
A comparison of three programming languages

for a full-fledged next-generation sequencing tool

Costanza, Pascal∗

pascal.costanza@imec.be

Herzeel, Charlotte∗

charlotte.herzeel@imec.be

Verachtert, Wilfried
wilfried.verachtert@imec.be

imec, ExaScience Life Lab, Kapeldreef 75, 3001 Leuven, Belgium

February 22, 2019

Abstract

Background elPrep is an established multi-threaded
framework for preparing SAM and BAM files in se-
quencing pipelines. To achieve good performance,
its software architecture makes only a single pass
through a SAM/BAM file for multiple preparation
steps, and keeps sequencing data as much as pos-
sible in main memory. Similar to other SAM/BAM
tools, management of heap memory is a complex task
in elPrep, and it became a serious productivity bot-
tleneck in its original implementation language dur-
ing recent further development of elPrep. We there-
fore investigated three alternative programming lan-
guages: Go and Java using a concurrent, parallel
garbage collector on the one hand, and C++17 using
reference counting on the other hand for handling
large amounts of heap objects. We reimplemented
elPrep in all three languages and benchmarked their
runtime performance and memory use.

Results The Go implementation performs best,
yielding the best balance between runtime perfor-
mance and memory use. While the Java benchmarks
report a somewhat faster runtime than the Go bench-
marks, the memory use of the Java runs is signifi-
cantly higher. The C++17 benchmarks run signif-

∗Equal contributor

icantly slower than both Go and Java, while using
somewhat more memory than the Go runs. Our anal-
ysis shows that concurrent, parallel garbage collec-
tion is better at managing a large heap of objects
than reference counting in our case.

Conclusions Based on our benchmark results, we
selected Go as our new implementation language for
elPrep, and recommend considering Go as a good
candidate for developing other bioinformatics tools
for processing SAM/BAM data as well.

Background

The sequence alignment/map format
(SAM/BAM) [1] is the de facto standard in
the bioinformatics community for storing mapped
sequencing data. There exists a large body of
work on tools for processing SAM/BAM files for
analysis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
The SAMtools [1], Picard [2], and GATK [3] software
packages developed by the Broad and Sanger insti-
tutes are considered to be reference implementations
for many operations on SAM/BAM files, examples of
which include sorting reads, marking PCR and opti-
cal duplicates, recalibrating base quality scores, indel
realignment, and various filtering options, which
typically precede variant calling. Many alternative

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

software packages [4, 5, 6, 7, 8, 9, 10, 12, 14, 15] focus
on optimizing the computations of these operations,
either by providing alternative algorithms, or by
using parallelization, distribution, or other opti-
mization techniques specific to their implementation
language, which is often C, C++, or Java.

We have developed elPrep [8, 16], an open-source,
multi-threaded framework for processing SAM/BAM
files in sequencing pipelines, especially designed for
optimizing computational performance. It can be
used as a drop-in replacement for many operations
implemented by SAMtools, Picard, and GATK, while
producing identical results [8, 16]. elPrep allows users
to specify arbitrary combinations of SAM/BAM op-
erations as a single pipeline in one command line.
elPrep’s unique software architecture then ensures
that running such a pipeline requires only a single
pass through the SAM/BAM file, no matter how
many operations are specified. The framework takes
care of merging and parallelizing the execution of the
operations, which significantly speeds up the overall
execution of a pipeline.

In contrast, related work focuses on optimizing in-
dividual SAM/BAM operations, but we have shown
that our approach of merging operations outperforms
this strategy [8]. For example, compared to us-
ing GATK4, elPrep executes the 4-step Broad Best
Practices pipeline [17] (consisting of sorting, mark-
ing PCR and optical duplicates, and base qual-
ity score recalibration and application) up to 13x
faster on whole-exome data, and up to 7.4x faster
on whole-genome data, while utilizing fewer compute
resources [8].

All SAM/BAM tools have in common that they
need to manipulate large amounts of data, as
SAM/BAM files easily take up 10-100GB in com-
pressed form. Some tools implement data structures
that spill to disk when reaching a certain thresh-
old on RAM use, but elPrep uses a strategy where
data is split upfront into chunks that are processed
entirely in memory to avoid repeated file I/O [16].
Our benchmarks show that elPrep’s representation
of SAM/BAM data is more efficient than, for exam-
ple, GATK4, as elPrep uses less memory for loading
the same number of reads from a SAM/BAM file in
memory [8]. However, since elPrep does not provide

data structures that spill to disk, elPrep currently re-
quires a fixed minimum amount of RAM to process
a whole-exome or whole-genome file, whereas other
tools sometimes allow putting a cap on the RAM use
by using disk space instead. Nonetheless, for effi-
ciency, it is recommended to use as much RAM as
available [8, 18]. This means that, in general, tools
for processing SAM/BAM data need to be able to
manipulate large amounts of allocated memory.

