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ABSTRACT 
This	work	introduces	a	novel	algorithm	for	deconvolution	of	the	BOLD	signal	in	
multiecho	 fMRI	 data:	 Multiecho	 Sparse	 Paradigm	 Free	 Mapping	 (ME-SPFM).	
Assuming	a	linear	dependence	of	the	BOLD	percent	signal	change	on	the	echo	time	
(TE)	 and	 using	 sparsity-promoting	 regularized	 least	 squares	 estimation,	 ME-
SPFM	yields	voxelwise	 time-varying	estimates	of	 the	 changes	 in	 the	 transverse	
relaxation	 (∆𝑅#∗ )	 without	 prior	 knowledge	 of	 the	 timings	 of	 individual	 BOLD	
events.	Our	results	in	multi-echo	fMRI	data	collected	during	a	multi-task	event-
related	paradigm	at	3	Tesla	demonstrate	 that	 the	maps	of	𝑅#∗ 	changes	obtained	
with	ME-SPFM	at	the	times	of	the	stimulus	trials	show	high	spatial	and	temporal	
concordance	with	the	activation	maps	and	BOLD	signals	obtained	with	standard	
model-based	analysis.	This	method	yields	estimates	of	∆𝑅#∗	having	physiologically	
plausible	 values.	 Owing	 to	 its	 ability	 to	 blindly	 detect	 events,	 ME-SPFM	 also	
enables	us	 to	map	∆𝑅#∗ 	associated	with	 spontaneous,	 transient	BOLD	responses	
occurring	 between	 trials.	 This	 framework	 is	 a	 step	 towards	 deciphering	 the	
dynamic	 nature	 of	 brain	 activity	 in	 naturalistic	 paradigms,	 resting-state	 or	
experimental	paradigms	with	unknown	timing	of	the	BOLD	events.	
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INTRODUCTION 
Task-based	 functional	 magnetic	 resonance	 imaging	 (fMRI)	 data	 is	 typically	
analyzed	through	the	use	of	linear	regression	of	BOLD	signal	change	models	on	
voxel	 time	series.	These	 regressors	are	defined	assuming	a	 linear	model	of	 the	
BOLD	 response	 as	 the	 convolution	 of	 a	 known	 activity	with	 the	 hemodynamic	
response	 function	 (HRF).	 Recently,	 there	 has	 been	 an	 increasing	 interest	 in	
methods	that	enable	to	extract	activation	information	without	prior	information	
of	the	timing	of	the	BOLD	events.	Such	methods	can	provide	useful	information	
about	 brain	 function	 in	 cases	when	 insufficient	 knowledge	 about	 the	 neuronal	
activity	 driving	 the	 BOLD	 events	 is	 available,	 including	 naturalistic	 paradigms,	
resting	 state,	 and	 clinical	 conditions.	 In	 the	 absence	 of	 timing	 information,	 a	
potential	approach	is	to	estimate	the	activity-inducing	signal	underlying	the	BOLD	
responses;	 a	 process	 also	 known	 as	 deconvolution.	 Deconvolution	 allows		
detecting	individual	BOLD	events	(i.e.	single	trials)	(Gaudes	et	al.,	2011;	Caballero-
Gaudes	 et	 al.,	 2013),	 minimizing	 hemodynamic	 confounds	 in	 measures	 of	
functional	connectivity	(Gitelman	et	al.,	2003;	McLaren	et	al.,	2012;	Rangaprakash	
et	 al.,	 2018)	 and	 exploring	 time-varying	 activity	 of	 resting	 state	 fluctuations	
(Keilholz	et	al.	2017;	Petridou	et	al.,	2013;	Karahanoğlu	and	Van	de	Ville,	2015,	
2017).	 Here	 deconvolution	 is	 used	 to	 detect	 underlying	 events	 rather	 than	 to	
extract	overlapping	even-related	hemodynamic	responses	when	using	a	known	
timing	(for	example	see	Buckner	et	al.,	1996;	Goutte	et	al.,	2000).	

Deconvolution	 can	 also	 be	 understood	 as	 solving	 an	 inverse	 problem	
where	the	forward	model	is	defined	from	the	assumed	hemodynamic	model.	If	the	
deconvolution	 is	 performed	 with	 least	 squares	 estimation,	 estimates	 will	 be	
variable	due	to	the	high	collinearity	of	the	model.	To	overcome	this,	some	type	of	
regularization	 or	 prior	 information	 must	 be	 applied	 to	 the	 estimates	 of	 the	
activity-inducing	 signal.	 Initially,	 the	 deconvolution	 was	 done	 via	 empirical	
Bayesian	estimators	with	Gaussian	priors	(Gitelman	et	al.,	2003)	or	regularized	
least-squares	estimators	where	the	regularization	term	penalized	the	Euclidean	
norm	(i.e.	L2-norm)	of	the	estimates	(i.e.	ridge	regression)	(Gaudes	et	al.,	2011).	
Other	 approaches	 have	 employed	 sparsity-promoting	 regularized	 estimators	
based	on	the	L1-norm	or	L2,1-norm	of	the	estimates	to	improve	the	interpretability	
of	 the	estimates,	such	as	 the	Dantzig	Selector,	the	Least	Absolute	Selection	and	
Shrinkage	Operator	(LASSO)	(Caballero-Gaudes	et	al.,	2013,	Khalidov	et	al.,	2011)	
and	a	non-negative	version	of	the	fused	LASSO	(Hernandez-Garcia	and	Ulfarsson,	
2011).	 The	 method	 of	 Total	 Activation	 incorporated	 spatio-temporal	
regularization	terms	based	on	generalized	total	variation	and	structured	mixed	
L2,1-norms	 to	 improve	 the	 robustness	of	 the	 deconvolution	 across	 neighboring	
voxels	 (Farouj	 et	 al.,	 2017;	 Karaganoglu	 et	 al.,	 2015).	 Structured	 mixed-norm	
regularization	terms	can	also	be	used	to	account	for	variability	in	the	shape	of	the	
assumed	 hemodynamic	 model	 (Gaudes	 et	 al.,	 2012).	 A	 nonparametric	
deconvolution	 method	 based	 on	 homomorphic	 filtering	 was	 proposed	 in	
Sreenivasan	et	al.	(2015).	Nonlinear	regression	methods	using	logistic	functions	
have	also	been	proposed	to	avoid	assuming	a	linear	model	for	the	BOLD	response	
(Bush	and	Cisler,	2013;	Bush	et	al.,	2015).	Approaches	using	nonlinear	state-space	
models	 (Riera	 et	 al.,	 2004),	 dynamic	 expectation	 maximization	 (Friston	 et	 al.,	
2018),	generalized	filtering	(Friston	et	al.,	2010)	and	its	adaptation	to	a	cubature	
Kalman	filtering	(Havlicek	et	al.,	2011)	have	also	been	implemented	to	estimate	
the	hidden	activity-inducing	signal	and	physiological	parameters	of	 the	Balloon	
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model	of	the	BOLD	response,	which	operate	at	a	regional	level	to	gain	signal-to-
noise	ratio	due	to	their	higher	complexity.	

Relevant	 for	 the	 current	work,	 all	 the	aforementioned	methods	perform	
the	deconvolution	of	fMRI	data	with	one	time	series	per	voxel	acquired	at	an	echo	
time	(TE).	Acquisition	at	a	single	echo	(1E)	is	commonly	used	for	BOLD	fMRI	data,	
where	 the	 TE 	is	 usually	 chosen	 close	 to	 the	 average	 transverse	 relaxation	
parameter	𝑇#∗	of	the	grey	matter	region	of	interest	(Bandettini	et	al.,	1994;	Menon	
et	al.,	1993)	to	maximize	the	contrast-to-noise	ratio	of	the	signal.	However,	fMRI	
data	 can	 be	 alternatively	 acquired	 at	 multiple	 echo-times	 so	 that	 a	 weighted	
combination	of	the	multiple	echo	signals	can	result	in	an	enhancement	in	BOLD	
sensitivity,	mainly	in	regions	close	to	air-tissue	boundaries	that	are	prone	to	large	
signal	dropouts	and	susceptibility	distortions	(Gowland	and	Bowtell,	2007;	Poser	
et	 al.,	 2006;	 Posse	 et	 al.,	 1999;	 Posse,	 2012).	With	 multiecho	 fMRI	 (ME-fMRI)	
estimation	of	 	𝑇#∗ 	on	 a	 per-TR	basis	 and	 voxel	 (i.e.	 a	𝑇#∗-time	series)	 is	 feasible,	
which	 can	be	used	 for	 subsequent	analysis	of	 task-related	activity	 (Peltier	and	
Noll,	 2002)	 and	 functional	 connectivity	 (Wu	 et	 al.,	 2012,	 Power	 et	 al.,	 2018).	
Furthermore,	 ME-fMRI	 enables	 improved	 denoising	 of	 artefactual	 and	
confounding	physiological	signal	fluctuations	with	dual-echo	approaches	(Bright	
and	Murphy,	2013;	Buur	et	al.,	2009;	Ing	and	Schwarzbauer,	2012)	or	multiecho	
independent	component	analysis	(MEICA)	(Kundu	et	al.,	2012;	2013;	2017;	Evans	
et	al.,	2015;	Gonzalez-Castillo	et	al.,	2016).	Other	denoising	methods	based	on	ME-
fMRI	acquisitions	are	discussed	in	Caballero-Gaudes	and	Reynolds	(2017).		

In	this	work,	we	propose	a	novel	method	for	the	temporal	deconvolution	
of	ME-fMRI	data,	named	multiecho	sparse	paradigm	free	mapping	(ME-SPFM).	To	
our	knowledge,	no	algorithm	has	been	previously	proposed	for	deconvolution	of	
ME-fMRI	 data.	 Although	 previous	 approaches	 can	 be	 applied	 on	ME-fMRI	 data	
after	weighted	combination	of	 the	multiple	echo	signals	 in	a	single	dataset,	 the	
proposed	 approach	 directly	 operates	 with	 the	 multiple	 echo	 signals	 without	
combining	them.	Assuming	a	mono-exponential	decay	model	of	the	gradient-echo	
signal,	 this	method	 is	 able	 to	 estimate	 time-varying	 changes	 in	 the	 transverse	
relaxation	rate	𝑅#∗	(= 1 𝑇#∗⁄ ),	i.e.	∆𝑅#∗ ,	associated	with	single	BOLD	events	without	
prior	 information	 of	 their	 timing.	 Using	 multiecho	 fMRI	 data	 acquired	 on	 10	
subjects	 (16	datasets)	during	an	event-related	paradigm	 including	 five	distinct	
tasks	(Gonzalez-Castillo	et	al.,	2016),	we	demonstrate	that	the	ME-SPFM	algorithm	
considerably	 improves	 the	 accuracy	 of	 the	 deconvolution	 of	 individual	 BOLD	
events	compared	with	 its	counterpart	 that	operates	 in	a	single	dataset	or	echo,	
namely	 sparse	 paradigm	 free	 mapping	 (hereafter	 denoted	 as	 1E-SPFM)	
(Caballero-Gaudes	 et	 al.,	 2013).	 Furthermore,	 ME-SPFM	 yields	 voxel-wise	
quantitative	 estimates	 of	∆𝑅#∗ 	in	 interpretable	 units	 (s-1),	 which	 is	 relevant	 for	
functional	analysis	across	different	acquisition	protocols	and	field	strengths.	

