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Abstract 

Human tuberculosis is caused by members of the Mycobacterium tuberculosis complex 

(MTBC) and presents variable disease outcomes. The variation has primarily been attributed 

to host and environmental factors, but recent evidence indicates an additional role of genetic 

diversity among MTBC clinical strains. Here, we used metabolomics to unravel the potential 

role of genetic variations in conferring strain-specific adaptive capacity and vulnerability. To 

systematically identify functionality of single nucleotide polymorphisms (SNPs), we developed 

a constraint-based approach that integrates metabolomic and genomic data. Model-based 

predictions were systematically tested against independent metabolome data; they correctly 

classified SNP effects in pyruvate kinase and suggested a genetic basis for strain-specific 

sensitivity to the antibiotic para-aminosalicylic acid. Our method is broadly applicable to 

mutations in enzyme-encoding genes across microbial life, opening new possibilities for 

identifying strain-specific metabolic vulnerabilities that could lead to more selective 

treatment strategies. 
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The Mycobacterium tuberculosis complex (MTBC) consists of closely related bacteria that are 

etiological agents of tuberculosis (TB) in humans and animals. Systematic genotyping and 

whole-genome sequencing resolved the landscape of evolved genetic differences in MTBC and 

distinguished seven phylogenetic lineages adapted to humans that feature limited genetic 

diversity1,2,3,4 . Given the low mutation rate, strictly clonal reproduction, and the limited 

genetic diversity of the MTBC5,6, the variable outcomes of TB infection and disease as well as 

antibiotic treatments have been mainly attributed to host diversity rather than bacterial 

variations7. More recently, a growing body of evidence related genetic diversity among clinical 

MTBC strains to distinct geographic distributions8 and key selective advantages such as 

evolvability, transmissibility, and antibiotic tolerance9,10, suggesting that strain diversity may 

be an important factor11,12. 

 

A key element of MTBC’s pathogenic success is its ability to evade the host immune response13 

and to survive long periods of hypoxia, nutrient limitation, and oxidative or nitro-oxidative 

stresses14,15,16, which requires evolved plasticity for different metabolic responses. It is an 

open question how much of MTBC’s genetic diversity confers strain-specific metabolic 

characteristics, ultimately affecting transmissibility, disease progression, and antibiotic 

tolerance. Indeed, evolution of metabolism has been demonstrated to play a key role for 

successful adaptation to complex and dynamic in vivo environments17,18, for bacterial drug 

tolerance19,20,21, and for survival during infection of macrophages22,23,24,25. Beyond analyses of 

individual laboratory strains, however, no systematic characterization and comparative 

analysis of intrinsic metabolic differences across human-adapted MTBC strains has been 

performed. 

 

If the metabolic and other phenotypic diversity between MTBC strains contributes to and 

modulates pathogenicity, the next question is: which elements of the limited genetic diversity 

in the MTBC are responsible for phenotypic strain diversification? In many species, 

associations between observable traits and single-nucleotide polymorphisms (SNPs) have 

been detected through genome-wide association studies (GWASs)26,27. GWASs typically 

estimate correlations between individual SNPs and phenotypes such as fitness or resistance, 

but large sample sizes are necessary to achieve adequate statistical power and to identify 

genes responsible for complex phenotypes. This is particularly challenging for the MTBC, given 

the sporadic nature of genetic differences and the practical difficulties in systematically 

characterizing strain-specific phenotypes. Alternative computational solutions to establish 

causal links between genotype and phenotype, such as homology-based methods like SIFT28 

or VIPUR29, often exhibit low specificity (i.e., high risk of false positives)30, and do not consider 

correlations between genetic variants. Moreover, we do not know of any validation of these 

methods in microbes. As a result, only a small proportion of SNPs in the MTBC have been 

mechanistically linked to phenotypes such as virulence or intrinsic drug resistance31,32. 
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To overcome the limitations of GWASs and homology-based predictions, we developed a 

computational approach that integrates strain-specific exometabolomes, genomes, and 

genome-scale metabolic networks into a single model. Application to 18 representative 

human-adapted MTBC strains allowed us to predict the effects of SNPs in enzyme-encoding 

genes on metabolic phenotypes and identify functional SNPs that associate with strain-specific 

metabolic vulnerabilities and resistance to antibiotics.  

 

Results 

To investigate metabolic diversity in the human-adapted MTBC, we selected three strains each 

from six of the seven known MTBC lineages8, covering much of the intra-lineage diversity33 

(Fig. 1a). Lineage 7 was only recently characterized34 and not included here because strains 

were not readily available. All 18 MTBC strains were grown in batch cultures with a modified 

7H9 medium containing pyruvate as the main carbon source and without common additives 

such as Tween 80, oleic acid, and glycerol. This medium supports growth of all strains while 

simplifying the composition to facilitate downstream analysis. We collected supernatant 

samples from exponentially growing cultures over a period of five days and monitored cell 

growth by optical density. The supernatants were analyzed with a non-targeted metabolomics 

method using a time-of-flight mass spectrometer35. 