In most programming languages, there exist more
or less similar ways to explicitly or implicitly allo-
cate memory for heap objects which, unlike stack
values, are not bound to the lifetimes of function
or method invocations. However, programming lan-
guages strongly differ in how memory for heap ob-
jects is subsequently deallocated. A detailed discus-
sion can be found in “The Garbage Collection Hand-
book” by Jones, Hosking, and Moss [19]. There are
mainly three approaches:

Manual memory management Memory has to
be explicitly deallocated in the program source
code (for example by calling free in C [20]).

Garbage collection Memory is automatically
managed by a separate component of the
runtime library called the garbage collector.
At arbitrary points in time, it traverses the
object graph to determine which objects are
still directly or indirectly accessible by the
running program, and deallocates inaccessible
objects. This ensures that object lifetimes do
not have to be explicitly modelled, and that
pointers can be more freely passed around
in a program. Most garbage collector im-
plementations interrupt the running program
and only allow it to continue executing after
garbage collection – they “stop the world” [19]
– and perform object graph traversal using
a sequential algorithm. However, advanced
implementation techniques, as employed by
Java [21] and Go [22], include traversing the
object graph concurrently with the running
program while limiting its interruption as far
as possible; and using a multi-threaded parallel
algorithm that significantly speeds up garbage
collection on modern multicore processors.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

Reference counting Memory is managed by main-
taining a reference count with each heap object.
When pointers are assigned to each other, these
reference counts are increased or decreased to
keep track of how many pointers refer to each ob-
ject. Whenever a reference count drops to zero,
the corresponding object can be deallocated.1

elPrep was originally, up to version 2.6, imple-
mented in the Common Lisp programming lan-
guage [23]. Most existing Common Lisp implemen-
tations use stop-the-world, sequential garbage collec-
tors. To achieve good performance, it was therefore
necessary to explicitly control how often and when
the garbage collector would run to avoid needless in-
terruptions of the main program, especially during
parallel phases. As a consequence, we also had to
avoid unnecessary memory allocations, and reuse al-
ready allocated memory as far as possible, to reduce
the number of garbage collector runs. However, our
more recent attempts to add more functionality to
elPrep (like optical duplicate marking, base quality
score recalibration, and so on) required allocating ad-
ditional memory for these new steps, and it became
an even more complex task and a serious productiv-
ity bottleneck to keep memory allocation and garbage
collection in check. We therefore started to look for a
different programming language using an alternative
memory management approach to continue develop-
ing elPrep and still achieve good performance.

Existing literature on comparing programming lan-
guages and their implementations for performance
typically focus on specific algorithms or kernels in iso-
lation, no matter whether they cover specific domains
like bioinformatics [24], economics [25], or numeri-
cal computing [26], or are about programming lan-
guages in general [27, 28, 29, 30, 31]. Except for one
of those articles [31], none of them consider parallel
algorithms. Online resources that compare program-
ming language performance also focus on algorithms
and kernels in isolation [32]. elPrep’s performance
stems both from efficient parallel algorithms for steps

1Object graphs with cycles cannot be easily reclaimed using
reference counting alone. However, such cyclic data structures
have not occurred yet in elPrep, which is why we do not discuss
this issue further in this paper.

like parallel sorting or concurrent duplicate mark-
ing, but also from the overall software architecture
that organizes these steps into a single-pass, multi-
threaded pipeline. Since such software-architectural
aspects are not covered by the existing literature, it
therefore became necessary to perform the study de-
scribed in this article.

elPrep is an open-ended software framework that
allows for arbitrary combinations of different func-
tional steps in a pipeline, like duplicate marking, sort-
ing reads, replacing read groups, and so on; addi-
tionally, elPrep also accommodates functional steps
provided by third-party tool writers. This openness
makes it difficult to precisely determine the lifetime
of allocated objects during a program run. It is
known that manual memory management can con-
tribute to extremely low productivity when develop-
ing such software frameworks. See for example the
IBM San Francisco project, where a transition from
C++ with manual memory management to Java with
garbage collection led to an estimated 300% produc-
tivity increase [33].

Therefore, manual memory management is not a
practical candidate for elPrep, and concurrent, par-
allel garbage collection and reference counting are
the only remaining alternatives. By restricting our-
selves to mature programming languages where we
can expect long-term community support, we iden-
tified Java and Go as the only candidates with sup-
port for concurrent, parallel garbage collection2, and
C++17 [36] as the only candidate with support for
reference counting (through the std::shared_ptr li-
brary feature).3

The study consisted of reimplementations of elPrep
in C++17, Go, and Java, and benchmarking their
runtime performance and memory usage. These are
full-fledged applications in the sense that they fully
support a typical preparation pipeline for variant call-

2Specifically, Java uses concurrent, parallel Garbage-first
garbage collection [34], whereas Go uses a more traditional
concurrent, parallel mark-and-sweep collector [35].