METHODS 
	
Multiecho	signal	model	
	
Assuming	 a	 mono-exponential	 decay	 model,	 the	 MR	 signal	 of	 a	 gradient	 echo	
acquisition	in	a	voxel	𝑥	at	time	𝑡	for	an	echo	time	TE-	can	be	approximated	as	
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	 𝑠(𝑥, 𝑡, TE-) = 𝑆3(𝑥, 𝑡)𝑒567
∗(8,9):;< + 𝑛(𝑥, 𝑡),	 (1)	

	
where	𝑆3(𝑥, 𝑡)	and	𝑅#∗(𝑥, 𝑡)	are	the	signal	changes	in	the	net	magnetization	𝑆3	and	
the	 transverse	 relaxation	 rate	𝑅#∗ 	of	 the	 voxel	𝑥 	at	 time	𝑡 ,	 and	𝑛(𝑥, 𝑡)	is	 a	 noise	
term.	Hereinafter,	the	noise	term	and	the	voxel	index	𝑥	are	omitted	for	simplicity	
in	 the	 notation.	 Describing	𝑆3(𝑡) 	and	𝑅#∗(𝑡) 	in	 terms	 of	 relative	 changes	 with	
respect	 to	 the	average	values	 in	 the	voxel	(Kundu	et	al.,	2017),	 i.e.	𝑆3(𝑡) = 𝑆3? +
∆𝑆3(𝑡)	and	𝑅#∗(𝑡) = 𝑅#∗@@@ + ∆𝑅#∗(𝑡),	the	MR	signal	can	be	written	as	
	
	 𝑠(𝑡, 𝑇𝐸-) = B𝑆3? + ∆𝑆3(𝑡)C𝑒

5D67∗@@@@E∆67
∗(9)F:;< 	

= 𝑠̅(𝑇𝐸-) H1 +
∆𝑆3(𝑡)
𝑆3?

I𝑒5D67
∗@@@@E∆67∗(9)F:;< 	

(2)	
	
where	the	mean	of	the	signal	is	𝑠̅(TE-) = 𝑆3? 𝑒567

∗@@@@:;< .	Typically,	∆𝑆3(𝑡)	and	∆𝑅#∗(𝑡)	
are	considerably	smaller	than	𝑆3? 	and	𝑅#∗@@@,	respectively.	Hence,	the	last	term	in	Eq.	
(2)	can	be	approximated	using	a	first-order	Taylor	approximation	as	𝑒5∆67∗(9):;< ≈
1 −	∆𝑅#∗(𝑡)TE-. 	Substituting	 this	 term	 into	 Eq.	 (2)	 and	 defining	 ∆𝜌(𝑡) =
∆𝑆3(𝑡) 𝑆3?⁄ ,	the	MR	signal	can	be	approximated	as	
	
	 𝑠(𝑡, TE-) ≈ 𝑠̅(TE-)(1 + ∆𝜌(𝑡) −	∆𝑅#∗(𝑡)TE-),	 (3)	

	
where	 the	 term	 resulting	 from	 the	multiplication	 of	 small	 values	of	∆𝑆3(𝑡)	and	
∆𝑅#∗(𝑡)	is	neglected.	Finally,	signal	percentage	changes	with	respect	to	the	mean	
of	the	signal,	i.e.	𝑦(𝑡, TE-) ≝ B𝑠(𝑡, TE-) − 𝑠̅(TE-)C 𝑠̅(TE-)⁄ ,	can	be	described	as		
	
	 𝑦(𝑡, TE-) ≈ ∆𝜌(𝑡) −	∆𝑅#∗(𝑡)TE-.	 (4)	

	
This	signal	model	can	be	understood	as	a	linear	regression	model	in	which	

the	slope	(i.e.	dependent	on	the	echo	time	TE-)	captures	the	fluctuations	related	
to	∆𝑅#∗(𝑡),	whereas	 the	 intercept	 captures	 the	 fluctuations	 related	 to	∆𝑆3(𝑡).	 In	
BOLD	fMRI,	signal	changes	related	to	∆𝑅#∗(𝑡)	are	more	 likely	 linked	to	neuronal	
processes	than	changes	due	to	∆𝑆3(𝑡),	which	are	normally	related	to	confounding	
effects	such	as	motion	or	blood	inflow.		

Following	 the	 linear	 convolution	 model	 usually	 adopted	 in	 fMRI	 data	
analysis,	let	us	also	assume	that	changes	in	𝑅#∗(𝑡)	generating	the	BOLD	response	
in	the	signal	can	be	described	as	∆𝑅#∗(𝑡) = ℎ(𝑡) ∗ ∆𝑎(𝑡),	where	∆𝑎(𝑡)	denotes	an	
activity-inducing	signal	that	is	related	to	changes	in	neuronal	activity,	and	ℎ(𝑡)	is	
the	hemodynamic	response.	Without	lack	of	generality,	we	will	assume	that	the	
shape	of	ℎ(𝑡)	is	independent	of	TE	and	also	normalized	to	a	peak	amplitude	equal	
to	1.	Substituting	in	Eq.	(4),	signal	percentage	changes	can	then	be	approximated	
as	
	
	 𝑦(𝑡, TE-) ≈ ∆𝜌(𝑡) − TE-Bℎ(𝑡) ∗ ∆𝑎(𝑡)C.	 (5)	

	
If	signal	changes	related	to	variations	 in	 the	net	magnetization	∆𝜌(𝑡)	are	

reduced	 during	 data	 preprocessing,	 the	 BOLD	 component	 of	 the	 signal	 can	 be	
approximated	as	
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	 𝑦(𝑡, 𝑇𝐸-) ≈ TE-Bℎ(𝑡) ∗ ∆𝑎(𝑡)C.	 (6)	

	
The	continuous	time	MR	signal	is	sampled	every	repetition	time	(TR),	i.e.		

𝑡 = 𝑛TR,	where	𝑛 = 1,… , 𝑁,	and	𝑁	is	the	number	of	volumes	acquired	during	the	
acquisition.	In	discrete	time,	the	previous	equations	can	be	reformulated	in	matrix	
notation.	 We	 can	 define	 𝑦V- ≝ 𝑦(𝑛TR, TE-) ≈ −	TE-	(ℎV ∗ ∆𝑎V), 	where	 𝑦V- ≝
𝑦(𝑛TR, TE-),	ℎV ≝ ℎ(𝑛TR) ,	 and	∆𝑎V ≝ ∆𝑎(𝑛TR).	 Gathering	 all	 time	 points	 as	 a	
vector,	 y- = [𝑦Y,⋯ , 𝑦[]] ,	 we	 can	 write	 y- ≈ −TE-H∆𝒂 ,	 where	 ∆𝒂 ∈ ℝ𝑵 is	 a	
column	 vector	 of	 length 	𝑁 	that	 represents	 an	 activity	 inducing	 signal	 that	 is	
related	to	∆𝑅#∗ ,	and	H ∈ ℝ𝑵×𝑵	is	a	Toeplitz	convolution	matrix	whose	columns	are	
shifted	versions	of	the	hemodynamic	response	function	(HRF)	of	duration	𝐿	time	
points	at	TR	temporal	resolution,	i.e.	h = [ℎY,⋯ , ℎf].	If	𝐾	echoes	are	acquired	at	
echo	times	TE-, 𝑘 = 1, … , 𝐾,	the	signal	percentage	changes	of	each	echo	signal	can	
be	vectorized	in	a	column	vector	of	length	𝑁𝐾.	Since	the	activity-inducing	signal	
can	be	considered	identical	for	all	echoes,	the	ME	signal	model	can	be	written	as	
	

i
𝒚Y
⋮
𝒚l
m = −i

TEYH
⋮

TElH
m∆𝒂	 (7)	

or	simply	𝒚? = −𝐇?∆𝒂.		
	
Multiecho	Sparse	Paradigm	Free	Mapping	
	
The	deconvolution	algorithm	of	multiecho	 sparse	paradigm	 free	mapping	 (ME-
SPFM)	 aims	 to	 deconvolve	 the	 changes	 in	 the	BOLD	ME-fMRI	 signal	 related	 to	
neuronal	activity	without	knowledge	of	their	timings.	This	involves	the	estimation	
of	∆𝒂	according	 to	 the	model	 in	 Eq.	 (7).	 Figure	1	 illustrates	 a	 schematic	 of	 the	
assumed	ME-fMRI	signal	model	and	the	ME-SPFM	algorithm.	Assuming	that	after	
preprocessing,	 the	 noise	 follows	 an	 uncorrelated	 Normal	 distribution,	 an	
unbiased	estimate	of	∆𝒂	can	be	obtained	by	means	of	an	ordinary	least-squares	
estimator.	 Nevertheless,	 in	 practice,	 the	 least-squares	 solution	 would	 produce	
estimates	with	large	variability	due	to	the	large	collinearity	between	the	columns	
of	𝐇? .	Therefore,	it	is	advisable	to	incorporate	some	type	of	regularization	term	to	
the	least-squares	minimization.	Following	previous	algorithms	for	the	temporal	
deconvolution	 of	 the	 BOLD	 fMRI	 signal,	 we	 propose	 to	 estimate	∆𝒂 	with	 the	
following	L1-norm	regularized	least-squares	estimator	
	
