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Viruses are one of the major causes of various acute and chronic infectious
diseases and thus a major contributor to the global burden of disease. Several
studies have shown how viruses have evolved to hijack basic cellular pathways
and evade innate immune response by modulating key host factors and sig-
nalling pathways. A collective view of these multiple studies could advance
our understanding of viral evasion mechanisms and provide new therapeutic
perspectives for the treatment of viral diseases. Here, we performed an in-
tegrative meta-analysis to elucidate the 17 different host-virus interactomes.
Network and bioinformatics analyses showed how viruses with small genomes
efficiently achieve the maximal effect by targeting multifunctional and highly
connected host proteins with a high occurrence of disordered regions. We also
identified the core cellular process subnetworks that are targeted by all the vir-
uses. Integration with functional RNA interference (RNAi) datasets showed
that a large proportion of the targets are required for viral replication. Fur-
thermore, we performed an interactome-informed drug re-purposing screen
and identified novel activities for broad-spectrum antiviral agents against hep-
atitis C virus and human metapneumovirus. Altogether, these orthogonal
datasets could serve as a platform for hypothesis generation and follow-up
studies to broaden our understanding of the viral evasion landscape.

Introduction
Viruses continue to be a major contributor to the global burden of disease through acute and
chronic infections that cause substantial economic impact in addition to increased mortality
and morbidity (Virgin et al. 2009). Despite the tremendous improvement in the understanding
of the antiviral immune response and the availability of therapeutics, existing and emerging
viral diseases are an ever-growing problem, particularly in developing countries. Development
of antiviral resistance of viruses such as hepatitis C virus (HCV), influenza A virus (IAV),
herpes simplex virus (HSV), human cytomegalovirus (HCMV) and human immunodeficiency
virus (HIV) is a major concern (Irwin et al. 2016, Howard and Fletcher 2012, Bacon et al.
2003). One of the main reasons for increasing resistances is the accumulation of mutations
in the viral genome caused by multiple factors including the polymerase infidelity (Sanjuan
and Domingo-Calap 2016, Peck and Lauring 2018). Therefore, the World Health Organization
(WHO) has urged for better control of viral diseases.

This has led to turning the focus on the host for therapeutic intervention, where targeting the
host factors has been proven to be useful for restricting viral infections (Zumla et al. 2016,
Kaufmann et al. 2018). Anti-CXCR4 and anti-CCR5 monoclonal antibodies are examples of
successful host-directed therapies for combating HIV (Olson and Jacobson 2009, Carnec et al.
2005).

Viruses have evolved to evade the host antiviral response at various stages starting from viral
sensing to antiviral pro-inflammatory responses (Bowie and Unterholzner 2008, Navratil et al.
2011, Garcia-Sastre 2017). Multiple studies attempted to understand global principles of
the viral evasion employed by various viruses, including dengue virus (DENV), Ebola virus
(EBOV), IAV and HIV (Pichlmair et al. 2012, Rozenblatt-Rosen et al. 2012, Jäger et al.
2011, Shah et al. 2018, Batra et al. 2018, Söderholm et al. 2016). Global systems-level ap-
proaches including functional RNAi screens, interactome mapping technologies such as affinity-
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purification mass spectrometry (AP-MS), quantitative proteomics and CRISPR/Cas9-based
screens have provided unparalleled details and insights into the dynamics of host proteome
in immune cells (Weekes et al. 2014, Nightingale et al. 2018, Kandasamy et al. 2016, Ersing
et al. 2017), host-virus interactome (Pichlmair et al. 2012, Rozenblatt-Rosen et al. 2012, Jäger
et al. 2011, Shapira et al. 2009, Konig et al. 2010), and also identified important host depend-
ency factors of various viruses (Shapira et al. 2009, Zhang et al. 2016, Marceau et al. 2016).
Meta-analyses of such high-dimensional datasets have been crucial for identifying novel host
factors as drug targets such as UBR4 in IAV infection (Tripathi et al. 2015). Moreover, some
of these factors represent drug targets for multiple viruses(Ianevski et al. 2018).