3Other mature programming languages with support for
reference counting include Objective-C, Swift, and Rust [37].
However, in its algorithm for duplicate marking, elPrep re-
quires an atomic compare-and-swap operation on reference-
counted pointers, which does not exist in those languages, but
exists in C++17.

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

ing consisting of sorting reads, duplicate marking,
and a few other commonly used steps. While these
three reimplementations of elPrep only support a lim-
ited set of functionality, in each case the software ar-
chitecture could be completed with additional effort
to support all features of elPrep version 2.6 and be-
yond.

Results

Running a typical preparation pipeline using elPrep’s
software architecture in the three selected program-
ming languages shows that the Go implementation
performs best, followed by the Java implementation,
and then the C++17 implementation.4

To determine this result, we used a five-step prepa-
ration pipeline, as defined in our previous article [16],
on a whole-exome data set (NA12878). This prepa-
ration pipeline consists of the following steps:

• Sorting reads for coordinate order.

• Removing unmapped reads.

• Marking duplicate reads.

• Replacing read groups.

• Reordering and filtering the sequence dictionary.

We ran this pipeline 30 times for each implementa-
tion, and recorded the elapsed wall-clock time and
maximum memory use for each run using the Unix
time command. We then determined the standard
deviation and confidence intervals for each set of
runs [38].

C++17 and Java allow for fine-grained tuning of
their memory management, leading to four variations
each. For the final ranking in this section, we have
chosen the best result from each set of variations, one
for C++17 and one for Java. The other results are
presented in the Discussion section below. The Go
benchmarks were executed with default settings.

4We have not performed a detailed comparison against the
original version of elPrep implemented in Common Lisp, but
based on previous performance benchmarks, the Go implemen-
tation seems to perform close to the Common Lisp implemen-
tation.

The benchmark results for the runtime perfor-
mance of the three selected implementations are
shown in Figure 1. Go needs on average 7 mins 56.152
secs with a standard deviation of 8.571 secs; Java
needs on average 6 mins 54.546 secs with a standard
deviation of 5.376 secs; and C++17 needs on aver-
age 10 mins 23.603 secs with a standard deviation
of 22.914 secs. The confidence intervals for Go and
Java are very tight, with a slightly looser confidence
interval for C++17.

The benchmark results for the maximum memory
use are shown in Figure 2. Go needs on average ca.
221.73 GB with a standard deviation of ca. 6.15 GB;
Java needs on average ca. 335.46 GB with a standard
deviation of ca. 0.13 GB; and C++17 needs on aver-
age ca. 255.48 GB with a standard deviation of ca.
2.93 GB. Confidence intervals are very tight.

The goal of elPrep is to simultaneously keep both
the runtime and the memory use low. To determine
the final ranking, we therefore multiply the average
elapsed wall-clock time (in hours) with the average
maximum memory use (in GB), with lower values (in
GBh) being better. This yields the following values
(cf. Figure 3):

• 29.33 GBh for Go

• 38.63 GBh for Java

• 44.26 GBh for C++17

This appropriately reflects the results of the bench-
marks: While the Java benchmarks report a some-
what faster runtime than the Go benchmarks, the
memory use of the Java runs is significantly higher,
leading to a higher GBh value than for the Go runs.
The C++17 runs are significantly slower than both
Go and Java, explaining the highest reported GBh
value. We therefore consider Go to be the best choice,
yielding the best balance between runtime perfor-
mance and memory use, followed by Java and then
C++17.

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

Av
er

ag
e

el
ap

se
d

w
al

l-c
lo

ck
 ti

m
e

in
 m

in
ut

es

(lo
w

er
 is

 b
et

te
r)

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

06:30

07:00

07:30

08:00

08:30

09:00

09:30

10:00

10:30

11:00

Go Java C++17 with jemalloc

Figure 1: Runtime performance. Average elapsed wall-clock times in minutes for the best Go, Java, and
C++17 implementations, with confidence intervals.

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

Av
er

ag
e

m
ax

im
um

 re
si

de
nt

 s
et

 s
ize

 in
 G

B

(lo

w
er

 is
 b

et
te

r)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Go Java C++17 with jemalloc

Figure 2: Maximum memory use. Average maximum memory use in GB for the best Go, Java, and C++17
implementations, with confidence intervals

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

Av
er

ag
e

el
ap

se
d

w
al

l-c
lo

ck
 ti

m
e

x

av

er
ag

e
m

ax
im

um
 re

si
de

nt
 s

et
 s

ize
 in

 G
Bh

(lo

w
er

 is
 b

et
te

r)

0

12

24

36

48

Go Java C++17 with jemalloc

Figure 3: Final ranking of programming languages. Average elapsed wall-clock times multiplied by average
maximum memory use in GBh.