	 ∆𝒂o = argmin

∆𝒂

1
2
w𝒚? − 𝐇?∆𝒂w

#
#
+ 𝜆‖∆𝒂‖Y	 (8)	

	
This	 mathematical	 optimization	 problem	 is	 known	 as	 Basis	 pursuit	

denoising	 (Chen	 et	 al.,	 1998),	 which	 is	 equivalent	 to	 the	 well-known	 LASSO	
(Tibshirani,	1996).		The	L1-norm	regularization	term	encourages	sparse	estimates	
with	 few	 non-zero	 coefficients	 in	∆𝒂o ,	 performing	 both	 variable	 selection	 and	
regularization	in	order	to	enhance	the	prediction	accuracy	and	the	interpretability	
of	 the	 estimates.	 This	 implies	 that	∆𝒂o 	will	 tend	 to	 be	 non-zero	 in	 only	 the	
coefficients	that	explain	a	large	variability	of	the	ME-fMRI	signals	according	to	the	
hemodynamic	model.		
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The	 choice	 of	 the	 regularization	 parameter	 𝜆 	is	 critical	 to	 obtain	 an	
accurate	estimate	of	∆𝒂o.	 In	 this	work,	 instead	of	selecting	a	 fixed	value	of	𝜆,	we	
compute	 the	 entire	 regularization	 path	 by	means	 of	 the	 least	 angle	 regression	
(LARS)	 procedure	 (Efron	 et	 al.,	 2004).	 This	 homotopy	 procedure	 initializes	∆𝒂o	
with	zero	coefficients	and	then	efficiently	estimates	the	entire	regularization	path	
for	decreasing	values	of	𝜆	where	a	coefficient	of	∆𝒂o	becomes	non-zero	or	shrinks	
to	zero	again.	After	computing	the	regularization	path,	we	propose	to	select	the	
estimate	of	∆𝒂o	based	on	the	Bayesian	Information	Criterion	(BIC)	as	follows	
	

	 ∆𝒂oz{| = argmin
}
	𝑁𝐾 log(𝑅𝑆𝑆}) + log(𝑁𝐾)𝑑𝑓(𝜆)	 (9)	

	
where	𝑅𝑆𝑆(𝜆) = ‖𝒚? − 𝐇?∆𝒂o(𝜆)‖##		and	𝑑𝑓(𝜆)	are	the	residual	sum	of	squares	and	
effective	degrees	of	freedom	for	each	estimate	(Tibshirani	and	Taylor,	2011;	Zou	
et	al.,	2007)	as	a	function	of	𝜆,	respectively.		Note	that	the	BIC	scales	with	𝑁𝐾,	i.e.	
the	number	of	time	points	by	the	number	of	echoes.	

Finally,	to	compensate	for	the	shrinkage	towards	zero	of	the	coefficients	
owing	to	the	L1-norm	regularization	term,	we	propose	to	perform	debiasing	of	the	
BIC	 estimate,	 known	 as	 the	 relaxed	 LASSO	 (Meinshausen,	 2007).	 Debiasing	 is	
performed	 as	 the	 ordinary	 least-squares	 estimate	 on	 the	 reduced	 model	
corresponding	 to	 the	 subset	 of	 non-zero	 coefficients	 of	 the	 estimate.	 More	
specifically,	let	𝒜	denote	the	support	of	∆𝒂oz{|,	i.e.	𝒜 = supp(∆𝒂oz{|) = {𝑗, ∆𝒂oz{| ≠
0	},	the	coefficients	of	the	debiased	estimate	in	the	support	𝒜	are	re-computed	as	

	
	 ∆𝒂oz{|,𝒜 = 	 (𝐇?𝒜] 𝐇?𝒜)5Y𝐇?𝒜] 𝒚?,	 (10)	

	
where	𝐇?𝒜 	is	the	reduced	matrix	with	the	subset	of	columns	of	𝐇? 	corresponding	to	
the	support	𝒜,	whereas	the	coefficients	not	included	in	𝒜	remain	as	zero.		
	

	
Figure	1:	Schematic	of	the	ME-fMRI	signal	model	and	the	ME-SPFM	algorithm.	From	left	to	right:	An	activity-
inducing	signal	(∆𝑎(𝑡))	is	convolution	with	the	hemodynamic	response	(ℎ(𝑡))	resulting	in	the	activity-induced	
hemodynamic	signal	or	BOLD	responses	(i.e.	∆𝑅#∗(𝑡)).	The	convolution	step	can	be	modelled	as	multiplying	the	
activity	 inducing	signal	with	a	Toeplitz	matrix	whose	columns	are	shifted	HRFs	every	TR.	Percentage	signal	
changes	of	the	fMRI	signal	acquired	at	𝑇𝐸-	can	be	modelled	as	the	sum	of	the	hemodynamic	signal	scaled	by	𝑇𝐸-	
(i.e.	 -𝑇𝐸-∆𝑅#∗(𝑡)),	 fluctuations	of	the	net	magnetization	(∆𝜌(𝑡)),	and	other	noisy	sources	(e.g.	 thermal	noise)	
(∆𝑛(𝑡)).	The	percentage	signal	changes	of	all	echoes	(or	their	MEICA	denoised	versions)	are	concatenated	and	
input	to	ME-SPFM	algorithm,	which	solves	a	regularized	least	squares	problem,	to	obtain	estimates	of	the	activity	
inducing	signal.	
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MRI	data	acquisition	
	
The	 evaluation	 of	 ME-SPFM	 was	 performed	 on	 ME-fMRI	 data	 acquired	 in	 10	
subjects	(5	males,	5	females,	mean	±	SD	age	=	25	±	3	y.o.)	using	a	multi-task	rapid	
event-related	 paradigm.	 Six	 subjects	 performed	 two	 functional	 runs,	 and	 4	
subjects	only	performed	1	run	due	to	scanning	time	constraints	(i.e.	a	total	of	16	
datasets).	 All	 participants	 gave	 informed	 consent	 in	 compliance	 with	 the	 NIH	
Combined	 Neuroscience	 International	 Review	 Board-approved	 protocol	 93-M-
1070	 in	Bethesda,	MD.	A	complete	description	of	 the	MRI	acquisition	protocols	
and	 experimental	 tasks	 in	 the	 experimental	 design	 can	 be	 found	 in	 Gonzalez-
Castillo	et	al.	(2016),	and	relevant	details	are	given	here	for	completeness.	

MRI	data	was	acquired	on	a	General	Electric	3	Tesla	750	MRI	scanner	with	
a	32-channel	receive-only	head	coil	(General	Electric,	Waukesha,	WI).	Functional	
scans	were	acquired	with	a	ME	gradient-recalled	echo-planar	imaging	(GRE-EPI)	
sequence	 (flip	 angle=70°	 for	 9	 subjects,	 flip	 angle=60°	 for	 1	 subject,	
TEs=16.3/32.2/48.1	ms,	TR=2	s,	30	axial	slices,	 slice	 thickness=4	mm,	 in-plane	
resolution=3x3	 mm2,	 FOV	 192	 mm,	 acceleration	 factor	 2,	 number	 of	
acquisitions=220).	Functional	data	was	acquired	with	ascending	sequential	slice	
acquisitions,	 except	 in	 one	 subject	where	 the	 acquisitions	were	 interleaved.	 In	
addition,	high	resolution	T1-weighted	MPRAGE	and	proton	density	images	were	
acquired	per	 subject	 for	anatomical	 alignment	and	visualization	purposes	 (176	
axial	slices,	voxel	size=1x1x1	mm3,	image	matrix=256×256).	
	
Experimental	paradigm	
	
The	 PsychoPy	 software	 (Peirce,	 2009)	 was	 used	 for	 stimulus	 delivery.	 Eye	
tracking	data	were	collected	to	check	subject’s	performance.	Each	run	included	6	
trials	of	each	of	the	5	different	tasks	(i.e.	a	total	of	30	trials	per	run).	Subjects	were	
instructed	on	the	task	types	prior	to	the	scanning	session.	The	5	tasks	were:	

1) Finger	tapping	(FTAP).	Subjects	were	instructed	to	press	one	button	of	a	
response	box	with	a	single	finger	at	a	fixed	rate	of	approximately	0.5	Hz	for	
a	duration	of	4	s.	Visual	cues	were	shown	to	help	subjects	press	the	button	
at	a	constant	rate.	All	subjects	performed	this	task	with	the	left	hand	except	
two,	who	were	inadvertently	provided	with	the	response	box	on	their	right	
hand.	

2) Biological	 motion	 observation	 (BMOT).	 Subjects	 were	 instructed	 to	
observe	4-second	videos	of	dot	patterns	resembling	biological	motion	such	
as	walking,	jumping,	dancing,	drinking	and	climbing	steps.	The	videos	were	
shown	on	only	one	of	 the	two	visual	hemi-fields	(right	or	 left)	and	their	
position	was	randomized	across	trials.	

3) Passive	 viewing	 of	 houses	 (HOUS).	 Subjects	were	 instructed	 to	watch	 a	
succession	of	pictures	of	houses	shown	in	the	center	of	 the	screen.	Each	
trial	 lasted	4	s	 and	contained	pictures	of	6	different	houses.	Each	house	
appeared	for	approximately	170	ms	with	a	gap	of	500	ms	between	pictures.		

4) Listening	to	music	(MUSI).	Subjects	were	instructed	to	attentively	listen	to	
4-seconds	recordings	of	music	clips	played	by	a	single	instrument	(violin,	
piano,	or	drums)	and	to	direct	their	gaze	to	one	of	the	three	pictures	on	the	
screen	(one	per	instrument)	that	represented	the	instrument	being	played	
as	soon	as	they	had	identified	it.	
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5) Sentence	 reading	 (READ).	 Subjects	 were	 instructed	 to	 covertly	 read	
sentences	presented	on	the	screen	one	word	at	a	time.	For	each	trial,	words	
were	 presented	 in	 one	 of	 the	 two	 hemifields	 (right	 or	 left)	 to	 aid	with	
analysis	of	 eye	 tracking	data.	All	words	of	 a	 trial	 appeared	on	 the	 same	
hemifield.	Each	word	was	presented	 for	250	ms	with	gaps	of	100	ms	 in	
between.	 Sentence	 length	 was	 between	 10	 and	 11	 words,	 so	 each	 trial	
lasted	either	3400	or	3750	ms.	

	
Onset	 times	 for	 trials	 were	 generated	 with	 optseq2	 in	 Freesurfer	
(https://surfer.nmr.mgh.harvard.edu/optseq).	 Three	 different	 schedules	 (onset	
times)	 were	 randomly	 used	 in	 these	 experiments.	 For	 all	 three	 schedules	 the	
minimum	inter-stimulus	interval	(ISI)	was	10	s.	Mean	and	standard	deviation	ISIs	
for	the	three	different	schedules	were:	13	±	24,	13	±	18	and	13	±	15	s.	
	
