
1 Identification of genetic markers for cortical areas using a Random 

2 Forest classification routine and the Allen Mouse Brain Atlas

3

4 Natalie Weed, Trygve Bakken, Nile Graddis, Nathan Gouwens, 

5 Daniel Millman, Michael Hawrylycz, Jack Waters*

6

7 Allen Institute for Brain Science

8 615 Westlake Ave N

9 Seattle WA 98109

10

11

12 *email: jackw@alleninstitute.org.

13

14 Abstract
15 The mammalian neocortex is subdivided into a series of ‘cortical areas’ that are functionally and 

16 anatomically distinct, and are often distinguished in brain sections using histochemical stains and other 

17 markers of protein expression. We searched the Allen Mouse Brain Atlas, a database of gene expression, 

18 for novel markers of cortical areas. We employed a random forest algorithm to screen for genes that 

19 change expression at area borders. We found novel genetic markers for 19 of 39 areas and provide code 

20 that quickly and efficiently searches the Allen Mouse Brain Atlas.
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21 Introduction
22 The mammalian neocortex is classified into a series of anatomically and functionally distinct regions or 

23 ‘cortical areas’ (Brodmann, 1909; Glasser et al., 2016). Areas are often identified using histochemical 

24 stains and antibodies to visualize differences in protein expression across cortex. Examples include 

25 cytochrome oxidase histochemistry and antibodies against m2 muscarinic receptors (Wang, Sporns & 

26 Burkhalter, 2012). Furthermore, global expression signatures of cortical areas have been identified in 

27 human (Hawrylycz et al., 2012), rhesus monkey (Bernard et al., 2012) and mouse (Hawrylycz et al., 

28 2010), but few genes have been identified with distinct transitions between adjacent areas. We 

29 reasoned that there may be genetic markers of cortical areas that have not been identified and that we 

30 might identify additional markers by screening the Allen Mouse Brain Atlas, a database containing in situ 

31 hybridization information for thousands of genes (Lein et al., 2007). We developed numerical tools to 

32 screen the many thousands of images in the database, using a random forest algorithm to identify 

33 changes in gene expression at the boundaries of cortical areas defined in the Allen Mouse Brain 

34 Reference Atlas (Kuan et al., 2015). We found novel genetic markers for several areas. In addition, we 

35 provide code that searches the Allen Mouse Brain Atlas quickly and efficiently for differences in gene 

36 expression between cortical areas. With only minor modification, our code could be adapted to search 

37 for genes that mark other brain regions, including subcortical nuclei.

38

39 Methods and Results
40 Our aim was to locate changes in gene expression between cortical regions in the mouse. From the Allen 

41 Mouse Brain Atlas, we took coronal in situ hybridization (ISH) data resampled to a canonical 3D 

42 reference space and overlaid the borders of cortical regions from the Allen Mouse Brain Reference Atlas. 

43 To identify genes with differential expression along these boundaries, we used a Random Forest 

44 algorithm.

45

46 Horizontal Projections

47 We obtained ISH data for 4345 genes from the Allen Mouse Brain Atlas (brain-map.org/api/index.html). 

48 ISH data were of coronal sections (Figure 1A). However, the perspective that best captures most borders 

49 delineating cortical areas while eliminating excess information is the horizontal plane. To obtain a 

50 horizontal plane perspective from coronal sections, we created two projections for each gene: a ’top 

51 projection’ and a ‘flat map projection’. Each projection was created in three steps, with the first two 
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52 steps being common to both projections. Firstly, we isolated cortical fluorescence and eliminated 

53 fluorescence from subcortical structures by applying a mask derived from the Allen SDK (2015) 

54 structure_tree class (Figure 1B and C). Secondly, we created a maximum intensity surface projection: for 

55 each pixel on the cortical surface, we projected the fluorescence in the underlying tissue along a line 

56 perpendicular to the pial surface of cortex. One might think of this first step as creating a curved sheet 

57 of fluorescence intensity values at the surface of cortex. Finally, we projected these surface values to the 

58 horizontal plane, creating a top projection (Figure 1D) or we ‘unfurled’ the curved cortical sheet to 

59 create a flat map (Figure 1G). The flat map was particularly valuable in the study lateral cortical regions, 

60 which are under-represented in top projections.