Discussion

Memory management issues in elPrep
in more detail

The most common use case for elPrep is that it per-
forms sorting of reads and duplicate marking, among
other steps [17]. Such a pipeline executes in two
phases: In the first phase, elPrep reads a BAM input
file, parses the read entries into objects, and performs
duplicate marking and some filtering steps on the fly.
Once all reads are stored as heap objects in RAM,
they are sorted using a parallel sorting algorithm.
Finally, in the second phase, the modified reads are
converted back into entries for a BAM output file and
written back. elPrep splits the processing of reads
into these two phases because writing the reads back
to an output file can only commence once duplicates
are fully known and reads are fully sorted in RAM.

Phase 1 allocates a lot of intermediate data struc-
tures for parsing the read representations from BAM
files into heap objects. These temporary objects be-
come obsolete after phase 1. The different memory

management approaches outlined in the Background
section above deal with these temporary objects in
different ways.

A garbage collector needs to spend time to clas-
sify these obsolete temporary objects as inaccessible
and deallocate them. A stop-the-world, sequential
garbage collector creates a significant pause in which
the main program cannot make progress. This was
the case with the previous elPrep versions (up to ver-
sion 2.6), which is why we provided an option to users
to disable garbage collection altogether in those ver-
sions [39]. In contrast, a concurrent, parallel garbage
collector can perform its job concurrently with phase
2, which can therefore commence immediately.

With reference counting, temporary objects are
recognized as obsolete due to their reference counts
dropping to zero. Deallocation of these objects leads
to transitive deallocations of other objects because of
their reference counts transitively dropping to zero.
Since this is an inherently sequential process, this
leads to a similar significant pause as with a stop-
the-world garbage collector.

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

C++17 performance in more detail

C and C++ typically perform much better than other
programming languages in most benchmarks that fo-
cus on isolated algorithms or kernels [24, 25, 26, 28,
29, 30]. Since our C++17 implementation of elPrep
uses reference counting, this performance gap may be
explained by the deallocation pause caused by refer-
ence counting, as described in the previous subsec-
tion.

To verify this theory, we timed each phase and the
deallocation pause in the C++17 implementation of
elPrep separately, and repeated the benchmark an-
other 30 times to determine the timings, standard
deviations, and confidence intervals. The results are
shown in Figure 4. The first phase needs on average 4
mins 26.657 secs, with a standard deviation of 6.648
secs; the deallocation pause needs on average 2 mins
18.633 secs, with a standard deviation of 4.77 secs;
and the second phase needs on average 3 mins 33.832
secs, with a standard deviation of 17.376 secs.

The average total sum of the 30 C++17 runtimes
is 10 mins 19.122 secs with a standard deviation of
22.782 secs. If we substract the timings of the deallo-
cation pause from the average total runtime, we get
8 mins 0.489 secs with a standard deviation of 20.605
secs. This is indeed very close to the Go benchmarks
which, as reported above, need on average 7 mins
56.152 secs. We therefore conclude that the perfor-
mance gap between the C++17 version and the Go
and Java versions can indeed be explained by the
deallocation pause caused by the reference counting
mechanism in C++17.

C++ provides many features for more explicit
memory management than is possible with reference
counting. For example, it provides allocators [36]
to decouple memory management from handling of
objects in containers. In principle, this may make
it possible to use such an allocator to allocate tem-
porary objects that are known to become obsolete
during the deallocation pause described above. Such
an allocator could then be freed instantly, removing
the described pause from the runtime. However, this
approach would require a very detailed, error-prone
analysis which objects must and must not be man-
aged by such an allocator, and would not translate

average runtime average memory product
(1) 16 mins 57.467 secs 233.63 GB 66.03 GBh
(2) 16 mins 26.450 secs 233.51 GB 63.96 GBh
(3) 11 mins 24.809 secs 246.78 GB 46.94 GBh
(4) 10 mins 23.603 secs 255.48 GB 44.26 GBh

Table 1: Performance results for the different mem-
ory allocators used in the C++17 benchmarks: (1)
default allocator, (2) tbbmalloc, (3) tcmalloc, (4) je-
malloc.

well to other kinds of pipelines beyond this particular
use case. Since elPrep’s focus is on being an open-
ended software framework, this approach is therefore
not practical.