FMRI	data	preprocessing	
	
Each	 ME-fMRI	 dataset	 was	 preprocessed	 through	 four	 different	 pipelines	
implemented	in	AFNI	(Cox	et	al.,	1996)	resulting	in	the	following	datasets:		

A) Individually	preprocessed	echoes	(E01,	E02	and	E03):	(1)	removal	of	the	
initial	 10	 s	 to	 achieve	 steady-state	 magnetization,	 (2)	 slice	 timing	
correction,	(3)	volume	realignment,	registration	to	anatomical	image,	and	
warping	 to	 MNI	 template,	 and	 computation	 of	 the	 combined	 spatial	
transformation,	(4)	spatial	normalization	of	each	echo	dataset	to	the	MNI	
template	at	2	mm	isotropic	voxel	size	with	a	single	spatial	transformation,	
(5)	 nuisance	 regression	 (Legendre	 polynomials	 up	 to	 5th	 order,	
realignment	parameters	and	their	1st	temporal	derivatives,	and	5	largest	
principal	 components	of	 voxels	within	 the	 lateral	 ventricles),	 (6)	 spatial	
smoothing	with	a	3D	Gaussian	kernel	with	Full	Width	Half	Maximum	of	6	
mm,	and	(7)	calculation	of	signal	percentage	change	as	described	in	Eq.	(4).		

B) Optimally	 combined	 dataset	 (OC):	 same	 as	 above,	 but	 with	 optimal	
weighted	combination	of	the	three	echoes	based	on	non-linear	voxelwise	
estimation	of	𝑇#∗	(Posse	et	al.,	1999)	between	steps	(4)	and	(5).	

C) Multiecho	 Independent	 Component	 Analysis	 plus	 Optimally	 Combined	
dataset	 (DN):	 same	as	E02,	but	with	multiecho	 independent	 component	
analysis	(MEICA)	denoising	(Kundu	et	al.,	2012)	and	optimal	combination	
between	steps	(4)	and	(5).	MEICA	was	applied	using	the	code	available	in	
https://github.com/ME-ICA/me-ica	(version	3.2).	

D) Multiecho	Independent	Component	Analysis	denoised	echoes	(MEICA-E01,	
MEICA-E02,	MEICA-E03):	same	as	above	but	include	MEICA	between	steps	
(4)	and	(5).	

	
FMRI	data	analysis	
	
The	three	preprocessed	echo	datasets	(E01,	E02	and	E03)	and	the	three	MEICA	
denoised	echo	datasets	(MEICA-E01,	MEICA-E02	and	MEICA-E03)	were	analyzed	
with	 the	 ME-SPFM	 algorithm	 described	 above.	 The	 ME-SPFM	 algorithm	 was	
implemented	for	AFNI	using	functions	for	compatibility	with	R	and	used	the	LARS	
package	(version	1.2)	for	the	computation	of	the	regularization	path	of	the	LASSO.	
The	 canonical	 HRF	 (SPMG1	 option	 of	 3dDeconvolve	 in	 AFNI)	was	 used	 as	 the	
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hemodynamic	response	function	(HRF)	to	define	the	convolution	matrices	in		𝐇? .	
Since	the	ME-SPFM	algorithm	outputs	a	4D-dataset	with	voxelwise	time-varying	
estimates	of	∆𝒂,	which	are	related	to	∆𝑅#∗ ,	for	validation	purposes	we	defined	ME-
SPFM	activation	maps	for	each	trial	by	computing	the	maximum	of	the	∆𝒂	volumes	
when	each	trial	occurred	(i.e.	3	TRs	for	a	duration	of	4	s	per	trial).	

The	 performance	 of	 ME-SPFM	 was	 compared	 with	 the	 results	 of	 the	
deconvolution	 with	 the	 Sparse	 Paradigm	 Free	 Mapping	 (1E-SPFM,	 Caballero-
Gaudes	et	al.,	2013)	and	traditional	GLM	analyses	implemented	with	3dREMLfit	in	
AFNI.	These	analyses	were	performed	in	the	E02,	OC	and	DN	datasets.	As	for	1E-
SPFM,	datasets	were	analyzed	with	the	implementation	of	SPFM	available	in	AFNI	
(3dPFM	program)	using	the	LASSO	algorithm,	the	Bayesian	Information	Criterion	
(BIC)	for	selection	of	the	regularization	parameter	and	the	canonical	HRF	to	define	
the	corresponding	convolution	matrix.	Similar	to	ME-SPFM,	1E-SPFM	activation	
maps	 were	 created	 from	 the	 deconvolved	 coefficients	 (beta	 output	 dataset	 in	
3dPFM)	as	the	maximum	of	the	volumes	when	each	trial	occurred.	No	additional	
processing	steps	were	applied	to	the	ME-SPFM	and	1E-SPFM	activation	maps.	

In	addition,	we	performed	two	different	GLM	analyses	in	the	E02,	OC	and	
DN	datasets,	where	the	design	matrix	was	either	defined	considering	all	trials	of	a	
task	in	one	regressor	(TASK-LEVEL)	or	each	trial	individually	modulated,	i.e.	each	
trial	has	 its	own	regressor	(‘IM’	or	TRIAL-LEVEL).	The	SPM	canonical	HRF	was	
used	in	both	analyses,	assuming	a	trial	duration	of	4	s.	The	task-based	activation	
maps	were	 thresholded	at	FDR-corrected	𝑞 ≤ 0.05	(TASK-q05).	The	 trial-based	
activation	maps	were	thresholded	at	FDR-corrected	𝑞 ≤ 0.05	(IM-q05),	as	well	as	
uncorrected	 𝑝 ≤ 0.05 	(IM-p05)	 and	 𝑝 ≤ 0.001 	(IM-p001).	 The	 number	 of	
components	removed	by	MEICA	was	considered	in	the	computation	of	the	degrees	
of	freedom	of	the	GLM	analyses	of	the	DN	dataset.		

	
Evaluation	of	spatial	concordance	with	GLM	analyses	
	
We	evaluated	the	ability	of	 the	1E-SPFM	and	ME-SPFM	to	detect	 the	activation	
revealed	by	the	GLM	analyses	in	terms	of	the	spatial	sensitivity,	spatial	specificity	
and	spatial	overlap	using	a	dice	coefficient	metric.	This	evaluation	only	considered	
activations	that	produce	a	positive	BOLD	signal	change	(i.e.	a	positive	effect	size	
in	GLM	analyses),	a	positive	coefficient	in	1E-SPFM	and	a	negative	∆𝑅#∗	(∆𝑎 < 0)	
coefficient	in	ME-SPFM.		

First,	we	 performed	 the	 comparison	 at	 the	 task	 level	 by	 using	 the	 task-
based	 activation	 maps	 obtained	 with	 the	 DN	 dataset	 (TASK-q05/DN)	 as	 the	
reference	maps.	These	can	be	considered	as	the	gold	standard	of	activation	maps	
per	task	in	each	dataset	that	can	be	obtained	with	an	analysis	that	is	aware	of	the	
trials’	onsets	and	durations	using	the	same	hemodynamic	model	(i.e.	SPMG1).	For	
this	comparison,	we	also	considered	the	following	activation	maps:	IM-q05,	IM-
p001,	IM-p05	and	1E-SPFM	for	E02,	OC	and	DN	input	datasets,	as	well	as	ME-SPFM	
using	the	triplets	E01,	E02	and	E03	or	MEICA-E01,	MEICA-E02	and	MEICA-E03	as	
input	datasets.		

Second,	we	performed	the	comparison	at	the	trial-level	by	using	the	trial-
based	activation	maps	at	𝑝 ≤ 0.05	obtained	with	the	DN	dataset	(IM-p05/DN)	as	
the	reference	maps,	which	considers	a	model	of	a	single	trial	based	on	its	onset	
and	duration	and,	 thus,	 is	closer	 to	 the	assumptions	of	 the	ME-SPFM	activation	
maps.	For	this	comparison,	we	considered	the	following	activation	maps:	1E-SPFM	
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for	E02,	OC	and	DN	datasets,	as	well	as	ME-SPFM	using	the	triplets	E01,	E02	and	
E03	or	MEICA-E01,	MEICA-E02	and	MEICA-E03	as	input	datasets.	
	
Evaluation	of	temporal	concordance	with	GLM-IM	analysis	
We	also	computed	maps	of	the	Pearson	correlation	between	the	fitted	signal	of	the	
GLM-IM	model	with	the	fitted	signal	of	1E-SPFM	and	ME-SPFM	(i.e.	convolution	of	
the	detected	events	with	 the	 canonical	HRF)	 in	order	 to	evaluate	 the	 temporal	
concordance	 of	 the	 detected	 events	 in	 comparison	with	 a	 conventional	model-
based	analysis	using	timing	of	the	experimental	trials.	Moreover,	we	computed	the	
correlation	 between	 these	 models	 with	 the	 preprocessed	 DN	 (i.e.	 MEICA+OC)	
dataset	to	examine	whether	the	deconvolution	approaches	can	explain	additional	
variance	 of	 the	 preprocessed	 data,	 particularly	 in	 regions	 that	 might	 not	 be	
involved	during	the	known	tasks.	These	temporal	correlation	analyses	can	serve	
as	 an	 evaluation	 criterion	 that	 is	 not	 threshold-dependent	 and	 therefore	
complements	the	aforementioned	spatial	evaluation.	
	
Quantitative	Analysis	of	∆𝑹𝟐∗ 	estimates	
	
We	evaluated	the	ability	of	ME-SPFM	deconvolution	to	estimate	∆𝑅#∗	changes	that	
range	within	physiologically	plausible	limits,	which	was	established	as	|∆𝑅#∗| <	1	
s-1	 according	 to	 previous	 reports	 of	 neurobiologically-driven	∆𝑅#∗ 	values	 at	 3T	
(van	der	Zwaag	et	al.,	2009).	First,	we	computed	histograms	of	∆𝑅#∗	estimates	for	
both	 ME-SPFM	 and	 MEICA-ME-SPFM	 activation	 maps	 in	 three	 conditions:	 a)	
during	 the	entire	dataset	 in	all	whole-brain	voxels	 to	assess	 the	efficacy	of	 the	
algorithms	 to	 yield	 physiologically-plausible	 estimates	 independently	 of	 the	
paradigm,	 b)	 during	 the	 timings	 of	 trials	 in	 all	 whole-brain	 voxels	 to	 examine	
whether	both	positive	and	negative	∆𝑅#∗-estimates	occur	with	each	 trial,	 and	c)	
during	the	timings	of	trials	in	only	those	voxels	showing	positive	activation	in	the	
TASK-q05	maps	 for	 the	DN	dataset,	 i.e.	 assumed	 to	have	a	 clear	positive	BOLD	
response	to	the	task	that	is	associated	with	∆𝑅#∗ < 0.	In	addition,	we	computed	the	
percentage	of	estimates	exceeding	|∆𝑅#∗| >	1	s-1	according	to	these	three	options	
per	trial,	per	task,	per	dataset	and	per	ME-SPFM	analysis.		