 

There are 4,717 non-synonymous SNPs in our 18 MTBC strains36, 566 of which could be 

mapped to enzyme-encoding genes in a genome-scale metabolic model37 (Supplementary 

Tables 1 and 2). Despite few SNPs in metabolic genes, the doubling times of our MTBC strains 

ranged from 25 to 50 hours (Fig. 1b), suggesting different adaptive metabolic strategies for 

the uptake and utilization of available nutrients. To link growth and metabolic phenotypes, we 

used the dynamic exometabolome profiles of 272 putative metabolites to derive relative 

nutrient uptake and byproduct secretion rates (Fig. 1c and Supplementary Table 3). 

Consistent with variation in doubling times, about 50% of the metabolites were differentially 

secreted or consumed in at least one of the 18 strains (maximum log2 fold change between 

strains larger than 2). Overall, the relative uptake and secretion rates of metabolites exhibited 

variation across strains by up to two orders of magnitude (Supplementary Fig. 1). The most 

significant (ANOVA, q ≤ 0.01) exometabolome differences across MTBC strains pertained to 

amino acids and intermediates of glycolysis and the tricarboxylic acid (TCA) cycle, suggesting 

divergent evolutionary strategies in central carbon and nitrogen metabolism (Supplementary 

Tables 4 and 5). Since the doubling time did not significantly (q ≤ 0.01) correlate with any of 

the metabolite uptake and secretion patterns (Supplementary Fig. 1), the metabolic diversity 

was unlikely due to indirect, growth-related effects but rather caused by genetic differences. 

Consistent with this hypothesis, we found that strains from the same lineage had significantly 

(t-test, p = 0.012, n = 153) more similar exometabolome profiles than strains from different 

lineages (Fig. 1d). 
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To identify genetic variations responsible for the observed metabolic differences among MTBC 

strains, we built on flux balance analysis (FBA)38, a constraint-based approach that predicts 

metabolic fluxes at steady state in a stoichiometric model of metabolic reactions by optimizing 

a cellular objective function. Here, we developed an FBA-based differential analysis to predict 

the effects of strain-specific SNPs via perturbation of the associated enzymes and propagation 

of this perturbation through the metabolic network (Fig. 2a). Specifically, we considered only 

non-synonymous (missense) SNPs in enzyme-encoding genes that potentially reduced 

enzymatic activity. We represented all 18 MTBC strains by a single constraint-based model 

(Fig. 2b) that contained genome-scale metabolic networks specific for each strain 

(incorporating gene deletions and experimentally determined bounds on growth and carbon 

source uptake rates), a virtual reference strain that allowed us to infer strain-specific 

differences, and strain-specific bounds on uptake and secretion (exchange) fluxes derived 

from exometabolome data. The model couples strains to each other through mass balances, 

SNP effects (a SNP must have the same effect in all affected strains), and measured ratios of 

exchange fluxes. A strain’s steady-state flux distribution, ri, (Fig. 2c) is then given by the 

reference strain flux distribution, rref, and deviations from this reference that are either caused 

by SNP effects, e, and propagated through the network by a strain-specific structural 

sensitivity matrix39, Si, or due to effects that cannot be explained by metabolic SNPs, ui. To 

infer the unknowns ri, rref, e, and ui, we sequentially minimized the sum of absolute values (L1 

norm) of (i) unexplained flux differences between strains (ui), (ii) fluxes in the reference strain 

(rref), and (iii) the SNP effects (e). This approach aimed to explain as much of the observed 

metabolic variation as possible by as few SNPs as possible while obtaining biologically 

reasonable flux distributions across the strains. 

A common problem of constraint-based models is that predicted flux distributions, or in our 

case, combinations of SNP effects, are not unique40. We therefore used flux variability analysis 

(FVA)40 to find the full range of possible values for all SNP effects across all possible optimal 

solutions. We classified a SNP as functional if its smallest possible effect in all optimal solutions 

was above a flux threshold α, and non-functional otherwise. (Fig. 2d). To avoid false positives, 

we chose the threshold value α = 10-4 mmol gDW-1 h-1 by systematically testing all possible 

values and selecting the one at which the number of SNPs classified as functional started 

decreasing more slowly with increasing (stricter) α (Supplementary Fig. 2). Results were 

robust to small changes in the threshold value (Supplementary Figs. 2 and 3). 