We hypothesized that combining a meta-analysis of host-virus protein-protein interactions
of multiple viruses and functional RNAi screens would provide novel insights for developing
broad-spectrum antiviral strategies. For this, we assembled a host-virus protein-protein in-
teractome of 5781 host-virus interactions (hereafter referred to as ’hvPPI’) covering 183 viral
proteins from 17 different viruses and 2381 host proteins. We performed extensive bioinformat-
ics and network analysis and integrated this dataset with genome–wide or druggable–genome
RNAi screen data from published studies. This resulted in the assembly of critical nodes
of viral evasion and identification of core cellular processes and druggable nodes that were
verified by a drug re-purposing screen using broad-spectrum antivirals.

Material & Methods

Construction of hvPPI data, network analysis and data visualization

Host-virus protein–protein interactions were downloaded from published studies (Pichlmair
et al. 2012, Rozenblatt-Rosen et al. 2012, Jäger et al. 2011, Shapira et al. 2009, de Chassey
et al. 2008, Khadka et al. 2011, Zhang et al. 2009, Vidal et al. 2011) which included a total
of 183 viral proteins, 2381 host proteins and 5781 host-virus interactions. Protein identifiers
were mapped to UniProt IDs. Human protein-protein interaction data was imported from
BioGRID database (version 3.4.139, Stark et al. 2006) covering 215244 interactions. The net-
work analysis was performed using in-house programs developed in R statistical environment
(version 3.4.3, www.r-project.org) with the use of the packages SparseM (version 1.77), RBGL
(version 1.52.0) and graph (version 1.54.0). Network visualization was performed in Cytoscape
(version 3.6.1, Shannon et al. 2003). Network clusters/sub-networks were extracted using the
Cytoscape plugin MCODE (version 1.5.1, Bader and Hogue 2003). Data visualization was
performed in R statistical environment and Cytoscape.

Gene-set enrichment, protein disorder and sub-cellular localization analysis

We performed gene-set enrichment analysis using DAVID Bioinformatics Resources (version
6.8, Huang da et al. 2009). For all enrichment analysis, a p-value cutoff of ≤0.01 was used
as significant. Protein disorder analysis was performed using IUPred2A software. We used
the offline version with protein sequences downloaded from UniProt. Statistical analysis of
disordered region distribution was performed by Kolmogorov-Smirnov test in R statistical
environment. Annotation of human proteins was mapped from UniProt ID to ENSEMBL
using EnsDb.Hsapiens.v86. The index of subcellular localization of interaction partners of
single viral proteins was calculated for all viral proteins with ≥ five host targets. Localization
of host targets was mapped using COMPARTMENTS (Binder et al. 2014), filtered for a
minimum evidence score of 3 in the knowledge channel, excluding non-experimental based
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localization predictions. Evidence for all protein was subsequently divided by the absolute
number of host-targets per viral protein. Multiple sequence alignment was performed using
Clustal X (version 2.0, Larkin et al. 2007).

Integration of RNAi screens and drug-gene interaction data

Genome-wide RNAi screen data for HCV (Tai et al. 2009) and HPV18 ( Smith et al. 2010,
through GenomeRNAi database (Schmidt et al. 2013– GR00197), as well as druggable RNAi
screen data for HPV16 (Aydin et al. 2014), VACV (Mercer et al. 2012) and SV40 (Snijder et al.
2012) were integrated in the existing network as Z-Scores. Drug-gene interaction data was
downloaded from DGIdb. The identifiers were mapped to UniProt IDs and then compared
with hvPPI.