61 All ISH data in the Allen Mouse Brain Atlas are spatially registered to the Allen Mouse Brain 

62 Reference Atlas (http://help.brain-

63 map.org/display/mousebrain/Documentation?preview=/2818169/8454277/MouseCCF.pdf). Hence all 

64 data utilized are inherently co-aligned with the Allen Mouse Brain Reference Atlas and the locations of 

65 brain areas can be readily superimposed on the ISH results. To locate cortical regions in the top 

66 projection and create a cortical area map, we extracted the corresponding cortical area masks using the 

67 structure_tree class and projected these masks to the horizontal plane, as described for ISH projections. 

68 Simplification of three-dimensional data into two dimensions allowed for fast quantitative analysis as 

69 well as easy visualization of expression patterns. 

70

71 Random Forest Algorithm

72 When examining the ISH results, two limitations became apparent. Firstly, there are gaps in some data 

73 sets, with missing data manifest as dark pixels in coronal images or dark medial-lateral bands in the top 

74 projections (Figure 2A). Secondly, there is pronounced section-to-section variability in mean 

75 fluorescence that appears as coronal banding or ‘stripes’ in top projections (Figure 2B). Together these 

76 two effects often result in variation in pixel values, independent of variation due to differential gene 

77 expression. These data properties complicate the comparison of fluorescence along the anterior-

78 posterior axis and, thereby, the comparison of expression between cortical regions. Rather than attempt 

79 to mitigate these issues directly, we trained a Random Forest algorithm to classify pixels as either inside 

80 or outside each cortical region, essentially learning the variance in the data.

81 We examined 39 cortical regions from the Allen Mouse Brain Reference Atlas for potential gene 

82 markers. Each search involved comparison of one cortical region to expression patterns of all genes, 

83 imputed as independent variables to the Random Forest algorithm. Random forest was implemented in 
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84 Python using the scikit-learn package (Pedregosa et al., 2011). Nodes were determined by Gini Index 

85 criteria pmk (1- pmk) . Each random forest consisted of 100 decision trees. Random state was ∑𝐾
𝑘 = 1(  )

86 initialized at 0.  The importance of each variable was also determined by Gini Index criteria – reduction 

87 in Gini Index each time a split occurred was attributed to the variable, and that variable-associated 

88 reduction was divided by total reduction in Gini Index across the entire random forest to return the 

89 variable importance value. Total variable importance across all genes summed to one. 

90 For each cortical region, three outputs from the random forest were produced and analyzed: (1) a 

91 confusion matrix, indicating the success rate of the classification algorithm; (2) the list of all 4345 genes, 

92 ranked in decreasing order of variable importance, where importance is a pseudo-measure of the 

93 expression predictive power across the cortical border; and (3) the importance values, one for each 

94 gene. The Random Forest was trained to distinguish pixels within a cortical region from pixels in the 

95 surrounding area outside of the cortical region. The inputs to the Random Forest algorithm were the 

96 gene expression fluorescence intensity values of all 4345 genes for each pixel and the corresponding 

97 labels for each pixel as cortical region or surrounding region. Surrounding pixels were identified by 

98 dilating the region mask by 30 iterations using SciPy ndimage package in Python, translating to roughly 

99 30 pixels in distance in each direction. Pixels were split into training and test sets, with 100 randomly 

100 selected pixels held out as a test set and the remaining pixels forming the training set. This represented 

101 less than 1% of total pixels classified for each cortical area.  Data was divided using the scikit-learn 

102 model_selection package in Python. Hence the training array input into the Random Forest algorithm 

103 consisted of a 2D array of dimensions 4345 by , where 4345 is the number of genes and N is the 𝑁 ‒ 100

104 number of pixels within the dilated mask, and each cell in the array corresponding to a luminance value 

105 of the pixel. A second array of dimensions 1 by indicated the binary labels, inside or outside the 𝑁 ‒ 100 

106 cortical region (Figure 2D). After training, performance of the algorithm was tested on the held-out 

107 pixels (array dimensions 4345 by 100) for which the binary classification was withheld. Withheld pixels 

108 were randomly selected, creating a test set that was representative of the cortical area: balanced inside 

109 and outside the cortical region, and varying in distance from the cortical area boundary. Hence the 

110 algorithm returned the cross-validated binary classification for 100 withheld pixels, which was compared 

111 to known classification and used to plot a confusion matrix (Figure 2E), summarizing performance of the 

112 Random Forest. The displayed confusion matrix is averaged over all folds for the specified cortical 

113 region.