Tuning of memory management in
C++17

The performance of parallel C/C++ programs often
suffers from the low-level memory allocator provided
by the C/C++ standard libraries. This can be miti-
gated by linking a high-level memory allocator into a
program that reduces synchronization, false sharing,
and memory consumption, among other things [40].
In our study, we have benchmarked the C++17 im-
plementation using the default unmodified memory
allocator, the tbbmalloc allocator from Intel Thread-
ing Building Blocks [41], the tcmalloc allocator from
gperftools [42], and the jemalloc allocator [43]. The
measurements are shown in Table 1. According to
the listed GBh values, jemalloc performs best.

Tuning of memory management in Java

Java provides a number of tuning options for its mem-
ory management [44]. Since our Java implementation
of elPrep suffers from a significantly higher average
maximum memory use than the C++17 and Go im-
plementations, we have investigated two of these op-
tions in more detail:

• The string deduplication option identifies strings
with the same contents during garbage collec-
tion, and subsequently removes the redundancy
by letting these strings share the same underly-
ing character arrays. Since a significant portion

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

su
m

 w
ith

ou
t

 s

um
 w

ith

de
al

lo
ca

tio
n

pa
us

e

de

al
lo

ca
tio

n
pa

us
e

Average elapsed wall clock-time in minutes

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

03:33.832

03:33.83202:18.633

04:26.657

04:26.657

First phase Deallocation pause Second phase

Figure 4: Runtimes of phases in the C++17 implementation. Average elapsed wall-clock times in minutes
for the two main phases of an elPrep pipeline in the C++17 implementation, and the deallocation pause in
between phase 1 and 2 caused by the reference counting mechanism, with confidence intervals. The second
row depicts the same averages as in the first now, but without the deallocation pause. The sum of the two
phases in the second row is very close to the Go runtimes shown in Figure 1.

of read data in SAM/BAM files is represented
by strings, it seemed potentially beneficial to use
this option.

• The minimum and maximum allowed percent-
age of free heap space after garbage collection
can be configured using the “MinFreeHeap” and
“MaxFreeHeap” options to minimze the heap
size.

We ran the Java benchmark 30 times each with
the following cofigurations: with the default options;
with just the string deduplication option; with just
the free-heap options; and with both the string dedu-
plication and the free-heap options. For the free-heap
options, we followed the recommendation of the Java
documentation to reduce the heap size as far as possi-
ble without causing too much performance regression.
The measurements are shown in Table 2: The free-
heap options show no observable impact on the run-
time performance or the memory use, and the string
deduplication option increases the average elapsed

average runtime average memory product
(1) 6 mins 54.546 secs 335.46 GB 38.63 GBh
(2) 7 mins 30.815 secs 338.74 GB 42.42 GBh
(3) 6 mins 55.842 secs 335.45 GB 38.75 GBh
(4) 7 mins 25.415 secs 338.74 GB 41.91 GBh

Table 2: Performance results for the different mem-
ory management options used in the Java bench-
marks: (1) default options, (2) with string deduplica-
tion, (3) with heap-free options, (4) with string dedu-
plication and heap-free options.

wall-clock time with a minor additional increase in
memory use. According to the listed GBh values,
Java with default options performs best.

Conclusions

Due to the concurrency and parallelism of Go’s and
Java’s garbage collectors, the elPrep reimplementa-
tions in these programming languages perform signifi-

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

cantly faster than the C++17 implementations which
relies on reference counting. Since the Go implemen-
tation uses significantly less heap memory than the
Java implementation, we therefore decided to base
the official elPrep implementation since version 3.0
on Go.

Based on our positive experiences, we recommend
authors of other bionformatics tools for processing
SAM/BAM data, and potentially also other sequenc-
ing data formats, to also consider Go as an imple-
mentation language. Previous bioinformatics tools
that are implemented in Go include b́ıogo [45], Fast-
cov [46], SeqKit [47], and Vcfanno [48], among others.

Methods

Existing literature on comparing programming lan-
guages for performance strives to replicate algorithm
or kernel implementations as close to each other as
possible across different programming languages, to
ensure fair comparisons of the underlying compiler
and runtime implementations. We focused on taking
advantage of the respective strengths of the different
programming languages and their libraries instead.
Eventually, a reimplementation of elPrep would have
to do this anyway to achieve optimal performance,
so this approach results in a more appropriate as-
sessment for our purpose. For example, in C++17
we have used Intel’s Threading Building Blocks as
an advanced library for parallel programming, and
benchmarked different memory allocators optimized
for multi-threaded programs; in Go, we have relied
on its concurrency support through goroutines and
channels for communicating between them; and in
Java, we have based elPrep on its framework to sup-
port functional-style operations on streams of ele-
ments in the package java.util.Stream introduced
in Java 8.