Drug re-purposing screen

For the HMPV NL/1/00 screen, approximately 4×104 human retinal pigment epithelial (RPE)
cells were seeded per well in 96-well plates. The cells were grown for 24 h in DMEM-F12
medium supplemented with 10% FBS, 0.35% NaHCO3, and 100 µg/ml streptomicine and 100
IU/ml penicillin. The medium was replaced with virus growth medium (VGM) containing
0.2% bovine serum albumin (BSA), 2 mM L-glutamine, 0.35% NaHCO3, and 1 µg/mL L-1-
tosylamido-2-phenylethyl chloromethyl ketone-trypsin in DMEM-F12. HCV screen-associated
cell culture conditions are described in Kim et al. (2016). The compounds were added to the
cells in 3-fold dilutions at seven different concentrations starting from 50 µM. No compounds
were added to the control wells. The cells were mock- or virus-infected at a multiplicity of
infection (MOI) of one. After 48 h of infection, the medium was removed from the cells.
To monitor cell viability, CellTiter-Glo reagent containing Firefly luciferase and luciferin was
added (30 µL per well). This assay quantifies ATP, an indicator of metabolically active
living cells. The luminescence was measured with a plate reader. To determine compound
efficacy, HMPV NL/1/00-induced GFP expression was measured. The half-maximal cytotoxic
concentration (CC50) and the half-maximal effective concentration (EC50) for each compound
were calculated after non-linear regression analysis with a variable slope using GraphPad Prism
software version 7.0a. The relative effectiveness of the drug was quantified as the selectivity
index (SI = CC50

EC50
).

Cytotoxicity and antiviral activity of the compounds against GFP-expressing HCV in Huh-7.5
cells was determined as previously described (Kim et al. 2016).

preprint 4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/548909doi: bioRxiv preprint 

https://doi.org/10.1101/548909


Bösl et al. Critical Nodes of Virus–Host Interaction

Results

Assembly of host-virus protein-protein interactions

To provide new and critical insights into viral evasion mechanisms we performed a compre-
hensive meta-analysis of the host-virus interaction landscape. We assembled the host-virus
protein-protein interaction data (’hvPPI’) from published studies (Fig. 1A) (Pichlmair et al.
2012, Rozenblatt-Rosen et al. 2012, Jäger et al. 2011, Shapira et al. 2009, de Chassey et al.
2008, Khadka et al. 2011, Zhang et al. 2009, Vidal et al. 2011). This dataset covered 17 differ-
ent viruses including adeno-associated virus 5 (AAV5), dengue virus (DENV), Epstein-Barr
virus (EBV), influenza A virus PR8 (IAV-PR8), influenza virus Udorn (IAV-Udorn), hepatitis
C virus (HCV), human immunodeficiency virus 1 (HIV-1), human papilloma virus 5 (HPV5),
human papilloma virus 6B (HPV6B), human papilloma virus 8 (HPV8), human papilloma
virus 11 (HPV11), human papilloma virus 16 (HPV16), human papilloma virus 18 (HPV18),
human papilloma virus 33 (HPV33), Merkel cell polyomavirus (MCPyV), Simian virus 40
(SV40) and Vaccinia virus (VACV). This dataset comprised of protein-protein interactions
from two different types of experimental methods – affinity purification mass spectrometry
(AP-MS) and yeast two-hybrid screens (Y2H). Altogether, this combined dataset includes 183
viral proteins, 2381 host proteins and 5781 protein-protein interactions (Fig. 1B and Fig. S1).
Many interactome networks including yeast and human are scale-free networks, where a large
portion of the nodes (e.g. a protein in the network) have few interactions and only a few nodes
have large number of interactions. The latter are often referred to as ”hubs” which are crucial
in keeping the network intact (Vidal et al. 2011). We performed network topology analysis to
infer the properties of the host proteins targeted by the viral proteins in the context of the
human protein interactome. We considered two important parameters – relative betweenness
centrality (which reflects the amount of information that passes through this protein in the
human interactome) and degree (number of binding partners in the human interactome) of the
host proteins targeted by each virus. The targets of all the viruses showed higher betweenness
centrality and degree as compared to an average protein in the human interactome (Fig. 1C
and Fig. 1D). This shows that viruses, by targeting ”hubs” and proteins that serves as key
communication nodes, have evolved the best way to disrupt the scale-free human interactome.
This topological property thereby shows how viruses having small genomes achieve the max-
imal effect in rewiring the human interactome to benefit viral survival and replication. Our
analysis is in agreement with several previous studies, which have highlighted this property
(Pichlmair et al. 2012, Rozenblatt-Rosen et al. 2012, de Chassey et al. 2008, Durmuş et al.
2015, Franzosa and Xia 2011). We propose that this could be a general principle for all viruses.
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Host factors with higher disordered regions are enriched in hvPPI networks