114 Results for primary somatosensory barrel field are illustrated in Figure 2E-G. The model correctly 

115 classified 52 of 54 test pixels within the barrel field and 44 of 46 test pixels outside barrel field, resulting 
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116 in a combined model accuracy of 96% (Figure 2E). Most genes exhibited low variable importance (Figure 

117 2F). We ranked genes by their random forest variable importance values. The gene with rank 1 exhibited 

118 a distinct change along the border (Figure 2G). The gene with rank 10 exhibited a subtler change and the 

119 gene at rank 100 exhibited no obvious change along the border (Figure 2G). Hence the Random Forest 

120 algorithm accurately classified most pixels and, via a ranked list of genes, identified a short list of genes 

121 that might act as putative genetic markers of the cortical region.

122

123 Genetic markers of cortical areas

124 To identify genetic markers for each cortical area, we manually inspected the top projections or flat 

125 maps for the top 10 genes, as determined by the Random Forest results. Adequate information for 

126 classification of barrel field was included in the 10 highest importance genes since running our analysis 

127 with only these 10 genes as inputs conserved prediction accuracy at 96%. Of the 45 cortical regions 

128 tested, we identified potential genetic markers for 19 (Table 1). 6 cortical areas were determined too 

129 small to reliably examine, resulting in 39 regions to explore. Of the six markers identified by Hawrylycz et 

130 al. (2010), three were extracted by our method (Man1a, somatomotor; Rorb, somatosensory; Scnn1a, 

131 ventral retrosplenial), one included an area that was not explored (Smoc1, gustatory), one was in a 

132 region where many other strong markers were identified (Rreb1, retrosplenial), and one was not 

133 identified (Hap1, ectorhinal). Selected potential genetic markers indicated relatively high sensitivity for 

134 area marking, low specificity due to the point selection process, bilateral expression, and entire cortical 

135 area contrast.

136 Examples of expression patterns are provided in Figure 3. For primary somatosensory cortex barrel 

137 field, we identified Rspo1 as a strong candidate gene (Figure 3A). Expression of Rspo1 is relatively high in 

138 the barrel field, moderate through somatosensory areas, and low in motor cortex. There were multiple 

139 markers for motor cortex, including Wnt7b (Figure 3B), but we found no compelling markers for primary 

140 or secondary motor cortex. Rorb was also identified as a potential marker, specifically for primary 

141 sensory cortices (Figure 3C). This provided an additional positive control that our method was robust 

142 and effective, as Rorb is an established marker for primary sensory areas (Hawrylycz et al., 2010; Zhuang 

143 et al., 2017). Cdh24 marked primary auditory cortex (Figure 3E). We found multiple genes that labeled 

144 all or subregions of retrosplenial cortex. For example, Tmem215 marked dorsal retrosplenial cortex (and 

145 primary somatosensory cortex) and Npsr1 marked all of retrosplenial cortex (Figure 3D, F). In flat maps, 

146 Serpinf1 was identified as a marker of the frontal pole (Figure 3G) and temporal association cortex was 

147 marked by Lifr (Figure 3H). Notably, some of these genes exhibit mediolateral stripes in the top 
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148 projection, indicating that our method is robust to the missing data and expression-independent 

149 variability in signal. 

150

151 Cellular Basis of Potential Genetic Markers

152 Our Random Forest searches, applied to ISH data, identified genes that marked cortical area borders, 

153 but provided no insight into the cellular basis of the genetic markers. Does, for example, a change in 

154 gene expression result from an abrupt change in the density of a cell type with unique gene expression; 

155 or might the border result from a change in gene expression by a cell type that straddles the border? 