The benchmarks have all been performed on a Su-
permicro SuperServer 1029U-TR4T node with two
Intel Xeon Gold 6126 processors consisting of 12 pro-
cessor cores each, clocked at 2.6 GHz, with 384 GB
RAM. The operating system used for the benchmarks
is the CentOS 7 distribution of Linux. We have used
the following compilers and libraries:

• C++17: GNU g++ version 7.2.1

– Threading Building Blocks 2018 Update 2

– gperftools version 2.6.3

– jemalloc version 5.0.1

• Go: Official Go distribution version 1.9.5

• Java: Java Platform, Standard Edition (JDK)
10

For C++17, we additionally used the Intel Threading
Building Blocks, gperftools, and jemalloc libraries.
The Go and Java versions do not require additional
libraries.

We verified that all implementations produce ex-
actly the same results by using the method described
in our previous paper on elPrep [16]. This method
consists of the following steps:

1. We verify that the resulting BAM file is
properly sorted by coordinate order with
samtools index.

2. We remove the PG tag and alphabetically sort
the optional fields in each read with biobambam.

3. We sort the BAM file by read name and store it
in SAM format with samtools sort.

4. Finally, we verify that the contents are identical
with the result of the original elPrep version with
the Unix diff command.

Availability of data and material

The source code for the different elPrep implementa-
tions are available at the following locations:

• Common Lisp: https://github.com/

exascience/cl-elprep

• C++17, Java: https://github.com/

exascience/elprep-bench

• Go: https://github.com/exascience/

elprep/tree/v3.04

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://github.com/exascience/cl-elprep
https://github.com/exascience/cl-elprep
https://github.com/exascience/elprep-bench
https://github.com/exascience/elprep-bench
https://github.com/exascience/elprep/tree/v3.04
https://github.com/exascience/elprep/tree/v3.04
https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

The five-step preparation pipeline benchmarked in
this paper corresponds to the pipeline implemented
in the script run-wes-gatk.sh, which is avail-
able at https://github.com/exascience/elprep/

tree/v3.04/demo together with its input files.

Competing interests

The authors declare that they have no competing in-
terests.

Authors’ contributions

PC designed and performed the study, participated in
the Common Lisp and Go implementations of elPrep,
implemented the C++17 and Java versions of elPrep,
and drafted the manuscript. CH designed the elPrep
software architecture and the benchmarked prepara-
tion pipeline, and participated in the Common Lisp
and Go implementations of elPrep. PC, CH and WV
contributed to the final manuscript.

Acknowledgements

The authors are grateful to the imec.icon GAP
project members, and especially Western Digital for
providing the compute infrastructure for performing
the benchmarks described in this paper. The authors
also thank Thomas J. Ashby and Tom Haber for in-
depth discussions about memory management tech-
niques in various programming languages.

References

[1] Li, H., Hansaker, B., Wysoker, A., Fen-
nell, T., Ruan, J., Homer, N., Abecasis, G.,
Durbin, R.: The sequence alignment/map for-
mat and samtools. Bioinformatics 25(16) (2009).
doi:10.1093/bioinformatics/btp352

[2] Broad Institute: Picard. http://

broadinstitute.github.io/picard

[3] McKenna, A., Hanna, M., Banks, E.,
Sivachenko, A., Cibulskis, K., Kernytsky,
A., Garimella, K., Altshuler, D., Gabriel,
S., Daly, M., DePristo, M.: The genome
analysis toolkit: a mapreduce framework for
analyzing next-generation dna sequencing
data. Genome Research 20, 1297–303 (2010).
doi:10.1101/gr.107524.110

[4] Tarasov, A., Vilella, A., Cuppen, E., Nijman,
I., Prins, P.: Sambamba: fast processing of ngs
alignment formats. Bioinformatics 31(12), 2032–
2034 (2015). doi:10.1093/bioinformatics/btv098

[5] Tischler, G., Leonard, S.: Biobambam: tools for
read pair collation based algorithms on bam files.
Source Code for Biology and Medicine 9(13)
(2014). doi:10.1186/1751-0473-9-13

[6] Jun, G., Wing, M., Abecasis, G., Kang, H.:
An efficient and scalable analysis framework for
variant extraction and refinement from popula-
tion scale dna sequence data. Genome Research
(2015). doi:10.1101/gr.176552.114

[7] GG, F., IM, H.: Samblaster: fast dupli-
cate marking and structural variant read ex-
traction. Bioinformatics 30(17), 2503–5 (2014).
doi:10.1093/bioinformatics/btu314

[8] Herzeel, C., Costanza, P., Decap, D., Fostier,
J., Verachtert, W.: elPrep 4: A multithreaded
framework for sequence analysis. PLoS ONE
14(2) (2019). doi:10.1371/journal.pone.0209523