RESULTS 
	
The	output	of	ME-SPFM	is	a	4D	dataset	with	an	identical	number	of	time	points	as	
the	input	dataset,	which	can	be	visualized	as	a	sequence	of	deconvolved	maps.	The	
movies	showing	the	∆𝑅#∗	and	∆𝑅#∗-fitted	signals	 for	all	 the	runs	and	subjects	are	
available	 in	https://ccaballero.pages.bcbl.eu/me-spfm-videos/.	Figure	2	depicts	
the	corresponding	activation	maps	for	representative	single	trial	events	of	each	
task	type	for	the	same	run	for	IM-p05,	1E-SPFM	with	the	DN	dataset,	and	ME-SPFM	
with	the	preprocessed	echo	datasets	and	after	ME-ICA.	The	∆𝑅#∗-activation	maps	
obtained	with	ME-SPFM	have	a	larger	resemblance	with	the	maps	obtained	with	
the	trial-based	GLM	analysis	(IM-p05)	than	the	activations	maps	obtained	with	
1E-SPFM.	Even	though	the	1E-SPFM	maps	generally	depict	clusters	of	activation	
in	the	same	locations	as	the	GLM	maps	(i.e.	high	spatial	specificity),	they	exhibit	
lower	spatial	sensitivity	than	the	ME-SPFM	activation	maps,	especially	observed	
in	FTAP-5,	HOUS-1	and	READ-2.	In	general,	the	ME-SPFM	activation	maps	exhibit	
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negative	∆𝑅#∗	in	the	brain	regions	showing	positive	signal	changes,	and	conversely	
positive	∆𝑅#∗	in	brain	regions	showing	negative	signal	changes,	in	the	IMp05	and	
1E-SPFM	maps.	 The	MEICA+ME-SPFM	 activation	 maps	 illustrate	 that	 applying	
MEICA	prior	to	ME-SPFM	reduces	spurious	activations	in	the	borders	of	clusters	
and	 draining	 veins,	 probably	 related	 to	 inflow	 fluctuations,	 and	 in	 brain	 edge	
voxels	 related	 to	 effects	 of	 head	 motion.	 Some	 examples	 of	 these	 effects	 are	
marked	with	green	arrows.		
	

	
Figure	2:	Activation	maps	of	an	individual	single-trial	event	for	each	experimental	condition	obtained	with	an	
individually-modulated	 (IM)	GLM	analysis	 (T-test,	 uncorrected	𝑝 ≤ 0.05)	 (first	row),	 1E-SPFM	 (second	row),	
ME-SPFM	(third	row)	and	MEICA+ME-SPFM	(fourth	row).	The	maps	of	IM-GLM	and	1E-SPFM	show	estimated	
beta	coefficients	in	signal	percentage	change	(i.e.	%	amplitude),	whereas	ME-SPFM	and	MEICA-ME-SPFM	show	
estimated	∆𝑅#∗	values	in	units	of	s-1.	Note	the	ME-SPFM	and	MEICA+ME-SPFM	activations	maps	are	shown	with	
reverse	colorbars	so	that	negative	(positive)	∆𝑅#∗	values	shown	in	red	(blue)	 induce	positive	(negative)	BOLD	
signal	changes.	

Figure	3	plots	the	preprocessed	and	estimated	signals	for	the	trial-based	
GLM	and	MEICA+ME-SPFM	analyses	for	the	same	dataset	in	seven	representative	
voxels	relevant	to	each	task	(shown	in	the	left	maps),	as	well	as	in	left	precuneus	
and	 right	 dorsolateral	 prefrontal	 cortex	 (DLPFC),	 which	 are	 regions	 typically	
associated	 with	 the	 default	 mode	 network	 and	 dorsal	 attention	 network,	
respectively.	For	the	voxels	related	to	the	tasks,	the	∆𝑅#∗	time	series	obtained	with	
ME-SPFM	 exhibit	 negative	 ∆𝑅#∗ 	(deflection	 in	 blue	 traces)	 that	 are	 reliably	
detected	at	the	time	of	all	experimental	events	(light	green	bands).	These	negative	
∆𝑅#∗	result	in	positive	BOLD	signal	changes	(red	traces)	that	agree	with	the	signals	
estimated	by	the	GLM-IM	model	in	the	DN	dataset	(green	traces).	The	Pearson’s	
correlation	between	the	BOLD	signal	estimated	with	ME-SPFM	and	with	the	GLM-
IM	model	 is	 shown	 on	 top	 of	 each	 time	 course	 (Corr-FIT	 values).	 Clearly	 this	
correlation	 is	 larger	 in	 the	 task-activated	voxels	 than	 in	 the	 left	precuneus	and	
right	DLPFC.	 In	 addition	 to	 the	 task-related	 events,	ME-SPFM	 is	 able	 to	 detect	
BOLD	events	that	often	occur	during	the	timing	of	other	tasks	or	in	the	absence	of	
any	 task,	 i.e.	 during	 rest	 periods.	 The	∆𝑅#∗ 	activation	maps	 shown	on	 the	 right	
correspond	 to	 five	 representative	 task-unrelated	 spontaneous	 BOLD	 events	
marked	with	red	dashed	lines	in	the	plots	of	the	left	precuneus	and	DLPFC.	These	
maps	depict	spatial	patterns	with	clusters	of	activation	in	regions	of	the	default	
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mode	network	(negative	∆𝑅#∗	at	58,	132,	316	and	404	s	and	positive	∆𝑅#∗	at	92	s)	
that	act	in	synchrony	with	clusters	of	activation	in	areas	of	the	dorsal	attention	
network.	Importantly,	these	transient	events	occurring	at	times	without	any	task	
cannot	 be	 revealed	 by	 conventional	 GLM	 approaches,	 but	 are	 detected	 by	ME-
SPFM	owing	to	its	ability	to	operate	without	timing	information.		

	

	
Figure	3:	Time	courses	of	signal	percentage	change	in	E02	dataset	(SPC	E02,	black	line),	GLM-IM	fitted	signal	
(green),	∆𝑅#∗ 	(blue)	 and	∆𝑅#∗ 	BOLD	 estimates,	 i.e.	∆𝑅#∗ 	convolved	 with	 canonical	 HRF	 (red)	 obtained	 with	
MEICA+ME-SPFM	 in	 seven	 representative	 voxels	 in	 task-related	 regions,	 and	 left	 precuneus	 and	 right	
dorsolateral	prefrontal	cortex	(DLPFC)	of	the	same	dataset	as	Figure	1.	The	voxel’s	location	is	shown	in	the	left	
maps.	Dark	and	light	grey	bands	indicate	the	times	of	trials	of	the	relevant	task	for	each	voxel	and	the	rest	of	the	
tasks,	respectively.	The	maps	shown	on	the	right	display	instances	of	spontaneous	∆𝑅#∗	events	occurring	at	rest,	
whose	timing	is	marked	with	dashed	lines	in	the	time	courses	of	the	left	precuneus	and	right	DLPFC.	

Considering	 all	 datasets,	 Figures	 4	 and	 5	 show	 the	 average	 spatial	 dice	
coefficient,	 sensitivity	 and	 specificity	 for	 the	 different	methods	 using	 the	 task-
based	GLM	(TASK-q05/DN)	and	trial-based	GLM	maps	(IM-p05/DN)	as	reference	
maps,	respectively.	Both	figures	illustrate	the	ME-SPFM	algorithm	outperforms	its	
1E-SPFM	 counterpart	 regardless	 of	 the	 prior	 use	 of	 ME-ICA,	 achieving	
considerably	larger	spatial	overlap	and	sensitivity	with	a	reduction	in	specificity.	
As	 shown	 in	 Figure	 4,	ME-SPFM	achieves	 similar	 spatial	 concordance	with	 the	
TASK-q05	maps	 to	 the	 one	 obtained	 with	 trial-based	 GLM	 analyses	 when	 the	
statistical	significance	threshold	is	set	between	𝑝�V� ≤ 0.05	(IM-p05)	and	𝑝�V� ≤
0.001	(IM-p001).	In	general,	denoising	the	fMRI	signal	with	MEICA	(DN	dataset)	
is	beneficial	to	increase	the	sensitivity	and	the	spatial	concordance	of	individual	
GLM	TRIAL-LEVEL	maps	with	respect	to	the	TASK-LEVEL	maps.	In	all	cases,	the	
spatial	 concordance	 of	 the	 IM-p001	 maps	 is	 similar	 to	 the	 TRIAL-q05	 maps.	
MEICA-based	 denoising	 is	 more	 advantageous	 than	 preprocessing	 based	 on	
optimal	 combination	 of	 echoes	 (OC	 dataset)	 or	 single-echo	 (E02	 dataset)	 for	
detecting	single-trial	BOLD	events	in	both	1E-SPFM	and	ME-SPFM	analyses.	The	
advangage	of	MEICA	is	also	seen	in	the	IM-p05	maps.	Similar	conclusions	can	be	
drawn	 from	 the	 results	 in	 Figure	 5	 wherein	 the	 TRIAL-LEVEL	 IM-p05/DN	
activation	 maps	 become	 the	 reference	 maps.	 MEICA+ME-SPFM	 yields	 larger	
spatial	concordance,	sensitivity	and	specificity	than	ME-SPFM,	and	both	of	them	
outperform	1E-SPFM	analyses	in	terms	of	spatial	overlap	for	all	the	conditions.	
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Figure	4:	Average	values	of	dice	coefficient	(i.e.	spatial	overlap),	sensitivity	and	specificity	across	all	the	single-
trial	activation	maps	obtained	with	each	of	the	analysis	methods	(GLM-IM,	1E-SPFM,	ME-SPFM	and	MEICA+ME-
SPFM)	for	each	of	the	experimental	conditions.	TASK-LEVEL	activation	maps	thresholded	at	FDR-corrected	𝑞 ≤
0.05	(TASKq05)	and	only	including	voxels	with	positive	activation	were	used	as	reference	maps,	shown	on	the	
left	for	a	representative	dataset.	The	GLM-IM	and	1E-SPFM	activation	maps	were	computed	from	the	E02,	OC	
and	 DN	 (i.e.	 MEICA	 and	 OC)	 preprocessed	 datasets,	 and	 GLM-IM	 maps	 were	 obtained	 at	 thresholds	 FDR-
corrected	𝑞 ≤ 0.05	(IMq05),	as	well	as	uncorrected	𝑝 ≤ 0.05	(IMp05)	and	𝑝 ≤ 0.001	(IMp001).	