156 Gene expression in primary visual cortex and anterior lateral motor cortex has been studied using single-

157 cell RNA sequencing (Tasic et al, 2018). From this transcriptomic data set and associated analysis tools 

158 (https://github.com/AllenInstitute/scrattch.vis), we examined cell types that express the marker genes 

159 identified in this study by top view projections (Figure 4). Markers were expressed in many different cell 

160 types. Several genes (Adcy8, Bmp3, Cacnb3, Npsr1, Vgf, Zmat4) were expressed mostly in neurons and 

161 not non-neuronal cells, suggesting that the border-related change in expression of these genes was 

162 neuronal. Some genes were expressed mostly in a cell sub-population, suggesting that there is likely a 

163 border-related change in the density of these cells or of their expression of one gene. For example, 

164 Rspo1, Serpinf1 and Man1a are expressed in layer 4 excitatory neurons, vascular and leptomeningeal 

165 cells (VLMC) and macrophages, respectively. Unsurprisingly, our results are consistent with changes in 

166 gene expression marking cortical areas arising from changes in cell density in some instances and from 

167 changes in gene expression within a cell population in other instances. Importantly, both instances 

168 appear to have been detected by our Random Forest analysis of ISH data.

169

170 Discussion
171 We used a Random Forest algorithm to identify a short list of potential gene markers from thousands of 

172 candidate genes, applying this approach to 39 cortical regions in the mouse. Our results identified 44 

173 putative markers, marking 19 of the explored regions.

174 The spatial resolution and number of genes in the database places limits on the conclusions we can 

175 draw. Firstly, the voxel size of the ISH quantification in the database is 200 µm. Once missing and 

176 variable data is considered, the maximum accuracy we can hope to achieve is on the order of hundreds 

177 of micrometers, resulting in an imperfect match between area borders and gene expression. 

178 Subsequent experiments such as immunostaining for the genes we have identified would be necessary 

179 to confirm our results and to assess the accuracy with which each gene marks borders. Furthermore, the 
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180 database includes coronal ISH images for 4345 genes. It may be that genes not sampled here mark some 

181 of the 25 cortical regions for which we were unable to identify markers. Repeating our analysis on a 

182 larger data set, should one become available, might identify further markers.

183 Alternative methods include gene identification by direct comparison of expression difference along 

184 the cortical border. However, pooling of more pixels than those available solely along borders was 

185 necessary to overcome high luminance variability across pixels and coronal sections. For this reason, and 

186 the difficulty of direct quantification of variance in our data set, we decided to pursue random forest 

187 classification as our selected model.  Variable importance may be inaccurately skewed towards higher 

188 sampled variables or continuous data types, and thus unusable; however, because our predictor 

189 variables exhibit identical scale of measurement and data type, importance rank can be taken as 

190 unbiased (Strobl et al., 2007). Random forest uses a bootstrapped subset of variables at each splitting 

191 node when building decision trees. By accumulating many splits on previously subdivided pixels, genes 

192 are evaluated at subregions of the cortical area. Given this property, we find that occasionally genes 

193 with relatively high variable importance display marking of a single border rather than the entire cortical 

194 area. However, if a gene exhibits clear marking of all cortical borders, it is shown with higher variable 

195 importance than an alternate gene expression pattern marking only a single border. Random forest is an 

196 accurate, computationally efficient, and easily interpretable method of classification. This was important 

197 as many of our data sets, especially for larger cortical areas like somatosensory areas, reached sizes of 

198 almost 250,000 pixels, evaluated at 4345 genes. Each output predicted took less than a minute to 

199 compile the data set, run computations, and produce outputs on a desktop computer. By maximizing 

200 concurrent computation across all available cores, the time required to run is minimized while not 

201 sacrificing predictive power of our model, as exhibited by the high accuracy of the random forest. 

202 By dilating the cortical area mask a small amount instead of comparing the area of interest to the 

203 entire cortex, we allowed for differential expression of the gene in more distant parts of cortex. This is 

204 by design, as expression far from the desired cortical region does not impact the ability of the gene to 

205 mark the border. However, potential uniquely expressed genes are still a subset of those that can be 

206 identified with our method, and our method could be readily modified to solely identify uniquely 

207 expressed genes. Similarly, the method could be easily extended to investigate laminar differences or 

208 expression patterns in subcortical structures as masks for cortical layers and for subcortical structures 

209 are included in the Allen Mouse Brain Reference Atlas.
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267 Figure Legends
268 Figure 1. Creation of top projections from coronal images of gene expression.