Proteins usually fold into stable three-dimensional structures that mediate specific func-
tions. In addition, there are sub-structures in proteins termed ”intrinsically disordered regions
(IDRs)” which lack stable structures under normal physiological conditions. IDRs are required
for multiple cellular functions even though they lack these defined structures (Oldfield and
Dunker 2014). Many studies have highlighted the presence of such IDRs in viral proteins (Xue
et al. 2014, Tamarozzi and Giuliatti 2018, Dyson and Wright 2018), such as E6 from human
papilloma virus, that are crucial for hijacking the cellular machinery. We analysed the host
proteins from the hvPPI for presence of IDRs using the prediction software IUPred (Meszaros
et al. 2018). We found a statistically significant enrichment (p-value < 6.246×10−06) of IDRs
in the host proteins targeted by viruses (Fig. 2A and Fig. S2A). We then identified the subnet-
work in the hvPPI which contained the top host targets with high disorderness score (Fig. 2B).
The top five proteins with large IDRs include CD44 antigen (CD44), Serine/arginine repetitive
matrix protein 2 (SRRM2), Myristoylated alanine-rich C-kinase substrate (MARCKS), BAG
family molecular chaperone regulator 3 (BAG3) and Mitochondrial antiviral-signalling pro-
tein (MAVS) (Fig. 2C). CD44 is a marker of exhausted CD8+ T cells (Wherry and Kurachi
2015) and replication of HCV in T cells was shown to decrease cell proliferation by inhibiting
CD44 expression and signalling (Kondo et al. 2009). SRRM2 is a serine/arginine-rich protein
involved in RNA splicing (Blencowe et al. 2000). SRRM2 is differentially phosphorylated in
HIV–1 infected cells and absence of SRRM2 lead to increased HIV–1 gene expression, since
it regulates the splicing of HIV–1 (Wojcechowskyj et al. 2013). In the hvPPI, SRRM2 is
targeted by multiple viral proteins including the Tat protein from HIV-1. Tat protein has an
important role in the stimulation of the transcription of the long terminal repeat (LTR) (Das
et al. 2011). In addition, NS1 protein from influenza B virus has also been reported to interact
with SRRM2 (Patzina et al. 2017). Proteins of the MARCKS family are involved in a range
of cellular processes including cell adhesion and migration (Arbuzova et al. 2002). MARCKS
is a negative regulator of lipopolysaccharide (LPS)-induced Toll-like receptor 4 (TLR4) sig-
nalling in mouse macrophages (Mancek-Keber et al. 2012). MAVS is an adaptor protein in
the RIG-I signalling pathway involved in the sensing of RNA. Ablasser et al. (2009) reported
that double- stranded DNA serves as a template for RNA polymerase II and is transcribed
into a 5’ triphosphate containing double-stranded RNA, which activates the RIG-I signalling
pathway. In the hvPPI, MAVS is targeted by several proteins from dsDNA viruses such as
EBV and HPV. Altogether, our analysis shows that the IDR-high part of the human proteome
is an essential part of the viral evasion strategy and some of the selected targets highlighted
here could show novel insights into the viral evasion mechanisms. However, the very flexible
protein structure of disordered proteins also makes them also difficult to target with drugs.
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Fig. 2: Protein disorder analysis. (A) Density plot of the distribution of host proteins for each virus
with percent of residues with disorder tendency greater than 0.5 as predicted by the IUPred software
as compared to the human proteome. (B) Sub-network of hvPPI with the highly targeted and highly-
disordered proteins. (C) Line plots showing the IUPred Score (a measure of the disordered region) for
the five selected host proteins from the sub-network. A IUPred score of >0.5 is considered disordered.