Of the 566 non-synonymous SNPs in enzyme-encoding genes represented in the model, 88 

(16%) were classified as functional. Notably, only 29 SNPs were predicted to be functional 

both by our constraint-based approach and SIFT (p>0.5, hypergeometric test) (Supplementary 

Table 2). Overall, strains from lineages 2, 3, and 4 had a slightly larger fraction of functional 

SNPs than strains from lineages 1, 5, and 6 (Fig. 3a). The functional SNPs affected 67 unique 

enzymes distributed across most metabolic pathways, and SNPs were most often predicted to 

either abolish the flux of a reaction (i.e., complete loss-of-function) or have a relatively minor 

effect under the tested condition (Fig. 3b and Supplementary Table 2). Metabolic pathways 

with many functional SNPs and large relative SNP effects included the TCA cycle, pyruvate 
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metabolism, and glycolysis as well as glycine, serine, and threonine metabolism, consistent 

with our previous observation of significant differences in secretion rates of central 

metabolism intermediates and amino acids. 

To systematically benchmark our predictions, we tested whether the levels of intracellular 

metabolites directly linked to enzymes with predicted functional SNPs exhibited larger 

variations across strains, than metabolites proximal to enzymes with non-functional SNPs. Our 

premise is that functional mutations affect enzyme kinetics (e.g. Km, Kcat), resulting in local 

adaptive changes of metabolite levels41. We measured the intracellular levels of 294 putative 

metabolites in the 18 MTBC strains. For each SNP affecting an enzyme, we calculated the ratios 

of directly affected metabolite levels between strains with and without the SNP 

(Supplementary Table 6). On average, these ratios were significantly different between 

functional and non-functional SNPs (t-test, p = 2.8 × 10−4, n = 1,208). Moreover, the effects of 

functional SNPs were significantly different from distributions obtained by randomly assigning 

SNPs to strains (Z-test , p = 2.0 × 10−4, n = 1,000), whereas the ratios of non-functional SNPs 

were not (Z-test, p = 0.91, n = 1,000). This separation could be optimized by making the 

functional SNP classification more stringent, indicating that SNPs with larger predicted effects 

had a greater impact on intracellular metabolite levels (Fig. 3c). In contrast, functional SNPs 

predicted by SIFT28 did not achieve a significant separation for any classification threshold 

(Supplementary Fig. 3). Thus, the analysis of intracellular metabolome data across the 18 

MTBC strains independently supported our model-based classification of SNP functionality 

over homology-based predictions. 

To validate our SNP functionality predictions more directly, we focused on the known 

functional E200D substitution in the glycolytic enzyme pyruvate kinase (PykA)42,43, a mutation 

that occurs in all animal-adapted MTBC strains and the human-adapted lineages 5 and 6, also 

known as M. africanum44. This SNP was shown to abolish the activity of PykA in animal-

adapted strains, rendering them unable to grow on glucose as the sole carbon source42,43. 

Deleting pykA in the laboratory strain H37Rv also leads to glucose toxicity, presumably due to 

accumulation of methylglyoxal45. While our analysis classified the pykA E220D SNP as 

functional, it predicted only a relatively small flux effect under the tested conditions in E200D-

carrying MTBC strains (Fig. 3b). To test this prediction, we grew five MTBC strains on 7H9 

glucose medium with and without pyruvate. Clinical isolates with the E200D substitution were 

able to grow on glucose both with and without pyruvate, albeit to a lesser extent than strains 

without the SNP, in agreement with our prediction (Fig. 3d). Consistently, the intracellular 

levels of methylglyoxal were comparable in strains with and without the E200D SNP 

(Supplementary Fig. 4). Thus, our physiological data validate the model prediction of pykA 

E200D functionality, and indicate that under the tested conditions clinical isolates behave 

differently from the animal-adapted and laboratory strains. 

Next, we systematically investigated whether the predicted functional SNPs could reveal 

strain-specific metabolic vulnerabilities. We used FBA to find all synthetic lethal pairs of gene 

deletions in which one of the genes contained at least one of our predicted functional SNPs 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2019. ; https://doi.org/10.1101/555763doi: bioRxiv preprint 

https://doi.org/10.1101/555763
http://creativecommons.org/licenses/by/4.0/


 6 

(modeled as deletions in this analysis). The predicted epistatic interactions of SNP-affected 

enzymes differed between strains and were mostly with enzymes involved in glycolysis, amino 

acid biosynthesis, and nutrient transport (Fig. 4a). For example, the majority of the predicted 

epistatic interactions in lineages 1 and 3 involved enzymes in glycine, serine, and threonine 

metabolism, while strains from lineages 2, 4, and 6 were predicted to be more vulnerable to 

disruptions in glycolysis. Thus, our analysis suggests that MTBC genetic diversity can confer 

strain-specific sensitivity to the inhibition of metabolic functions. 