269 (A) Image of a coronal section from the Allen Mouse Brain Atlas. Gene: Rorb. ISH intensity is normalized 

270 to a range of 0 to 1. Color scale shown in panel C. (B) Binary cortex mask with value = 1 for cortical pixels 

271 and value = 0 for subcortical pixels. (C) Product of the images in A and B, resulting in ISH intensity values 

272 in cortical pixels and zero’s in subcortical locations. (D) Schematic illustration of the projection process 

273 used to generate top projections. (E) Top projection for Rorb. Dashed line indicates location of section in 

274 panel A. (F) Cortical boundaries from the Allen Mouse Brain Reference Atlas, overlaid onto the gene 

275 expression top view of panel E. (G) Schematic illustration of the projection process used to generate flat 

276 map top projections. (H) Flat map projection for Rorb. Dashed line indicates location of section in panel 

277 A. (I) Cortical boundaries from the Allen Mouse Brain Reference Atlas, overlaid onto the gene expression 

278 top view of panel H.

279

280 Figure 2. Random forest algorithm: method and example results.

281 (A) A coronal image (left) and the top projection (right) for gene Nvl. Note the missing data (black 

282 pixels). (B) Top view for gene Adra1d. Note the pronounced variation in density along the a-p axis. (C) 

283 Binary mask for primary somatosensory cortex barrel field (SSp-bfd). Light gray inside SSp-bfd; darker 

284 grey marks pixels in surrounding region. White lines: boundaries of cortical areas in Allen Mouse Brain 

285 Reference Atlas. (D) Schematic illustration of arrays input into Random Forest algorithm. Columns 

286 correspond to gene, rows to pixels in the top projection data set. Each value is an ISH luminance value. 

287 Classification of pixel is taken from the reference mask (panel C). (E) Confusion matrix output from 

288 Random Forest algorithm for SSp-bfd. 0 indicates point outside SSp-bfd, 1 indicates point inside SSp-bfd. 

289 (F) Gene importance histogram. Importance values approximate a logarithmic distribution. (G) Examples 

290 of genes that mark SSp-bfd, with overlaid Allen Mouse Brain Reference Atlas borders. Nov rank 1, 

291 importance 0.022. Hlf rank 10, importance value 0.0081. Stap2 rank 100, importance 0.0018. 

292

293 Figure 3. Examples of markers for cortical areas.

294 (A) R-Spondin 1 labels primary somatosensory cortex barrel field. (B) Wnt Family Member 7B labels 

295 primary motor cortex. (C) Retinoid-Related Orphan Receptor, Beta labels primary sensory areas. (D) 

296 Transmembrane Protein 215 labels dorsal retrosplenial cortex. (E) Cadherin 24 labels primary auditory 

297 cortex. (F) Neuropeptide S Receptor 1 labels retrosplenial cortex. (G) Serpin Family F Member 1 labels 

298 frontal pole. (H) Leukemia Inhibitory Factor Receptor labels temporal association cortex. Panels A-F 
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299 provide examples of genes identified in top projections, panels G and H of genes identified in flat maps. 

300 Cortical areas of interest are marked with cyan borders.

301

302 Figure 4. Single Cell RNA-sequencing expression plot

303 Log-transformed average expression of top-projection identified potential areal marker genes in mouse 

304 cortical cells grouped into subtypes of three major cell classes: inhibitory neurons, excitatory neurons, 

305 and non-neuronal cells. Expression data was measured by RNA-sequencing of single cells isolated from 

306 Primary Visual Cortex (VISp) and Anterior Lateral Motor Cortex (ALM). Color corresponds to expression 

307 value, with warmer colors indicating high expression and cooler colors indicating low expression. Max 

308 value indicates the maximum expression per gene, measured in average CPM per cluster. CPM = counts 

309 per million reads. 

310

311 Table 1. List of Potential Genetic Markers

312 Potential cortical boundary genetic markers, listed by cortical region, as identified by Random Forest 

313 variable importance classifier. All explored regions listed. Regions with no listed genes displayed no clear 

314 potential genetic marker. Each gene was identified independently. Asterisks indicate regions explored 

315 and genes identified with flat map projections.
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