Viral proteins target core signalling pathways and process networks

To assess the signalling pathways and cellular processes within the hvPPI, we identified highly
connected subnetworks within hvPPI network. We constructed a host–host interaction net-
work based on the host targets in the hvPPI and identified a number of highly connected
subnetworks/clusters (Fig. 3). We then performed a gene-set enrichment analysis of signi-
ficantly enriched biological processes. We found one or more enriched processes for each of
this subnetwork including core cellular processes such as proteasome, spliceosome, protein
translation, protein/RNA transport, and cell cycle. Next we listed the viruses that target one
or more of these processes, and found that almost all the core pathways and processes are
targeted by all the 17 viruses that are part of the hvPPI (Fig. S3). This analysis highlights
the core components of the cellular process subnetworks which are targeted as part of the viral
evasion strategies and thus could be broad-spectrum antiviral hot-spots from a therapeutic
point of view.
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Enrichment analysis reveals commonality and specificity in sub-cellular
localization of the host factors

Given that the viral proteins were interacting with a large number of host proteins, we ana-
lysed the sub-cellular location of the host proteins. We performed gene-set enrichment ana-
lysis of sub-cellular localization information provided by UniProt database. We binned the
localization into 11 compartments and estimated the percent of host proteins in a given com-
partment as compared to the total number of host proteins targeted by a given virus. We
found that the viral targets were distributed across multiple subcellular compartments with
cytoplasm being the most common (Fig. S4A). The hvPPI includes two different strains of
IAV– PR8 (H1N1) and Udorn (H3N2). The subcellular localization analysis showed that
both strains were enriched for nuclear proteins. Nonstructural protein 1 (NS1) from both
the strains had the highest number of nuclear targets but their targets were very different
(Fig. 4A). NS1 of Udorn was enriched for a large number of histones as compared to NS1 of
PR8 that had large number of heterogeneous nuclear ribonucleoproteins (hnRNPs), such as
HNRNPU - a known restriction factor for many viruses. This corroborates with the obser-
vation that NS1 protein has short linear histone mimicry motifs that can suppress the host
antiviral response (Marazzi et al. 2012). In our analysis, we found that it is NS1 of Udorn
that has a histone mimicry motif ”ARSK” (Fig. S4B). Similarly, HPV11 and HPV18 E5
proteins interact more often with host proteins located in the endoplasmic reticulum (ER).
We found both common and specific subsets of ER proteins targeted by the E5 protein (Fig.
4B). HPV18 E5 protein ER targets were enriched for phospholipid biosynthesis as well as GPI
anchor related proteins, such as phosphatidylinositol glycan anchor biosynthesis class S/T/U
(PIGS, PIGT and PIGU), glycosylphosphatidylinositol anchor attachment 1 (GPAA1) and
phosphatidylserine synthase 2 (PTDSS2). HPV11 E5 protein ER targets were enriched for
ER-associated ubiquitin-dependent protein catabolism involving host proteins such as ER de-
gradation enhancing alpha-mannosidase-like protein 3 (EDEM3) and ER lipid raft associated
1 (ERLIN1). ER targets common to HPV18 and HPV11 E5 protein were enriched for unfolded
protein response, N-linked glycosylation and protein folding involving host proteins such as
SRP receptor alpha/beta subunit (SRPRA/SRPRB) and catalytic subunits of the oligosac-
charyltransferase complex (STT3A and STT3B). Two independent CRISPR/Cas9 screening
studies identified multiple ER associated components including STT3A and STT3B as host
factors for DENV, Zika virus (ZIKV) and Japanese encephalitis virus (JEV) (Zhang et al.
2016, Marceau et al. 2016). The non-canonical function of STT3A and STT3B is required
for DENV replication and that NS1 protein of DENV interacts with these proteins (Marceau
et al. 2016). Our orthogonal approach can lead to the identification of critical host factors,
and similar functions of ER components, such as STT3A and STT3B, are used by HPV11
and HPV18 as well. Thus targeting the non-canonical function of STT3A and STT3B could
be a broad antiviral strategy. Overall, the enrichment analysis clearly shows that there is
commonality and specificity in the subcellular targets of the viral proteins and that detailed
interrogation of these targets can give vital clues into the viral evasion mechanisms.
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Fig. 4: Sub-cellular localization of the host proteins. (A) Network view of nuclear interactome of NS1
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Integrative analysis of host-virus interactome and RNAi data reveals COPI
system as commonly targeted proviral process