Several functional SNPs conferring strain-specific vulnerabilities were found in pathways 

dependent on folate cofactors, such as glycine, and serine biosynthesis, also including purine, 

methionine and pantothenate metabolism (Fig. 3b). Since folate biosynthesis is a validated 

metabolic target for antibiotics46, we tested the functionality of SNPs by differential 

susceptibility of MTBC strains to inhibitors of folate metabolism. To this end, we determined 

the sensitivity of 15 of the 18 MTBC strains to para-aminosalicylic acid (PAS), an inhibitor of 

tetrahydrofolate (THF) biosynthesis and one of the antimycobacterial drugs currently used for 

multi-drug-resistant TB47,48. Although no strain carried the genetic determinants of PAS 

resistance49,  strains from lineages 1-4 were significantly more susceptible to PAS than strains 

from lineages 5 and 6 (t-test, p = 4.5 × 10−13, n = 55) (Fig. 4b). We identified four predicted 

functional SNPs in three enzymes proximal to THF that could help explain these differences 

(Fig. 4b). These SNPs are present in sensitive strains; they affect serA2 and serB1 (needed for 

serine biosynthesis) and purU (which converts 10-formyl-THF to THF). As a control, all strains 

were equally sensitive to the antibiotic ofloxacin (OFX) (Fig. 4b). We speculate that, similar to 

previous observations in Escherichia coli50, recycling of 10-formyl-THF and 5,10-methylene-

THF via purU, serA2, and serB1 plays a key role in replenishing the THF pool to compensate for 

the effect of the antibiotic, and that the SNPs impair this role. 

 

Discussion 

MTBC strains cluster into seven distinct phylogeographic lineages2 that have been proposed 

to be adapted to different host populations51. Current GWAS methods for relating genetic 

variation to phenotype, were successful in identifying clinically prevalent mutations that 

confer strong phenotypes such as drug resistance31. However, because the genetic diversity 

in MTBC strains is small compared to other pathogens52,6, such standard methods struggle 

to relate genetic variation to host adaptation. Moreover, it is unclear what the relevant 

phenotypes for host adaptation are. Because metabolic adaptability is crucial for MTBC 

strains to scavenge nutrients in harsh host environments53, we hypothesized that metabolic 

phenotypes could discriminate between MTBC strains and their clinical phenotypes. Indeed, 

despite their limited genetic diversity51,6, our data for 18 MTBC strains from six lineages 

demonstrate substantial lineage-specific phenotypic differences between MTBC strains, 

reflected in different growth rates and preferences for nutrient uptake and byproduct 

secretion, potentially revealing divergent metabolic specialization in MTBC lineages54,55. This 

suggests that integrating genome and metabolome profiling can help find strain-specific 

factors for host adaptation as well as metabolic vulnerabilities that are strain-specific. 
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To link metabolic phenotypes to genomic information, we developed a novel constraint-based 

method to identify functional SNPs affecting enzymes, that is, non-synonymous SNPs that are 

required to explain the experimental observations such as growth, uptake and secretion rates. 

The central concept of the method is to represent all strains and experimental information in 

a single constraint-based model to consider all possible dependencies between SNPs and their 

effects on metabolic phenotypes. This systematic data integration allowed us to predict the 

functionality of enzyme SNPs despite a relatively small sample size and restricted genetic 

variability. This computational strategy is complementary to large-scale GWAS and is broadly 

applicable to other organisms, in particular because of the large and rapidly increasing number 

of microbes for which sequencing information and genome-scale metabolic models are 

available. The current approach is restricted to enzymatic SNPs, but extensions could include 

control sequences of metabolic genes (e.g., by representing SNP-modulated enzyme 

concentrations) as well as other forms of genetic variability. Even with this limitation, our 

model-based prediction of functional SNPs has a key advantage over homology-based 

methods such as SIFT28: it investigates SNP functionality in the context of potential 

compensatory mechanisms (i.e., alternative metabolic pathways) and other genetic 

variations. This was crucial to correctly predict the E200D SNP functionality in PykA and to 

anticipate its mild impact under the tested conditions.  

 

While non-metabolic SNPs are dominant in MTBC strains, our analysis shed light on the 

underlying genetic basis for metabolic diversity and enabled a systematic characterization of 

divergent evolution in MTBC lineages. In addition, we showed that the approach could open 

the door to strain-specific drug treatments. As a proof of principle, we demonstrated 

significant differences in the susceptibility to PAS among MTBC strains. These experiments 

were motivated by our model-based results, and the strains’ differential sensitivities could be 

rationally linked to predicted functional SNPs in enzymes involved in the utilization and 

recycling of folate cofactors. Such predictions can guide the genome-wide analysis of drug-

resistant MTBC, possibly identifying natural genetic variants that facilitate emergence of 

resistance. More generally, we envisage our model-based approach to enable a more 

systematic understanding of the key metabolic dependencies in pathogenic bacteria and to 

aid the development of selective treatments that exploit metabolic vulnerabilities during 

infection.  