	
Figure	5:	Average	values	of	dice	coefficient	(i.e.	spatial	overlap),	sensitivity	and	specificity	across	all	the	single-
trial	 activation	maps	obtained	with	1E-SPFM,	ME-SPFM	and	MEICA+ME-SPFM	 for	 each	of	 the	 experimental	
conditions.	 TRIAL-LEVEL	 activation	 maps	 thresholded	 at	 uncorrected 	𝑝 ≤ 0.05 	(IMp05)	 and	 only	 including	
voxels	with	positive	activation	were	used	as	reference	maps,	shown	on	the	left	for	a	representative	dataset.	The	
1E-SPFM	activation	maps	were	computed	from	the	E02,	OC	and	DN	(i.e.	MEICA	and	OC)	preprocessed	datasets.	

Figure	6	includes	the	receiver	operating	characteristic	(ROC)	curves	with	
the	 sensitivity	 and	 specificity	 of	 each	 individual	 trial’s	 activation	 map	 for	 all	
conditions	and	the	two	types	of	reference	maps:	TASK-q05/DN	are	shown	at	the	
top	and	IM-p05/DN	are	shown	at	the	bottom.	For	visualization	purposes,	only	the	
IM-q05,	IM-p001	and	IM-p05	with	the	DN	dataset	are	shown	in	the	ROC	plots	at	
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the	 TASK-LEVEL.	 The	 radius	 of	 each	 circle	 is	 relative	 to	 the	 number	 of	 voxels	
showing	activations	(i.e.	total	number	of	positives)	in	the	reference	maps.	Similar	
to	Figures	4	and	5,	the	ROC	curves	illustrate	that	ME-SPFM	offers	larger	sensitivity	
in	 detecting	 single-trial	 events	 than	 1E-SPFM,	 which	 instead	 achieves	 nearly	
perfect	 specificity	 values	 (i.e.	 above	 95%)	 similar	 to	 GLM-IM	 activation	 maps.	
Interestingly,	ME-SPFM	achieves	larger	sensitivity	values	than	GLM-IM	for	certain	
trials,	particularly	for	the	house	viewing	and	reading	conditions.	The	use	of	MEICA	
in	 preprocessing	 slightly	 improves	 the	 performance	 of	 ME-SPFM,	 particularly	
when	compared	with	the	TRIAL-LEVEL	IM-p05/DN	activation	maps.		

	

	
Figure	6:	Receiver	operating	characteristic	(ROC)	curves	with	the	sensitivity	and	specificity	of	each	individual	
trial’s	activation	map	for	all	conditions	and	the	two	types	of	reference	maps:	TASK-q05/DN	(top)	and	IM-p05/DN	
(bottom).	For	visualization	purposes,	only	the	IM-q05,	IM-p001	and	IM-p05	with	the	DN	dataset	are	shown	in	
the	ROC	plots	at	the	TASK-LEVEL.	The	radius	of	each	circle	is	relative	to	the	number	of	positives	in	the	reference	
map,	 i.e.	 trials	with	bigger	 circles	activations	had	more	activated	 voxels	 in	 the	 reference	maps,	wherein	 the	
largest	radius	is	the	maximum	number	of	positives	across	all	trials	and	conditions.	

To	 demonstrate	 the	 temporal	 concordance	 of	 the	 detected	 activation,	
Figure	7	shows	the	average	Pearson’s	correlation	coefficients	of	the	fitted	signal	
estimated	with	 the	 GLM-IM	model	 (top	 three	 rows)	 and	 the	 preprocessed	 DN	
dataset	(bottom	four	rows)	with	the	fitted	signal	obtained	with	1E-SPFM/DN,	ME-
SPFM	 and	 MEICA+ME-SPFM.	 Fisher’s	 z-transformation	 was	 applied	 to	 the	
correlation	 coefficients	 prior	 to	 averaging	 across	 datasets	 and	 then	 inversely	
applied	for	visualization	purposes.	Also,	notice	that	the	range	of	the	correlation	
maps	 only	 covers	 positive	 values	 because	 negative	 correlations	 were	 only	
identified	in	few	disperse	voxels	in	white	matter.	As	for	the	correlation	with	the	
GLM-IM	fitted	signal,	both	ME-SPFM	analyses	show	higher	temporal	correlation	
values	 than	 those	obtained	with	1E-SPFM,	particularly	 confined	 to	gray	matter	
voxels.	The	peaks	of	the	correlation	maps	occur	in	brain	regions	involved	in	the	
processing	of	the	multiple	tasks,	such	as	the	primary	auditory	cortex	for	listening	
to	 music,	 the	 primary	 motor	 cortex	 for	 finger	 tapping,	 the	 ventral	
occipitotemporal	cortex	involved	for	viewing	of	houses	and	reading,	the	posterior	
temporal-occipital	 cortex	 for	 passive	 viewing	 of	 biological	 motion,	 and	 the	
primary	occipital	 cortex	 for	 the	multiple	 tasks	with	 visual	 input.	 The	1E-SPFM	
maps	only	display	large	correlation	values	in	these	cortical	regions.		

The	bottom	four	rows	of	Figure	7	illustrate	the	average	correlation	maps	
of	the	fitted	signals	with	the	preprocessed	DN	dataset.	The	correlation	maps	of	the	
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DN	dataset	with	the	GLM-IM	fitted	signal	are	spatially	smooth	with	non-negligible	
correlation	across	all	brain	voxels	and	peaks	in	task-related	areas.	Similar	to	the	
correlation	maps	with	the	GLM-IM	fitted	signals,	the	ME-SPFM	correlation	maps	
reveal	a	pattern	of	larger	correlation	values	in	voxels	across	the	entire	cortex	and	
in	some	subcortical	areas	(e.g.	putamen	and	caudate	nucleus)	and	low	correlation	
values	in	voxels	in	white	matter	and	cerebrospinal	fluid	where	the	deconvolution	
normally	produces	null	estimates.	The	correlation	values	of	the	MEICA+ME-SPFM	
fitted	signal	with	the	DN	dataset	is	larger	than	those	obtained	with	the	ME-SPFM	
maps.	This	can	be	expected	since	the	reference	signal	has	also	been	denoised	with	
MEICA.	Both	ME-SPFM	clearly	exhibit	larger	correlations	than	the	1E-SPFM	due	to	
their	higher	temporal	sensitivity.	The	widespread	pattern	of	correlation	in	grey	
matter	can	also	be	observed,	but	less	evidently	so	in	the	maps	obtained	with	1E-
SPFM.	 The	 deconvolution	 approaches	 are	 able	 to	 explain	 variance	 of	 the	
preprocessed	DN	signal	 in	 regions	 such	as	 the	anterior	and	posterior	 cingulate	
cortices,	precuneus	and	prefrontal	regions,	which	cannot	be	described	with	the	
GLM-IM	model.	

	
Figure	7:	(Top	three	rows)	Maps	of	Pearson’s	correlation	coefficients	between	the	BOLD	signals	estimated	with	
the	GLM-IM	analysis	and	the	BOLD	signals	estimated	with	the	1E-SPFM,	and	ME-SPFM	and	MEICA+ME-SPFM	
deconvolution	 algorithms.	 (Bottom	 four	 rows)	 Maps	 of	 Pearson’s	 correlation	 coefficients	 between	 the	
preprocessed	DN	dataset	and	the	fitted	signals	estimated	with	the	GLM-IM	analysis,	and	the	1E-SPFM,	and	ME-
SPFM	and	MEICA+ME-SPFM	deconvolution	algorithms.	

Figure	8	displays	the	histograms	of	∆𝑅#∗	values	estimated	with	ME-SPFM	
and	MEICA+ME-SPFM	for	all	subjects:	(A)	during	the	entire	run,	(B-F)	during	the	
timings	of	each	task	in	all	intracranial	voxels,	and	(G-K)	only	in	the	voxels	with	
significant	positive	response	in	the	corresponding	TASK-q05/DN	activation	map.	
Voxels	 with	 zero	 ∆𝑅#∗ 	are	 discarded	 in	 the	 histogram	 plots.	 In	 general,	 ∆𝑅#∗	
estimates	 fall	within	the	range	of	[-1,	1]	s-1,	which	 is	a	physiologically-plausible	
range	 of	∆𝑅#∗ 	in	 grey	 matter	 at	 3T.	 In	 addition,	 the	 percentage	 of	 voxels	 with	
|∆𝑅#∗| > 1 	s-1	 was	 considerably	 reduced	 in	 the	MEICA+ME-SPFM	 analyses	 (see	
plots	L	and	M).	A	table	with	the	percentage	of	voxels	with	|∆𝑅#∗| > 1	s-1	for	ME-
SPFM	 and	 MEICA+ME-SPFM	 for	 all	 datasets	 is	 available	 as	 supplementary	
material.	The	histograms	illustrate	that	the	MEICA+ME-SPFM	∆𝑅#∗-estimates	have	
smaller	 amplitude	 than	 the	 ME-SPFM	 ∆𝑅#∗ -estimates.	 Furthermore,	 the	
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histograms	become	skewed	towards	negative	∆𝑅#∗-estimates	when	the	mask	only	
includes	 voxels	 with	 significant	 positive	 task-related	 BOLD	 signal	 changes.	
Interestingly,	the	histograms	exhibit	a	noticeable	symmetry	around	0	s-1	with	all	
intracranial	voxels,	particularly	when	the	entire	duration	of	the	run	is	considered.		

	

	
Figure	8:	Histograms	of	∆𝑅#∗	values	estimated	with	ME-SPFM	(blue	lines	and	boxes)	and	MEICA+ME-SPFM	(green	
lines	and	boxes)	in:	A)	whole-brain	voxels	during	the	entire	dataset,	(B-F)	in	whole-brain	voxels	during	times	of	
trials	 for	 each	 condition,	 and	 (G-K)	 in	 voxels	with	 positive	 activation	 according	 to	 the	 TASK-LEVEL	 IMq05	
activation	map	during	the	times	of	trials	for	each	condition.	(L-M)	Box	plots	with	the	percentage	of	voxels	with	
|∆𝑅#∗| >	1	s-1	for	the	analysis,	showing	one	circle	per	dataset.	