[9] Decap, D., Reumers, J., Herzeel, C.,
Costanza, P., Fostier, J.: Halvade: scal-
able sequence analysis with mapreduce.
Bioinformatics 31(15), 2482–8 (2015).
doi:10.1093/bioinformatics/btv179

[10] Nothaft, F.A., Massie, M., Danford, T., Zhang,
Z., Laserson, U., Yeksigian, C., Kottalam, J.,
Ahuja, A., Hammerbacher, J., Linderman, M.,
Franklin, M., Joseph, A.D., Patterson, D.A.:
Rethinking data-intensive science using scal-
able analytics systems. In: Proceedings of the
2015 International Conference on Management
of Data (SIGMOD ’15) (2015). ACM

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://github.com/exascience/elprep/tree/v3.04/demo
https://github.com/exascience/elprep/tree/v3.04/demo
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

[11] Guimera, R.: bcbio-nextgen: Auto-
mated, distributed next-gen sequencing
pipeline. EMBnet.journal 17, 30 (2012).
doi:10.14806/ej.17.B.286

[12] Niemenmaa, M., Kallio, A., Schumacher,
A., Klemela, P., Korpelainen, E., Hel-
janko, K.: Hadoop-bam: directly manip-
ulating next generation sequencing data in
the cloud. Bioinformatics 28(6), 876–7 (2012).
doi:10.1093/bioinformatics/bts054

[13] Deng, L., Huang, G., Zhuang, Y., Wei,
J., Yan, Y.: Higene: A high-performance
platform for genomic data analysis. (2017).
doi:10.1109/BIBM.2016.7822584. IEEE

[14] Decap, D., Reumers, J., Herzeel, C., Costanza,
P., Fostier, J.: Halvade-rna: Parallel vari-
ant calling from transcriptomic data us-
ing mapreduce. PLOS One 12(3) (2017).
doi:10.1371/journal.pone.0174575

[15] Weeks, N., Luecke, G.: Optimization of sam-
tools sorting using openmp tasks. Cluster com-
puting - The Journal of Networks Software
Tools and Applications 20(3), 1869–1880 (2017).
doi:10.1007/s10586-017-0874-8

[16] Herzeel, C., Costanza, P., Decap, D., Fostier,
J., Reumers, J.: elPrep: High-performance
preparation of sequence alignment/map files
for variant calling. PLoS ONE 10(7) (2015).
doi:10.1371/journal.pone.0132868

[17] Van der Auwera, G.A., Carmeiro, M.O., Hartl,
C., Poplin, R., del Angel, G., Levy-Moonshine,
A., Jordan, T., Shakir, K., Roazen, D.,
Thibault, J., Banks, E., Garimella, K.V., Alt-
shuler, D., Gabriel, S., DePristo, M.A.: From
FastQ data to high confidence variant calls: the
Genome Analysis Toolkit best practices pipeline.
Curr. Protoc. Bioinform. 43(1), 11–101111033
(2013). doi:10.1002/0471250953.bi1110s43

[18] Decap, D., Reumers, J., Herzeel, C., Costanza,
P., Fostier, J.: Performance analysis of a

parallel, multi-node pipeline for dna sequenc-
ing. In: Proceedings of the 11th Interna-
tional Conference on Parallel Processing and
Applied Mathematics (PPAM):6-9 September
2015, Krakow, Poland, vol. 9574, pp. 233–242
(2015). doi:10.1007/978-3-319-32152-3 22. Lec-
ture Notes in Computer Science, Springer

[19] Jones, R., Hosking, A., Moss, E.: The Garbage
Collection Handbook. CRC Press, Boca Raton
(2012)

[20] Harbison III, S.P., Steele Jr., G.L.: C — A Ref-
erence Manual, Fifth Edition. Prentice Hall, Up-
per Saddle River (2002)

[21] Gosling, J., Joy, B., Steele Jr., G.L., Bracha, G.,
Buckley, A.: The Java Language Specification,
Java SE 8 Edition. Addison-Wesley Professional,
Upper Saddle River (2014)

[22] Donovan, A.A.A., Kernighan, B.W.: The Go
Programming Language. Addison-Wesley Pro-
fessional, Upper Saddle River (2015)

[23] Steele Jr., G.L.: Common Lisp, The Language,
Second Edition. Digital Press, Boston (1990)

[24] Fourment, M., Gillings, M.R.: A comparison of
common programming languages used in bioin-
formatics. BMC Bioinformatics 9(1) (2008).
doi:10.1186/1471-2105-9-82

[25] Borağan Aruoba, S., Fernández-Villaverde, J.:
A comparison of programming languages in eco-
nomics. Journal of Economic Dynamics and
Control 58, 265–273 (2015)