 

Materials and Methods 

Cultivation and sampling. Three biological replicates of the 18 employed MTBC strains33 were 

cultured in 50 ml conical tubes containing 15 ml of medium incubated at 37°C and shaken 

continuously on an orbital rotator. We used a modified 7H9 medium (BD) supplemented with 

0.5% (w/v) pyruvate, 0.05% (v/v) tyloxapol, 0.2% (w/v) glucose, 0.5% (w/v) bovine serum 

albumin (Fraction V) and 14.5 mM NaCl. Compared to the usual composition of 7H9 we 

omitted glycerol, tween 80, oleic acid and catalase from the medium. We monitored growth 
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by determining optical density measured at 600 nm (OD600). To test pykA SNP functionality, 

we inoculated 10 ml of appropriate medium (with or without pyruvate) with ~107 bacterial 

cells of N0004, N0091, N1176, N1274 or N1283 (starting OD600 < 0.01). We incubated the 

cultures on a rotatory shaker at 37°C and quantified their growth by optical density after 10 

days. For analysis of the exometabolome, we periodically withdrew 1 ml aliquots, pelleted the 

cells by centrifugation (10,000 × g, 5 min), filtered the supernatant through 0.22 µm syringe 

filters twice to remove viable bacteria and kept the resulting supernatant at −80°C until mass 

spectrometric analysis. For the analysis of the intracellular metabolome, we harvested 3 OD600 

unit equivalents of cells during mid-exponential growth phase (OD600 = 0.50 ± 0.10) using rapid 

filtration through a 0.45 μm filter. We washed the pellets with 2 ml of 75 mM ammonium 

carbonate buffer (pH 6.6, pre-warmed to 37°C). Metabolites were extracted by transferring 

the filter with cell pellets into a 15 ml conical tube containing 7.5 ml of ice-cold 

acetonitrile:methanol:water (2:2:1) solution, and incubated at −20°C for 1-4 hours. After 

incubation we filtered the extraction solution through 0.22 µm syringe filters twice to remove 

viable bacteria and kept the resulting supernatant was at −80°C until mass spectrometric 

analysis. 

Genome sequencing. Details on MTBC genome sequencing and bioinformatics analysis for 

sequence read alignment and variant determination are described in detail here36. 

Metabolomics profiling. Intracellular extracts and supernatant aliquots were directly injected 

into an Agilent 6550 time-of-flight mass spectrometer (ESI-iFunnel Q-TOF, Agilent 

Technologies)35. The platform consists of an Agilent Series 1100 LC pump coupled to a Gerstel 

MPS2 autosampler and an Agilent 6550 Series Quadrupole Time of Flight mass spectrometer 

(Agilent, Santa Clara, CA). Mass spectra were recorded from m/z 50 to 1000 using the highest 

resolving power (4 GHz HiRes). Detected ions were matched to a list of metabolites based on 

the corresponding molar mass. We compiled a comprehensive list of metabolites from the 

following genome-scale metabolic models: an automatically constructed M. tuberculosis 

H37Rv model from the Model SEED resource (Seed83332.1)56, a manually curated M. 

tuberculosis H37Rv model (sMtb)57, an E. coli K12 model (iJO1366)58, and a Mycobacterium 

smegmatis mc2155 model from the BioModels database (BMID000000141548, 

https://www.ebi.ac.uk/biomodels-main)59. The chemical formula of each metabolite was 

used to calculate the deprotonated monoisotopic molecular mass. Detected ions within a 

mass tolerance difference of less than 0.003 Da were associated to the nearest reference 

metabolites. This method is not able to separate compounds with similar m/z and relies on 

direct ionization without LC separation. Spectral data processing allowed annotation of 294 

intracellular and 272 extracellular metabolites. 

Growth, uptake, and secretion rates. Growth rates and their 95% confidence intervals were 

estimated by fitting a line to log OD600 as a function of time, pooling data from all available 

biological replicates for each strain (three or four for MTBC strains, one for P. aeruginosa). 

Doubling times, td, were calculated from the growth rates, : 
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Growth rates for five MTBC strains with and without supplemented pyruvate were calculated 

in the same way (one replicate for each strain and condition). 

Relative metabolite uptake and secretion rates were inferred from dynamic exometabolomes. 

For each annotated metabolite and each strain, linear models relating ion intensity to growth-

normalized time (OD600 divided by growth rate) were fitted separately to biological replicates. 

If the slope of at least one linear model was significantly different from zero (t-test, p ≤ 0.05), 

the strain was considered capable of taking up (negative slope) or secreting (positive slope) 

the metabolite. Notably, we do not discriminate for the possibility that changes in the 

concentration of extracellular metabolites are mediated by secreted proteins. For MTBC 

strains, we also obtained bounds on relative uptake and secretion rates for each metabolite 

from ratios of significant slopes between different strains. We used the mean relative rate of 

each annotated metabolite in each strain to compute L2 (Euclidean) distances between the 

exometabolomes of pairs of strains, normalizing the uptake and secretion rates of each 

metabolite by their L2 norm. 

