known 168 

low-frequency lipid variants. For example, rs11591147 in PCSK9 was associated with LDL-C, 169 

and rs77960347 in LIPG and rs116843064 in ANGPTL4 were associated with HDL-C. 170 

Additionally, we provide evidence that two of the driving variants underlying the joint test 171 

results are novel rare variants associated with LDL-c (Supplemental Table 4). One of them is 172 

rs41267813, a variant in the LPA gene (p = 6.55×10-29 discovery, p = 1.83×10-03 replication) and 173 

the other is rs41288783 of APOB gene (p = 5.40×10-08 discovery, p = 7.92×10-07 replication). For 174 

the novel interaction between SMC5 and current drinker on TG levels, we identified the driving 175 

variant as rs142488686, a missense mutation (MAC = 5-7 discovery (ARIC and CARDIA), 176 

MAC = 7-17 replication (WGHS, CHS and MESA)), with positive interaction effect (p = 0.016 177 

discovery, p = 0.008 replication), while the genetic main effect was modest (p < 0.1 discovery 178 

and replication, respectively). 179 

 180 

Discussion 181 

This is the first large-scale study to evaluate the role of rare and low frequency variants in 182 

lipids by incorporating gene-alcohol consumption interactions. We tested for gene-alcohol 183 

interaction effect on lipid levels as well as the joint effects of genetic main and gene-alcohol 184 
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interactions. We replicated 13 gene-lipid associations at known lipid loci, among which 2 185 

leading rare variants in APOB and LPA genes associated with LDL-c were novel. Only one novel 186 

gene-alcohol interaction was identified as significant and successfully replicated (the interaction 187 

between rare and low-frequency variants in SMC5 and current drinker on TG levels).  188 

Using a single variant test, we confirmed previously identified rare and low-frequency 189 

lipid variants. For example, rs11591147 of PCSK9 has been associated with LDL-c levels (44), 190 

rs77960347 of LIPG and rs116843064 of ANGPTL4 have been associated with HDL-c levels 191 

(45, 46). A loss of function mutation in the APOC3 gene, rs147210663, has been associated with 192 

a more than 40% lower average triglyceride level in individuals carrying one A allele (47, 48). In 193 

the present study, we observed a novel relationship between increased HDL-c levels in 194 

individuals carrying rs147210663 (A) allele as rs147210663 was previously reported as a 195 

founder mutation in a Pennsylvania Amish population (49). 196 

Between the two novel rare driving variants we identified and replicated, rs41267813 197 

(LPA) is located close to a stop/gain variant rs41267811 (LPA) that was also significantly 198 

associated with LDL-c levels in the discovery phase. However, we were unable to replicate the 199 

association with rs41267811 as it was only available in one replication study (WGHS) and 200 

therefore did not meet our criteria to be included in replication. LPA encoded protein constitutes 201 

a substantial portion of lipoprotein(a) and associated with  inherited conditions including type III 202 

hyperlipoproteinemia and familial hyperlipidemia (50). A stop/gain mutation in this gene would 203 

be associated with lower LDL-C levels in carriers, which is true among non-drinkers. However, 204 

such effect may be modified by alcohol consumption as we observed the carriers of this variant 205 

with a higher LDL-C levels compared to non-carriers in a population who had at least two drinks 206 

per week in the ARIC study. Previous studies have reported a relationship between moderate 207 
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alcohol consumption and lower Lp(a) lipoprotein concentrations (51, 52), but there was no 208 

existing evidence linking genetic variants of LPA to alcohol consumption. Although the 209 

underlying biology of the observed modification effect of alcohol consumption on rs41267813 210 

and LDL-c associations remained unclear, we hypothesize that alcohol modifies the LPA 211 

expression for carriers of rs41267813, therefore modifies LDL-c levels. 212 

In addition to the variant described above, the other driving rare variant had not been 213 

previously associated with a lipid trait, rs41288783 (p.Pro994Leu), a deleterious variant in 214 

APOB gene. A previous study reported its existence in a patient who was clinically diagnosed as 215 

familial hypercholesterolaemia (FH) without a detectable mutation (53). FH is characterized by 216 

very high levels of LDL-c, and we observed an association with higher LDL-c levels though 217 

jointly testing the effects of rs41288783 and its interaction with alcohol consumption. 218 

Nevertheless, the exact biological function of rs41288783 remains unknown. We note that a 219 

Mendelian randomization study has suggested a causal role of alcohol consumption in reducing 220 

plasma apo B and LDL-c levels in a general population (54). Considering this, alcohol 221 

consumption may have contributed to the observed significant joint effect of APOB and alcohol 222 

consumption on LDL-c levels.    223 

For the significant gene-alcohol interaction effect we observed on TG levels, the driving 224 

variant was identified as rs142488686, a missense mutation in SMC5 (Structural Maintenance Of 225 

Chromosomes 5). SMC5 encodes a core component involved in repair of DNA double-strand 226 

breaks and required for telomere maintenance (55-57). Variants in SMC5 have not been 227 

previously reported to be associated with lipid levels nor alcohol consumption, and it is unknown 228 

whether the interaction between SMC5 locus and current drinking behavior on TG levels has a 229 

biological aspect. 230 
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A limitation of this study is the imbalance in percentage of alcohol consumers between 231 

discovery (on average 48.7% regular drinker, 78.5% current drinker) and replication studies (on 232 

average 29.8% regular drinker, 57.2% current drinker) which may have impacted our ability to 233 

identify and replicate additional loci beyond what is reported here. Additionally, as self-reported 234 

alcohol consumption was used and may very likely be underreported, this study may suffer from 235 

loss of statistical power due to potential misclassification (58). Similarly, dichotomizing alcohol 236 