RNAi screens have been a powerful high-throughput method to identify various cellular func-
tions, including for identification of host restriction factors of viruses (Hirsch 2010). In order
to explore the functional relevance of the host targets in the hvPPI, we integrated it with
five published RNAi screens that performed genome–wide or druggable-genome–wide RNAi
screens for identifying host factors of HCV (Tai et al. 2009), HPV18 (Schmidt et al. 2013),
HPV16 (Aydin et al. 2014), SV40 (Snijder et al. 2012) and VACV (Mercer et al. 2012).
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Fig. 5: Integration of hvPPI with RNAi screen. (A) Top proviral genes from RNAi screens that are
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involving the top targeted and proviral genes. (C) Network view of top targets and their functional
relevance.
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We found that host targets from the hvPPI were spread across the spectrum of genes with
proviral as well as antiviral phenotype (Fig. S5), thus showing that targeting of the host
protein by the virus could lead into any direction that favours the virus. We then investigated
the top 50 proviral genes that are also targeted by the viral proteins as seen in the hvPPI.
We identified 42 host proteins (Fig. 5A) that were significantly enriched for coatomer protein
complex 1 (COPI), protein translation/transport and proteasome (Fig. 5B). This further
substantiates the findings from the earlier section on the core cellular processes targeted by
the viruses. Network analysis of these top hits showed high level on connectivity and crosstalk
– for example between the translation and proteasome machinery (Fig. 5C). Vesicle carriers
are involved in the transport of membranes and proteins. COPI system is one of the three
vesicular carrier systems that is involved in the early secretory pathway (Beck et al. 2009, Lee
et al. 2004, Bethune et al. 2006). Moreover, it has been pointed out that there is a strong
similarity between vesicular transport and viral transport (viral entry to budding process)
(Thaa et al. 2010); thus making COPI system important for the viral life cycle. SiRNA-
based silencing of COPI lead to a defect in entry of IAV and disruption of the COPI complex
inhibited the production of infectious progeny virus (Sun et al. 2013). Altogether, these top
hits including the COPI system could serve as targets for developing therapeutic antiviral
intervention strategies for a broad group of viruses.

Combining host-virus and drug-gene interactions reveals novel activities of
broad-spectrum antiviral agents against hepatitis C virus and human
metapneumovirus