Strain-specific metabolic models. A published genome-scale metabolic model of M. 

tuberculosis H37Rv (iNJ661)37 was used as a template and customized for each strain. Glycerol 

was removed from the biomass composition and 95% confidence intervals of experimental 

growth rates were used to set upper and lower bounds on the flux of the biomass reaction. 

Bounds were set on boundary reactions to allow uptake of O2 and all defined components of 

the medium (biotin, Ca2+, citrate, Cl-, Cu2+, Fe2+, Fe3+, glucose, glutamate, H+, H2O, Mg2+, Na+, 

NH4
+, PO4

3-, pyruvate, pyridoxin, and SO4
2-). We allowed secretion of all metabolites with a 

significant positive slope in the exometabolome data and of the simple inorganic compounds  

CO, CO2, H+, H2, H2O, H2S, and NH4
+. To consider limited carbon sources in the growth medium 

(pyruvate, glucose, glutamate, and citrate), we set theoretical upper bounds on uptake rates: 

 r £
C

0
m

min

X
0

1- e
m

min
Dt( )

 

where r is the uptake rate, C0 is the initial metabolite concentration, µmin is the lower bound 

of the experimental growth rate, X0 is the estimated initial cell concentration, and t is the 

duration of the experiment. Genes with sequencing coverage lower than five reads or 10% of 

the average coverage of the genome were considered to be deletions and removed from the 

model (Supplementary Table 7) along with all reactions requiring enzymes encoded by the 

deleted genes. We also removed blocked reactions that could never carry flux under the given 

constraints along with all metabolites participating only in blocked reactions. 

Statistical analysis of metabolome data. A One-Way Analysis of Variance was used to find 

metabolites exhibiting significant secretion/uptake difference across lineages. 18 strains and 
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6 lineages were analysed, yielding a between-groups degrees of freedom of 12. Estimated p-

values were corrected for multiple tests using the procedure described in60. 

Structural sensitivity analysis. To predict the direct and indirect (network-mediated) effects 

of SNPs on metabolic fluxes, we used structural sensitivity analysis39 to determine the strain-

specific sensitivity matrices Si. Originally, these matrices predict the response of a flux 

distribution to a perturbed flux through a target reaction, assuming minimal adjustments of 

fluxes. Here, we extended the concept to account for gene-level perturbations that may affect 

multiple reactions. We pre-processed each strain-specific model by removing the biomass 

reaction, by making all reactions reversible, and by aligning all metabolic reactions associated 

with each gene in the model (via reversing reaction directions such that the overlap of 

metabolites on each side of the reaction equations was maximal). We assumed that 

perturbation of a gene implied identical flux perturbations for all reactions associated with 

this gene. If such an identical flux perturbation was not feasible (e.g., because flux bounds 

were violated), we found the closest feasible perturbation by minimizing the L2 distance to the 

identical flux perturbation. Next, we fixed the perturbed fluxes and computed the minimal 

network response by minimizing the L2 norm of all fluxes not directly linked to the perturbed 

gene. If the minimal response was a thermodynamically infeasible loop61, we added 

constraints and variables to specifically disable this loop62 and re-computed a minimal 

response until the minimal loopless response was found. Finally, we added the gene-level 

perturbations and their minimal loopless responses (normalized by the mean of non-zero 

fluxes in each perturbation) as columns to the strain-specific sensitivity matrix, Si. 

Functional SNP prediction. The strain-specific models were combined into a single constraint-

based model and the following balance constraints were added for each strain i: 

 r
i
- r

ref
- u

i
- S

i
e= 0  

These balances couple strains to each other and ensure that all differences between fluxes in 

strain i, ri, and fluxes in a reference strain, rref, are accounted for by unexplained effects, ui, 

and the effects of non-synonymous SNPs on enzymatic activities, e. The strain-specific 

sensitivity matrix Si transforms SNP effects into fluxes. We added bounds on relative uptake 

and secretion rates from exometabolomes as well as bounds preventing the flux effects of 

SNPs from being larger than the affected reference fluxes. We solved the model by 

sequentially minimizing the L1 norm of (i) unexplained flux effects, (ii) reference fluxes, and 

(iii) SNP effects. We used the minimum obtained from each step to constrain the model before 

proceeding to the next step.  

Flux variability analysis (FVA)40 was used to classify SNPs as functional or non-functional. Each 

SNP effect was minimized and maximized while requiring unexplained flux effects to be at the 

minimum obtained from the first minimization step. A SNP was classified as functional if its 

minimal effect was larger than a chosen flux threshold (α = 10-4 mmol gDW-1 h-1) and non-

functional otherwise. The relative flux effect of a functional SNP was determined by dividing 
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its minimal effect by the mean flux of reactions catalyzed by the affected enzyme in the 

reference flux distribution obtained after the third minimization step. 