consumption into regular drinkers and current drinkers may also reduce power as compared to 237 

treating it as a continuous variable (59). It is possible that a more comprehensive characterization 238 

of alcohol consumption could reveal associations that were missed in the present study. In 239 

addition, although the sample size of 66,428 may seem sufficient for a traditional GWAS, to 240 

identify additional novel loci while focusing on rare variants and gene-environment interactions 241 

may require larger sample size or bigger effect size  (23, 60).  242 

In conclusion, this study applied emerging statistical approaches to investigate the role of 243 

rare and low-frequency variants in gene-alcohol consumption interaction effects on lipid levels, 244 

and identified 2 novel rare variants at know lipid loci for LDL-c levels and 1 novel gene-alcohol 245 

interaction for TG levels. Our results show promise for other larger scale studies analyzing rare 246 

variant GxE interactions to refine association signals at previously identified loci to reveal novel 247 

biology. 248 

 249 

 250 

  251 
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Table 1. Descriptive characteristics for discovery and replication studies 

Study Design N Curdrinker (%) RegDrinker (%) 

Discovery ARIC Unrelated 10989 64.9 36.8 

FHS Family 7258 83.6 65.5 

NEO Unrelated 5718 86.8 69.0 

WHI Unrelated 8021 76.5 32.6 

CARDIA Unrelated 2167 68.7 59.6 

Total/Average 34,153 75.5 48.7 

Replication WGHS Unrelated 22478 56.7 29.3 

CFS Family 253 50.2 25.1 

CHS Unrelated 3688 53.8 25.0 

FamHS Family 1735 50.7 28.3 

GENOA Family 1543 53.1 29.2 

MESA Unrelated 2578 71.9 43 

Total/Average 32,275 57.2 29.8 

Overall 66,428 66.6 39.5 
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Table 2. Genes discovered and replicated by the joint test or interaction only test  

Trait Gene CHR Alcohol1 Test N.discovery2 cMAF Range3 p.discovery N.replication2 p.replication 

LPL 8 Both Joint 5 0.036 - 0.040 8.76E-22 5 4.25E-21 
APOC3 11 Both Joint 3 0.001 - 0.001 2.82E-06 2 4.62E-06 

HDL-c CD300LG 17 Both Joint 5 0.031 - 0.055 2.64E-12 6 5.94E-10 
LIPG 18 Both Joint 5 0.014 - 0.019 7.65E-17 5 4.09E-11 

ANGPTL4 19 Both Joint 5 0.024 - 0.031 2.34E-20 5 5.53E-09 
HNF4A 20 Both Joint 5 0.031 - 0.034 3.37E-10 5 3.20E-07 

CELSR2 1 Both Joint 5 0.079 - 0.093 1.63E-10 6 3.21E-08 
MYBPHL 1 Both Joint 5 0.044 - 0.051 7.26E-09 6 6.49E-06 
PCSK9 1 Both Joint 5 0.050 - 0.055 3.16E-62 6 9.06E-11 

LDL-c APOB 2 Both Joint 5 0.174 - 0.226 5.33E-18 6 1.20E-15 
LPA 6 RegDrink Joint 5 0.096 - 0.147 2.28E-05 6 3.7E-04 

APOH 17 Both Joint 5 0.074 - 0.081 1.11E-05 6 1.18E-05 
BCAM 19 Both Joint 5 0.120 - 0.166 1.49E-18 6 1.77E-37 
CBLC 19 Both Joint 5 0.084 - 0.104 7.48E-22 6 1.64E-35 

LPL 8 Both Joint 5 0.036 - 0.040 8.55E-19 5 7.30E-16 
APOA4 11 Both Joint 5 0.019 - 0.024 8.83E-09 6 3.77E-09 

APOA5 11 Both Joint 5 0.025 - 0.033 8.93E-07 5 2.3E-04 
TG APOC3 11 Both Joint 3 0.001 - 0.001 2.09E-10 3 7.92E-08 

MAP1A 15 Both Joint 5 0.129 - 0.166 1.70E-06 6 4.30E-05 
CD300LG 17 Both Joint 5 0.031 - 0.055 1.39E-09 6 5.26E-08 
ANGPTL4 19 Both Joint 5 0.024 - 0.031 1.33E-24 5 3.56E-15 

SMC5 9 CurDrink INT 4 0.001 - 0.002 6.65E-06 4 0.013 
1 Both indicates the gene-lipid pair was identified through using both current and regular drinker as the alcohol consumption variable.  
2 N.discoery and N.replication represent the number of studies included in the respective meta-analyses.  
3 cMAF Range represents the cumulative minor allele frequency for variants aggregated in the genes across studies involved in 
discovery phase for that gene. 
Significant threshold for replication was set as p < 0.0017 for joint test and p < 0.013 for interaction test using Bonferroni correction.
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Figure 1. Flowchart of follow-up analyses, including conditional analysis and single variant test 

to identify driving rare variants  

For conditional analysis, significant results were defined as p-value < 5×10-5 in meta-analysis of 

discovery studies, and p-value < 0.05/10 (Bonferroni correction for 10 gene-lipid pairs with p-

value < 5×10-5 in discovery phase) in meta-analysis of replication studies. 

For single variant test to identify driving rare variants, we applied Bonferroni correction for 

number of SNPs tested in discovery phase and number of SNPs taken forward to replication 

separately for joint test and interaction test for each lipid trait.  

 

 

Figure 2. Genes as revealed by GxE interaction test or jointly testing the gene and GxE 

interaction effects in association with plasma lipid levels. Bolded genes were genes remained 

significant after conditioning on common index SNPs. Genes in red were not previously reported 

to be associated with one or more lipid traits 
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