Our analyses pointed out that viral evasion mechanism observed in one virus could also be
relevant for other viruses. Thus, we wanted to test if we could target viral replication of
other viruses based on the results from the hvPPI analyses. To get an estimate of the drug-
gability of the hvPPI, we obtained known drug-gene interactions from DGIdb (Cotto et al.
2018). The data from DGIdb included drug-gene interactions for 48 drugs that were invest-
igational/experimental/approved safe-in-human antivirals compounds (Ianevski et al. 2018).
Among these 48 broad-spectrum-antivirals, 28 of them had targets that are part of the hvPPI.
Based on this overlap, we performed a targeted drug re-purposing screen with 35 of these 48
compounds (Table S1) to check for antiviral activity against and HCV, which is part of the
hvPPI and human metapneumovirus (HMPV) which is not in the hvPPI.. We tested 35 broad-
spectrum-antivirals against GFP-expressing HMPV NL/1/00 strain (de Graaf et al. 2007).
Seven different concentrations of the compounds were added to HMPV or mock-infected cells.
Cell viability was controlled after 48 hours and HMPV-induced GFP expression was tested
to determine compound efficiency. After the initial screening, we identified five compounds,
which lowered GFP-expression without detectable cytotoxicity (with SI > 3). We repeated
the experiment with these compounds. The experiment confirmed novel activity of azacytid-
ine, lopinavir, nitazoxanide, itraconazole and oritavancin against HMPV (Fig. 6A and Table
1). Similarly, we examined toxicity and antiviral activity of broad-spectrum-antivirals against
GFP-expressing HCV in Huh-7.5 cells using previously described procedures (Kim et al. 2016).
Our test identified azithromycin, cidofovir, oritavancin, dibucaine, gefitinib, minocycline and
pirlindole mesylate as novel anti-HCV agents with SI > 3 (Fig. 6B and Table 1).

In summary, our meta-analysis approach of the hvPPI could provide novel and faster ap-
proaches for the re-purposing of existing drugs as antiviral agents.
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Fig. 6: Drug re-purposing screen for novel broad-spectrum antivirals (A) At non-cytotoxic concentra-
tions selected broad-spectrum antiviral agents inhibit HMPV-mediated GFP expression in Huh-7.5 cells.
Efficacy of antiviral agents as shown by the percent of GFP-expressing cells decreasing in response to in-
creasing concentration of antiviral agents (Mean ±SD, n=3). Cytotoxicity of antiviral agents as shown by
the percent of live cells (Mean ±SD, n=3). (B) At non-cytotoxic concentrations selected broad-spectrum
antiviral agents inhibit HCV-mediated GFP expression in Huh7.5 cells (Mean ±SD, n=3).
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Table 1: Characteristics, half-maximal cytotoxic concentration (CC50), the half-maximal effective con-
centration (EC50) and minimal selectivity indexes (SI = CC50

EC50
) for selected broad-spectrum antivirals.

The measurements were repeated three times (p<0.05).

Compound ChEMBL
ID

Approved
use Virus Cell

line
CC50
[µM]

EC50
[µM]

SI

Clinical trials for
antiviral
treatment

(clinicaltrials.gov)

other
reported

antiviral activity

Azithromycin 529 antibiotic HCV Huh-
7.5 <30 >10 >3 HPV, CMV, HSV,

AdV, BKV

Cidofovir 152 anti-CMV HCV Huh-
7.5 >30 <1 >30 BKV, HPV, HSV,

KSHV, AdV

Dibucaine 1086 local
anesthetic HCV Huh-

7.5 11.6 1.4 8.4 EV-B (Ulferts et al. 2016)

Gefitinib 939 anti cancer HCV Huh-
7.5 11.6 1.1 10.8

VACV, BKV, CMV
(Randhawa et al. 2010,
Langhammer et al. 2011,

Schleiss et al. 2008)

Minocycline 1434 antibiotic HCV Huh-
7.5 11.6 5.2 >5.7 HIV DENV, WNV (Lai et al.

2018, Michaelis et al. 2007)

Oritavancin 1688530 antibiotic HCV Huh-
7.5 >30 <3 >10

EBOV, MERS-CoV,
SARS-CoV (Zhou et al.

2016)

Pirlindole
mesylate 32350 anti-

depressant HCV Huh-
7.5 >30 <10 >3 EV-B (Ulferts et al. 2016)

Azacitidine 1489 anti cancer HPMV RPE >50 1.2 41.7

HIV-1, HTLV-1, IAV, Rift
Valley fever virus

(Bouchard et al. 1990,
Rawson et al. 2016, Pauly
and Lauring 2015, Ianevski

et al. 2018)

Itraconazole 22587 antifungal HPMV RPE 28.2 5 5.6 EV71, HRV (Gao et al.
2015, Shim et al. 2016)

Lopinavir 729 anti
retroviral HPMV RPE 29.7 3.6 8.3 SINV

EBOV, MERS-CoV,
SARS-CoV (Zhou et al.