We obtained SIFT scores for SNPs relative to the laboratory strain H37Rv from SIFT4G28 

(http://sift.bii.a-star.edu.sg/sift4g/) and filtered out predictions with median sequence 

information above 3.25 to avoid prediction based on closely related sequences. SNPs with SIFT 

score (probability of amino acid change being tolerated) below the recommended threshold 

of 0.05 were classified as functional according to SIFT. 

Intracellular metabolome analysis. For each non-synonymous SNP and each metabolite in the 

intracellular metabolome participating in a reaction catalyzed by the affected enzyme, the 

mean intracellular level in strains with the SNP was divided by the mean intracellular level in 

strains without the SNP. The resulting relative intracellular levels were used to compute the 

mean relative intracellular levels of functional and non-functional SNPs (as classified by our 

model and SIFT), and bootstrapping with 1,000 samples was used to compute 95% confidence 

intervals. Random distributions of mean relative intracellular intensities were obtained by 

randomizing the strain-assignment of SNPs 1,000 times while preserving the number of strains 

affected by each SNP. 

Synthetic lethality prediction. For each strain and each SNP classified as functional in that 

strain, the gene containing the SNP was deleted in the strain-specific model. If the gene was 

not essential, all other non-essential genes were deleted one by one. Pairwise deletions that 

prevent biomass production were identified as synthetic lethal interactions. 

Antibiotic sensitivity analysis. The sensitivity of strains to PAS and OFX was determined as 

described elsewhere63. Briefly, we prepared 96-well plates such that they contained a 2-fold 

serial dilution of a drug of interest (e.g., PAS, starting from a concentration of 4 μg/ml) in 90 

μl of our modified 7H9 medium. We added 10 μl of bacterial culture adjusted to a starting 

OD600 of 0.02. Plates were incubated for 10 days at 37°C after which time we added 10 μl of 

0.02% alamar blue solution and incubated for a further 24 h. After 24 h we added 100 μl of 

3.7% formalin solution to kill the bacteria and scored the plates by measuring the fluorescence 

(λex = 545 nm, λem = 590 nm) using a Molecular Devices spectraMAX microplate reader. 

For each drug and each strain, fluorescence signals were normalized by (1) subtracting the 

signal of the drug without any cells and (2) dividing by the signal of cells without drug. For each 

biological replicate, the maximum drug effect was quantified as one minus the ratio of 

fluorescences at the highest and lowest drug dose, respectively. The mean maximum effect 

was calculated for each lineage with 95% confidence intervals obtained from bootstrapping 

with 1,000 samples. 

Software. Models were built in Python using COBRApy64 and optimization problems were 

solved with the Gurobi Optimizer 7.5.2 (Gurobi Optimization, LLC, Beaverton, OR, USA). 

Inference of metabolite uptake and secretion and all steps of mass spectrometry data 
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processing and analysis were performed in MATLAB R2018 (The MathWorks, Inc., Natick, MA, 

USA). Remaining data analysis was performed in Python. 

Data and code availability. All data presented in this study are available as supplementary 
materials. The model and the code needed to solve it and reproduce our results are available 
at https://gitlab.com/csb.ethz/MtbSNP. 
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Figure 1: Connecting genetic and phenotypic diversity in MTBC. a, We integrated the 

genomes and dynamic exometabolomes of 18 human-adapted MTBC strains (three strains 

each from six lineages, as indicated in the phylogenetic tree) into a single constraint-based 

model that predicts the effects of non-synonymous SNPs on metabolic fluxes. b, Doubling 

times (circles) with 95% confidence intervals (lines) estimated from three pooled replicate 

experiments for each strain (above) and number of metabolic and non-metabolic non-

synonymous SNPs (below) for all strains (colored by lineage). c, Relative metabolite uptake 

and secretion rates were inferred by fitting linear models (dashed lines) to dynamic 

exometabolomes. In this example, uptake of pyruvate and citrate and secretion of proline and 

2-oxoglutarate are shown for strain N1202. Biological replicates (three for each strain) are 

indicated by color and technical replicates (two for each time point) are connected by solid 

lines. d, Metabolome distance (Euclidean distance between relative uptake and secretion 

rates inferred from exometabolomes) for all pairs of strains. Strains from the same lineage 

had more similar exometabolomes than strains from different lineages (t-test, p = 0.012, n = 

153). Pairs of strains from the same lineage are colored according to the phylogenetic tree of 

panel a.  
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Figure 2:  Predicting the metabolic effects of non-synonymous SNPs. a, Our constraint-based 

model integrates the metabolic effects of all non-synonymous SNPs in enzyme-encoding 

genes. Each SNP effect is represented in the following way: (1) a non-synonymous SNP causes 