DISCUSSION 
	
The	 proposed	 deconvolution	 algorithm	 for	ME-fMRI,	 named	multi-echo	 sparse	
paradigm	free	mapping	(ME-SPFM),	achieved	 larger	spatial	overlap	with	a	map	
obtained	using	GLM	and	greater	 sensitivity	 than	 single	echo	deconvolution	but	
reduced	specificity	relative	to	its	1E-SPFM	counterpart	(Caballero-Gaudes	et	al.,	
2013).	 Even	 though	 the	 deconvolution	 with	 1E-SPFM	 generated	 single-trial	
activation	maps	with	very	high	specificity,	it	exhibited	a	significant	reduction	in	
sensitivity	that	caused	the	algorithm	to	fail	in	the	detection	of	activations	in	brain	
regions	related	to	the	task	for	certain	events	(see	1E-SPFM	activation	map	of	HOUS	
Trail	1	 in	Figure	2)	probably	due	to	 insufficient	contrast-to-noise	ratio	 in	 these	
trials.	 Here,	 the	 deconvolution	 with	 ME-SPFM	 was	 performed	 with	 the	 same	
combination	 of	 sparsity-promoting	 regularized	 estimator	 of	 LASSO	 and	 the	
Bayesian	Information	Criterion	as	for	1E-SPFM.	Thus,	it	can	be	inferred	that	the	
superior	 performance	 of	 ME-SPFM	 is	 due	 to	 its	 ME-based	 formulation	 as	 this	
accounts	for	the	linear	dependence	of	the	BOLD	signal	on	TE	according	to	a	mono-
exponential	decay	model.	Importantly,	the	advantage	of	ME-SPFM	over	1E-SPFM	
was	observed	 for	 the	 three	ways	of	preprocessing	 to	generate	a	 single	dataset	
from	 the	multiple	echo	datasets,	 even	after	MEICA	denoising	and	optimal	echo	
combination,	which	can	be	considered	one	of	the	most	advanced	preprocessing	
approaches	for	ME-fMRI	data	(Gonzalez-Castillo	et	al.,	2016).	It	can	be	concluded	
that,	 for	 the	 purpose	 of	 voxelwise	 deconvolution,	 leveraging	 the	 information	
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available	across	the	multiple	echo	datasets	through	a	TE-dependent	model	is	more	
advantageous	 than	 MEICA	 denoising	 (Kundu	 et	 al.,	 2012)	 or	 weighted	
combination	of	the	multiple	echoes	in	a	single	dataset	(Posse	et	al.,	1999;	Gowland	
and	Bowtell,	2007;	Poser	et	al.,	2006).	In	addition,	the	advantage	of	ME-SPFM	with	
respect	to	1E-SPFM	increased	when	the	reference	activation	maps	were	defined	
based	on	a	GLM	analysis	with	task-level	regressors,	rather	than	with	individually	
modulated	regressors	for	each	trial.	This	result	may	be	explained	due	to	the	higher	
level	of	uncertainty	of	 the	single-trial	activation	maps	used	as	reference,	which	
results	 in	 higher	 variability	 in	 the	 specificity,	 sensitivity	 and	 spatial	 overlap	
estimates.		

We	observed	that	applying	MEICA	prior	to	ME-SPFM	did	improve,	but	not	
substantially,	the	sensitivity,	specificity	and	spatial	overlap	with	the	TASK-LEVEL	
or	TRIAL-LEVEL	reference	maps.	Hence,	we	conclude	that	the	improved	ability	to	
blindly	 detect	 individual	 BOLD	 events	 is	 more	 associated	 with	 the	 ME-SPFM	
algorithm	rather	than	due	to	denoising	with	MEICA	denoising.	To	some	degree,	
this	result	also	demonstrates	that	the	proposed	ME-SPFM	algorithm	can	cope	with	
𝑆3 -related	 fluctuations	 of	 the	 signal	 despite	 these	 being	 neglected	 in	 the	
deconvolution.	 Moreover,	 the	 slight	 improvements	 in	 performance	 of	 the	 1E-
SPFM	and	ME-SPFM	algorithms	when	the	echo	datasets	are	denoised	with	MEICA	
are	similar	to	the	ones	observed	in	the	GLM	analyses,	which	is	concordant	with	
previous	results	(Gonzalez-Castillo	et	al.,	2016).	

Denoising	the	echo	datasets	with	MEICA	prior	to	the	proposed	ME-SPFM	
algorithm	 is	 still	 recommended	 (i.e.	 the	 MEICA+ME-SPFM	 analysis),	 since	 the	
corresponding	activation	maps	become	more	focal,	showing	a	reduced	number	of	
voxels	 with	 non-zero	 ∆𝑅#∗ 	values	 that	 may	 originate	 from	 inflow	 effects,	
movement-related	artefacts	and	physiological	 fluctuations	(see	green	arrows	 in	
Figures	 1).	Moreover,	 the	 number	 of	 voxels	with	 non-physiologically	 plausible	
∆𝑅#∗ 	-estimates	 is	significantly	 reduced	 in	MEICA+ME-SPFM	(see	Figure	8).	The	
reduction	in	amplitude	of	the	MEICA+ME-SPFM	∆𝑅#∗	-estimates	also	agrees	with	
previous	 observations	 of	 diminished	 effects	 sizes	 in	 task-related	 activations	
observed	in	Gonzalez-Castillo	et	al.	(2016).	

As	 shown	 in	 Figure	 7,	 the	 ME-SPFM	 algorithm	 also	 exhibited	 higher	
temporal	correlation	with	the	GLM-IM	fitted	signals	than	1E-SPFM,	suggesting	a	
higher	 temporal	 sensitivity	of	 the	estimated	∆𝑅#∗ .	 Even	 though	the	peaks	of	 the	
temporal	 correlation	maps	were	 located	 in	 brain	 regions	 assumed	 to	 strongly	
engage	in	the	experimental	tasks,	the	correlation	maps	of	ME-SPFM	also	exhibited	
non-negligible	correlation	values	in	grey	matter	voxels	across	the	entire	cortex,	
subcortical	regions	and	cerebellum,	whereas	the	correlation	was	clearly	reduced	
in	 white	 matter	 voxels.	 This	 indicates	 that	 ME-SPFM	 offers	 not	 only	 higher	
temporal	 sensitivity,	 but	 also	 does	 not	 detect	∆𝑅#∗ -events	 at	 random	 that	 are	
specific	to	brain	regions	of	potential	functional	relevance.	These	∆𝑅#∗-events	are	
missed	by	1E-SPFM	and	cannot	be	explained	from	the	experimental	design	with	
GLM	analyses.	There	 can	be	multiple	 causes	 for	 the	origin	of	 these	activations.	
First,	the	higher	contrast-to-noise	ratio	of	the	BOLD	signal	in	grey	matter	voxels	
than	in	white	matter	(Krüger	and	Glover,	2001).	Second,	due	to	the	sluggishness	
of	 the	 hemodynamic	 response,	 BOLD	 signal	 changes	 associated	 with	 ∆𝑅#∗	
occurring	prior	to	the	trials	may	also	extend	in	time	and	overlap	with	the	BOLD	
signal	changes	in	response	to	the	trials.	Third,	part	of	the	activations	observed	in	
brain	 regions	beyond	those	primarily	 involved	 in	 the	performance	of	 the	 tasks	
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could	 also	 be	 explained	 in	 terms	 of	 behavioural	 differences	 across	 trials,	 for	
instance	 due	 to	 changes	 in	 attention,	 self-awareness	 or	 executive	 control	
mechanisms	that	engage	other	brain	regions	in	a	less	prominent	manner	and	thus	
are	only	detected	with	ME-SPFM	due	its	enhanced	sensitivity	relative	to	1E-SPFM.	
Here,	we	confirmed	that	subjects	performed	all	task-related	events	based	on	eye-
tracking	 measurements,	 thus	 ensuring	 that	 variability	 across	 trials	 is	 not	
associated	 to	 inappropriate	 performance	 of	 the	 tasks	 (Gonzalez-Castillo	 et	 al.,	
2016).	

Importantly,	 ME-SPFM	 also	 enabled	 us	 to	 detect	∆𝑅#∗ -events	 in	 periods	
between	trials	when	the	subjects	are	not	assumed	to	engage	in	any	evoked	task.	
These	 spontaneous	 events	 detected	 during	 rest	 would	 be	 neglected	 by	 any	
analysis	approach	that	only	model	events	with	timing	known	by	the	experimenter.	
Figure	3	shows	several	instances	of	these	transient,	spontaneous	∆𝑅#∗-events	for	a	
representative	 dataset	 in	 brain	 regions	 of	 the	 default	mode	 network	 (Raichle,	
2015)	 as	 well	 as	 the	 attention	 and	 frontoparietal	 executive	 control	 networks	
(Dixon	et	al.,	2018;	Fox	et	al.,	2006).	Similar	patterns	of	spontaneous	∆𝑅#∗-events	
were	observed	across	all	datasets.	The	maps	and	amplitude	of	these	spontaneous	
activations	highly	resemble	the	functional	connectivity	maps	observed	in	resting	
state	fMRI	and	also	exhibit	similar	between-network	relationships	in	the	sign	of	
the	 detected	 activations.	 For	 instance,	 these	 illustrative	 maps	 show	 the	 well-
known	opposite	polarity	of	BOLD	signal	changes,	and	thus	also	in	∆𝑅#∗ ,	between	
regions	of	the	default	mode	network	(i.e.	precuneus,	posterior	cingulate,	inferior	
parietal	lobule	and	medial	prefrontal	cortex)	and	the	dorsal	attention	network	(i.e.	
dorsolateral	 prefrontal	 cortex,	 frontal	 eye	 fields,	 intraparietal	 sulcus,	 superior	
parietal	 lobule)	 (Fox	 et	 al.,	 2005).	 Although	 the	 datasets	were	 not	 acquired	 in	
resting	 state,	 these	 findings	 corroborate	 previous	 evidence	 of	 involvement	 of	
resting	 state	 functional	 networks	 during	 event-related	 paradigms	 obtained	 in	
single-echo	 datasets	with	 SPFM	 (Caballero-Gaudes	 et	 al.,	 2013;	 Petridou	 et	 al.,	
2013)	and	Total	Activation	(Karahanoğlu	et	al.,	2013).	Point	process	analyses	have	
also	revealed	the	presence	and	relevance	of	these	extreme	events	in	resting-state	
analyses	(Liu	et	al.,	2018;	Tagliazucchi	et	al.,	2012;	Tagliazucchi	et	al.,	2016).	

The	∆𝑅#∗	signals	estimated	with	ME-SPFM	have	interpretable	units	in	s-1.	As	
shown	in	Figure	8,	most	of	the	ME-SPFM	estimates	fell	within	limits	of	neuronally-
driven	∆𝑅#∗	at	3T.	For	positive	BOLD	signal	changes,	Donahue	et	al.	(2011)	and	van	
der	Zwaag	et	al.	(2009)	reported	total	∆𝑅#∗	values	of	-0.74	±	0.05	s-1	and	-0.98	±	
0.08	s-1	in	the	human	visual	and	motor	cortices	at	3T	for	a	block-design	tasks	with	
long	stimuli.	These	values	are	higher	than	those	obtained	with	our	deconvolution	
in	response	to	more	complex	tasks	and	with	shorter	trial	duration.	Should	we	have	
a	prior	hypothesis	of	the	maximum	∆𝑅#∗	induced	by	neuronally-driven	events	per	
brain	region,	this	information	can	be	exploited	to	characterize	the	nature	of	the	
detected	events	and	identify	those	events	with	exceeding	∆𝑅#∗	values	that	might	
be	more	related	to	artefactual	changes	in	the	BOLD	signal	than	to	neurobiological	
processes.	For	that,	 it	 is	 important	 to	consider	that	∆𝑅#∗	values	may	vary	due	to	
differences	 in	 anatomy	 across	 brain	 regions	 (e.g.	 vascularization),	 imaging	
parameters	(e.g.	magnetic	field	strength,	RF	coil	type,	voxel	size,	flip	angle)	and	
experimental	paradigm	(e.g.	block	vs.	fast	event-related	designs).		