2016)

Nitazoxanide 1401 antiparasitic HPMV RPE >50 2.6 >11.5
NoV, AdV, HRV,

HCV, IAV

RUBV, MERS-CoV,
VACV, ZIKV (Hickson

et al. 2018, Rossignol 2016
May-Jun, Perelygina et al.
2017, Cao et al. 2017)

Oritavancin 1688530 antibiotic HMPV RPE >50 2.6 >11.5
EBOV, MERS-CoV,

SARS-CoV (Zhou et al.
2016)
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Discussion
Using integrative analysis of orthogonal datasets our study provides a comprehensive view of
viral evasion mechanisms.

In particular our analysis of the hvPPI network revealed that all the viruses have evolved to
target proteins that are central and have strong control over the human interactome. Host
proteins targeted by viruses contain a high proportion of intrinsically disordered regions. We
identified the core cellular processes and associated proteins that are targeted by all viruses.
Detailed comparative analysis of the subcellular localization of the host proteins showed com-
monality and specificity both between viral proteins from different strains of the same virus;
and between viruses. Integrating hvPPI with functional RNAi screens showed that a large por-
tion of the hvPPI are host factors of one or more virus. hvPPI data-based drug re-purposing
screen identified novel activities for various broad-spectrum antivirals against HMPV and
HCV.

This unique dataset can be used for further detailed interrogation of the mechanisms behind
viral evasion. This could serve as a starting point for identifying novel host targets and
generating hypothesis in the context of viral evasion and development of pan-viral therapeutic
intervention strategies. The methods described here also provide unique ways of dissecting
the orthogonal datasets. Various analyses from this study have highlighted the existence on
pan-viral evasion points that could be utilised for the development of host-directed antiviral
therapies. It is also intriguing to see that there is commonality and specificity at the level of
subcellular localization of the viral targets. Our analyses have underlined some salient features
in the context of IAV, HPV, DENV and HCV. Further detailed analysis in this context along
with protein sequence features, such as Short Linear Motifs (SLiMs) (Davey et al. 2011) would
provide novel insights as well as deeper understanding of how small sequence features are
involved in the hijacking of the host machinery. Integration of such data with known drug-
gene interactions provides a clear estimate of the druggable proportion in the hvPPI. Our
meta-analysis approach of the hvPPI could provide novel avenues of re-purposing existing
drugs for antiviral targeting strategies.

Our study demonstrated that azacytidine, itraconazole, lopinavir, nitazoxanide, and oritavan-
cin are novel experimental anti-HMPV agents, whereas cidofovir, dibucaine, azithromycin,
gefitinib, minocycline, oritavancin, and pirlindole mesylate are novel anti-HCV drugs. These
drugs have already been used as investigational agents or experimental drug in different virus
infections. Although, the mechanisms of action of these compounds in inhibiting the viral
infections are still unknown, this agent could inhibit steps of viral infections, which preceded
reporter protein expression from viral RNA. In summary, our results indicate that exist-
ing broad-spectrum-antivirals could be re-purposed to other viral infections. Re-purposing
these therapeutics could save resources and time needed for development of novel drugs to
quickly address unmet medical needs, because safety profiles of these agents are available. Ef-
fective treatment with broad-spectrum-antivirals may shortly become available, pending the
results of further pre-clinical studies and clinical trials. This, in turn, means that some broad-
spectrum-antivirals could be used for rapid management of new or emerging drug-resistant
strains, as well as for first-line treatment or for prophylaxis of acute virus infections or for
viral co-infections. The most effective and tolerable compounds could expand the available
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therapeutics for the treatment of viral diseases, improving preparedness and the protection of
the general population from viral epidemics and pandemics.
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