(2) an amino acid substitution in an enzyme, possibly leading to reduced enzyme activity and 

(3) reduced flux through catalyzed reactions, and (4) the metabolic network responds by 

adjusting fluxes to a new steady state. The last two steps, as defined by structural sensitivity 

analysis39, are represented in the model. b, Our constraint-based model consists of balances 

and bounds, which are equality and inequality constraints, respectively. The constrained 

variables are the strain-specific flux distributions (r1, r2, …,  rn), fluxes in a reference strain 

shared by all strains (rref), unexplained flux differences between strains (u), and flux 

differences between strains explained by SNP effects (e). The balance constraints are the 

steady-state mass balances of strain-specific models (red) and couplings that ensure that 

differences between strain-specific fluxes and reference fluxes are accounted for by 

unexplained effects and SNP effects (blue). Bounds are applied to all fluxes in the strain-

specific models, including bounds on exchange fluxes obtained from exometabolomes 

(green), the ratio of exchange fluxes between pairs of strains, also from exometabolomes 

(purple), and the size of SNP effects relative to their affected reference fluxes (orange). c, SNP 

effects are predicted by sequentially minimizing (1) unexplained flux differences between 

strains, (2) reference fluxes, and (3) flux differences explained by SNPs. The minimum obtained 

after each step is used to constrain the model, reducing the feasible space of solutions before 
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proceeding to the next step. In this example, the feasible space of two SNP effects (e1 and e2) 

is shown after each minimization with feasible SNP effect ranges indicated along the axes. d, 

Feasible ranges of SNP effects (e1, e2, …, en) can be compared directly and a chosen threshold, 

α, can be used to classify SNPs as functional or non-functional after each sequential 

minimization step. SNPs with a minimal effect larger than α are classified as functional. 
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Figure 3: Predicted functional SNPs in the MTBC and validation of their metabolic effects. a, 

Number of non-synonymous SNPs classified as functional and non-functional in our 18 MTBC 

strains (above) and fraction of SNPs classified as functional by lineage (below). Lineages are 

indicated by color. Error bars indicate 95% confidence intervals from bootstrapping. b, 

Metabolic pathway distribution of functional SNPs and their relative effects on affected 

enzymes. Grey bars indicate the frequency of functional SNPs in each pathway. Each dot 

represents a functional SNP and indicates its minimal effect divided by the mean predicted 

reference flux of reactions catalyzed by affected enzymes (darker color indicates more strains 

bearing the mutations). c, Relative intracellular levels of metabolites participating in reactions 

catalyzed by enzymes affected by SNPs (ratios of affected metabolite levels between strains 

with and without SNPs). Mean absolute values are shown with 95% confidence intervals from 

bootstrapping and distributions of mean levels obtained from assigning SNPs randomly to 

strains while preserving the number of strains affected by each SNP. Results are shown for our 

new method and SIFT, for the threshold used for SNP classification (α) as well as a stricter 

threshold that optimizes the difference between functional and non-functional SNPs (αopt). 

The mean relative levels of functional SNPs predicted by our new method were significantly 

different from random distributions for α (Z-test , p = 2.0 × 10−4, n = 1,000) as well as for αopt 

(Z-test , p = 9.4 × 10−8, n = 1,000), but we did not find any significant difference using 

predictions from SIFT. d, Estimated growth rates of five strains grown in glucose medium with 
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(blue) and without (red) supplemented pyruvate. Strains affected by the pykA E220D SNP are 

indicated below. One experiment was performed for each strain and condition. Error bars 

indicate two standard errors of the growth rate estimate. The pathway diagram shows pykA 

in its metabolic context. 
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Figure 4: Predicted functional SNPs suggest causes of lineage-specific metabolic 

vulnerabilities in MTBC. a, Circos plot65 showing predicted synthetic lethal interactions 

involving enzymes affected by functional SNPs. Each ribbon connects an MTBC lineage to a 

metabolic subsystem and its size indicates the number of functional SNPs in the lineage that 

epistatically interact with an enzyme in the metabolic pathway. b, Sensitivity of strains to the 

antibiotics para-aminosalicylic acid (PAS) and ofloxacin (OFX). The plot shows the mean 

relative viability (viability at highest drug concentration relative to lowest) for each lineage 

with 95% confidence intervals from bootstrapping (dose response curves with number of 

replicates shown in Supplementary Figs. 5 and 6). Lineages 1-4 were significantly less sensitive 

to PAS than lineages 5 and 6 (t-test, p = 4.5 × 10−13, n = 55) while all strains were sensitive to 

OFX. Because of PAS-insensitive strains N1176, N1272, N009 and N1177, maximum drug effect 

was estimated rather than potency (IC50)66. The pathway diagram shows the mode of action 

of PAS and its connection to the enzymes affected by four functional SNPs in folate 

metabolism that could explain the observed differences in sensitivity. 
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