Furthermore,	 the	 histograms	 of	∆𝑅#∗ -estimates	were	 symmetrical	 at	 the	
whole-brain	 level,	particularly	when	considering	 the	entire	 run.	The	 symmetry	
remained	when	a	gamma	function	(GAM	option	in	3dDeconvolve)	without	post-
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stimulus	undershoot	was	used	for	deconvolution	(data	not	shown),	indicating	that	
it	 cannot	 be	 completely	 explained	 due	 to	 spurious	 estimates	 that	 try	 to	
compensate	 mismatches	 between	 the	 assumed	 and	 real	 HRF	 shapes.	 This	
hemodynamic	equilibrium	in	number	and	magnitude	is	intriguing,	but	agrees	with	
our	previous	observations	of	whole-brain,	widespread	activations	with	equivalent	
number	of	positive	and	negative	BOLD	signal	changes	at	3T	(Gonzalez-Castillo	et	
al.,	2012).	Although	this	work	does	not	aim	to	explore	this	issue,	we	conjecture	
that	 the	observed	hemodynamic	equilibrium	has	a	main	neuronal	 contribution	
probably	due	to	inhibition	(Devor	et	al.,	2007;	Shmuel	et	al.,	2006),	rather	than	
purely	 hemodynamic	 due	 to	 blood	 stealth	 of	 positively	 active	 regions	 from	
neighboring	regions	(Harel	et	al.,	2002).	Our	support	to	this	claim	is	that	positive	
∆𝑅#∗-estimates	occurred	 in	 spatially	distributed	 regions	across	distinct	vascular	
territories,	were	observed	across	all	tasks,	and	were	also	confined	to	regions	of	
the	 same	 functional	network	 (e.g.	default	mode,	dorsal	 attention)	 in	periods	of	
rest.	
	
Limitations,	remarks	and	future	directions	
One	potential	limitation	of	our	approach	is	the	use	of	sparsity-promoting	L1-norm	
regularized	 estimators	 such	 as	 LASSO	 for	 deconvolution.	 Even	 though	 we	
observed	 that	 sparse	∆𝑅#∗ -events	 are	 sufficient	 to	 achieve	 a	 high	 correlation	
between	the	preprocessed	denoised	signals	and	the	BOLD	signals	estimated	with	
ME-SPFM	(see	Figure	7),	this	assumption	might	not	be	appropriate	for	prolonged	
blocked	 stimuli	 or	 more	 dense	 event-related	 paradigms.	 In	 such	 cases,	 the	
proposed	 ME-based	 deconvolution	 framework	 could	 be	 adapted	 to	 use	 other	
regularization	terms,	such	as	L2-norm	based	ridge	regression	or	 total	variation.	
Spatial	regularization	terms	could	also	be	added	into	the	algorithm	(e.g.	following	
Karahanoğlu	et	al.,	2013)	to	enhance	the	spatial	robustness	of	the	estimates.	We	
will	 address	 the	 implementation	 of	 these	 approaches	 in	 future	 studies.	
Importantly,	 the	 proposed	 ME-based	 deconvolution	 method	 can	 be	 modified	
straightforwardly	 to	 estimate	 both	∆𝑅#∗(𝑡)	and	∆𝜌(𝑡)	(i.e.	 also	 estimating	 time-
varying	 changes	 in	 the	net	magnetization	∆𝑆3(𝑡)),	 even	using	different	 types	of	
regularization	for	each	component	so	as	to	adapt	to	the	nature	of	their	fluctuations	
(Caballero-Gaudes	et	al.,	2018a;	2018b).	

A	second	limitation	of	the	PFM	framework	is	that	it	uses	a	particular	HRF	
shape	as	the	model	for	deconvolution.	Nevertheless,	since	ME-SPFM	is	not	locked	
to	the	timing	of	the	trials,	it	can	clearly	account	for	variability	in	the	onset	of	the	
response.	It	can	also	describe	more	complex	patterns,	such	as	transient	stimulus	
onset/offset	responses	(Gonzalez-Castillo	et	al.,	2012)	in	terms	of	two	∆𝑅#∗-events.	
Further	 flexibility	 can	 be	 incorporated	 by	 means	 of	 structured	 deconvolution	
based	on	multiple	basis	functions	(Caballero-Gaudes	et	al.,	2012).	

A	third	potential	limitation	is	the	assumption	of	linear	dependence	on	TE	
of	fractional	BOLD	signal	changes	based	on	a	mono-exponential	decay	model	of	
the	gradient-echo	fMRI	signal	that	ME-SPFM	builds	upon.	A	biexponential	model	
will	 be	 more	 accurate	 in	 voxels	 with	 large	 partial	 volume	 effects	 due	 to	
cerebrospinal	fluid	if	the	acquisition	includes	TEs	considerably	longer	than	the	𝑇#∗	
of	grey	matter	(Speck	et	al.,	2001).	Furthermore,	Havlicek	et	al.	(2017)	observed	
a	 nonlinear	 dependence	 on	 TE	 in	 the	 human	 visual	 cortex	 at	 3T	 using	 a	
combination	of	multi-echo	BOLD	and	cerebral	blood	flow	measurements,	where	
the	 amount	 of	 nonlinearity	 varies	 during	 the	 course	 of	 the	 BOLD	 response,	
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suggesting	 different	 physiologically-driven	 dynamics	 for	 the	 intercept	 time-
course	and	the	BOLD	component	of	the	signal.	Similarly,	Kang	et	al.	(2018)	also	
found	 a	nonlinear	 dependence	 on	TE	mainly	 in	 the	 intravascular	 signal	 due	 to	
changes	in	the	average	chemical	exchange	time	during	the	stimulation,	whereas	
fractional	changes	in	the	extravascular	signal	can	be	assumed	to	linearly	increase	
with	TE	(Donahue	et	al.,	2011).	Yet,	these	non-linear	findings	were	obtained	with	
long	stimulus	durations	(e.g.	visual	stimuli	of	55	s	duration	were	used	in	Havlicek	
et	al.	(2017)	and	16	s	duration	in	Donahue	et	al.	(2011)	and	Kang	et	al.	(2018)),	
whereas	our	data	comprised	short	stimuli	of	4	s	duration.	Even	if	the	assumption	
of	linearity	on	TE	failed,	which	would	make	the	model	assumed	in	ME-SPFM	and	
other	ME-based	approaches	such	as	MEICA	slightly	imperfect,	our	results	showed	
large	agreement	with	the	results	of	GLM	analyses,	proving	the	viability	of	a	ME-
based	deconvolution	approach.		

In	this	work,	we	used	datasets	with	a	known	experimental	paradigm	for	
validation	 of	 ME-SPFM,	 confirming	 subject’s	 compliance	 with	 concurrent	 eye-
tracking	 data.	 The	 usage	 of	 ME-SPFM	 in	 a	 completely	 blind	 scenario	 with	 no	
knowledge	of	the	experimental	conditions	would	be	more	challenging.	This	may	
require	the	combination	of	the	deconvolution	with	reverse	inference	approaches	
that	attempt	to	decode	the	subject’s	engagement	in	a	particular	cognitive	process	
from	 the	 activation	 maps	 (Poldrack,	 2011;	 Poldrack	 and	 Yarkoni,	 2016),	 for	
example	 by	 comparing	 the	 activation	 maps	 to	 a	 predefined	 set	 of	 meta-maps	
formed	 using	 the	 Activation	 Likelihood	 Estimation	 method	 of	 the	 BrainMap	
database	(Tan	et	al.,	2017).	Decoding	could	be	performed	at	the	same	rate	as	the	
TR	 of	 the	 acquisition,	 even	 though	successive	 spatial	maps	 can	 be	 averaged	 to	
reduce	the	level	of	noise	in	the	activation	maps	and	uncertainty	in	the	decoding	
scores.	

Finally,	 deconvolution	 algorithms	 can	 also	 be	 understood	 as	 a	 way	 of	
denoising	the	fMRI	signal,	like	a	filtering	process	matched	to	the	shape	of	the	HRF,	
wherein	 the	 denoised	 signal	 comprises	 the	BOLD	 fluctuations	 triggered	 by	 the	
deconvolved	activity-inducing	signal	(here,	∆𝑅#∗	estimates).	By	some	means,	this	
interpretation	is	supported	by	the	correlation	maps	of	Figure	7	that	illustrate	a	
very	high	correlation	between	the	ME-SPFM	fitted	dataset,	without	MEICA,	and	
the	 preprocessed	 DN	 dataset.	 A	 comprehensive	 comparison	 of	 ME-SPFM	with	
other	ME-based	denoising	approaches,	such	as	dual-echo	regression	(Bright	and	
Murphy,	 2013)	 or	MEICA-based	 approaches	 (Kundu	 et	 al.,	 2012;	 Power	 et	 al.,	
2018),	for	denoising	the	fMRI	signal	in	resting-state	and	task-based	paradigms	is	
beyond	 the	 scope	of	 this	 study.	The	application	of	ME-SPFM	 for	denoising	will	
likely	involve	refinement	of	the	proposed	methods	(e.g.	degree	of	sparsity,	choice	
of	regularization	parameters)	particularly	for	connectivity-based	analyses.		

In	summary,	in	this	paper	we	have	introduced	the	algorithm	of	multi-echo	
sparse	paradigm	free	mapping	(ME-SPFM)	for	the	deconvolution	of	BOLD	fMRI	
data	collected	with	ME	acquisitions.	The	ME-SPFM	method	obtains	estimates	of	
the	∆𝑅#∗ 	associated	 with	 single-trial	 BOLD	 events,	 outperforming	 our	 previous	
method	for	single-echo	acquisitions	(1E-SPFM),	and	exhibiting	more	concordance	
with	 the	 maps	 obtained	 with	 conventional	 GLM-based	 analyses	 despite	 being	
unaware	of	the	timings	of	the	events	(i.e.	blind	detection).	The	new	algorithm	is	
available	in	AFNI	as	3dMEPFM.	
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