[26] Moreira, J.E., Midkiff, S.P., Gupta, M.: A com-
parison of Java, C/C++, and FORTRAN for
numerical computing. IEEE Antennas and Prop-
agation Magazine 40(5), 102–105 (1998)

[27] Biswa, K., Jamatia, B., Choudhury, D., Borah,
P.: Comparative analysis of C, FORTRAN, C#
and Java programming languages. International
Journal of Computer Science and Information
Technology 7(2), 1004–1007 (2016)

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

[28] Hundt, R.: Loop recognition in
C++/Java/Go/Scala. In: Proceedings of
Scala Days 2011 (2011)

[29] Nanz, S., Furia, C.A.: A comparative study
of programming languages in Rosetta Code. In:
2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, pp. 778–788
(2015). doi:10.1109/ICSE.2015.90

[30] Prechelt, L.: An empirical comparison of seven
programming languages. Computer 33(10), 23–
29 (2000)

[31] Togashi, N., Klyuev, V.: Concurrency in
Go and Java: Performance analysis. In:
2014 4th IEEE International Conference on
Information Society and Technology (2014).
doi:10.1109/ICIST.2014.6920368

[32] Gouy, I.: The Computer Language Bench-
marks Game. https://benchmarksgame-team.
pages.debian.net/benchmarksgame/

[33] Rubin, B.S., Christ, A.R., Bohrer, K.A.: Java
and the IBM San Francisco project. IBM Sys-
tems Journal 37(3), 365–371 (1998)

[34] Detlefs, D., Flood, C., Heller, S., Print-
ezis, T.: Garbage-first garbage collection.
In: Proceedings of the 4th International
Symposium on Memory Managament (2004).
doi:10.1145/1029873.1029879

[35] Richard L. Hudson: Getting to Go. https://

blog.golang.org/ismmkeynote

[36] Stroustrup, B.: A Tour of C++, Second Edi-
tion. Addison-Wesley Professional, Upper Sad-
dle River (2018)

[37] Klabnik, S., Nichols, C.: The Rust Program-
ming Language. No Starch Press, San Francisco
(2018)

[38] Georges, A., Buytaert, D., Eeckhout, L.: Adding
rigorous statistics to the Java benchmarker’s

toolbox. In: Companion to the 22nd ACM SIG-
PLAN Conference on Object-oriented Program-
ming Systems and Applications, pp. 793–794
(2007). doi:10.1145/1297846.1297891

[39] Herzeel, C.: elPrep – Execution
Command Options. https://github.

com/ExaScience/elprep/tree/2.61#

execution-command-options

[40] Berger, E.D., McKinley, K.S., Blumofe, R.D.,
Wilson, P.R.: Hoard: a scalable memory allo-
cator for multithreaded applications. In: Pro-
ceedings of the Ninth International Confer-
ence on Architectural Support for Program-
ming Languages and Operating Systems (2000).
doi:10.1145/378993.379232

[41] Reinders, J.: Intel Threading Building Blocks.
O’Reilly, Sebastopol (2007)

[42] gperftools. https://github.com/gperftools/

gperftools

[43] jemalloc. http://jemalloc.net

[44] Java Platform, Standard Edition Tools Refer-
ence. https://docs.oracle.com/javase/10/

tools/java.htm

[45] Kortschak, R.D., Snyder, J.B., Maragkakis,
M., Adelson, D.L.: b́ıogo: a simple high-
performance bioinformatics toolkit for the Go
language. Journal of Open Source Software
2(10), 167 (2017). doi:10.21105/joss.00167

[46] Shen, W., Li, Y.: A novel algorithm for de-
tecting multiple covariance and clustering of bi-
ological sequences. Scientific Reports 6 (2016).
doi:10.1038/srep30425

[47] Shen, W., Le, S., Li, Y., Hu, F.: Seqkit: A cross-
platform and ultrafast toolkit for FASTA/Q
file manipulation. PLoS ONE 11(10) (2016).
doi:10.1371/journal.pone.0163962

[48] Pedersen, B.S., Layer, R.M., Quinlan, A.R.:
Vcfanno: fast, flexible annotation of genetic
variants. Genome Biology 17(1), 118 (2016).
doi:10.1186/s13059-016-0973-5

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558056doi: bioRxiv preprint

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://blog.golang.org/ismmkeynote
https://blog.golang.org/ismmkeynote
https://github.com/ExaScience/elprep/tree/2.61#execution-command-options
https://github.com/ExaScience/elprep/tree/2.61#execution-command-options
https://github.com/ExaScience/elprep/tree/2.61#execution-command-options
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
http://jemalloc.net
https://docs.oracle.com/javase/10/tools/java.htm
https://docs.oracle.com/javase/10/tools/java.htm
https://doi.org/10.1101/558056
http://creativecommons.org/licenses/by/4.0/

