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ABSTRACT  

Antimicrobial resistance (AMR) is an increasing threat to public health. Current methods of 

determining AMR rely on inefficient phenotypic approaches, and there remains incomplete 

understanding of AMR mechanisms for many pathogen-antimicrobial combinations.  Given 

the rapid, ongoing increase in availability of high density genomic data for a diverse array of 

bacteria, development of algorithms that could utilize genomic information to predict 

phenotype could both be useful clinically and assist with discovery of heretofore 

unrecognized AMR pathways. To facilitate understanding of the connections between DNA 

variation and phenotypic AMR, we developed a new bioinformatics tool, variant mapping and 

prediction of antibiotic resistance (VAMPr), to (1) derive gene ortholog-based sequence 

features for variants; (2) interrogate these explainable gene-level variants for their known or 

novel associations with AMR; and (3) build accurate models to predict AMR based on whole 

genome sequencing data. Following the Clinical & Laboratory Standards Institute (CLSI) 

guidelines, we curated the publicly available sequencing data for 3,393 bacterial isolates 

from 9 species along with AMR phenotypes for 29 antibiotics. We detected 14,615 variant 

genotypes and built 93 association and prediction models. The association models 

confirmed known genetic antibiotic resistance mechanisms, such as blaKPC and 

carbapenem resistance consistent with the accurate nature of our approach. The prediction 

models achieved high accuracies (mean accuracy of 91.1% for all antibiotic-pathogen 

combinations) internally through nested cross validation and were also validated using 

external clinical datasets. The VAMPr variant detection method, association and prediction 

models will be valuable tools for AMR research for basic scientists with potential for clinical 

applicability. 
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INTRODUCTION 

Antimicrobial resistance (AMR) is an urgent worldwide threat (1). Decreased efficacy of 

antibiotics can lead to prolonged hospitalization and increased mortality (2). Current 

phenotypic methods for determining whether an isolate is sensitive or resistant to a particular 

antibiotic can, in some instances, take days resulting in delays in providing effective therapy 

(3). Targeted methods for AMR determination, such as PCR, are limited in that they identify 

only a subset of resistant genes and therefore do not provide a full explanation for a 

particular resistance phenotype (4).  

Next-generation sequencing (NGS) technology enabling whole genome sequencing 

(WGS) of bacterial isolates is now both inexpensive and widely-used (5). We have 

previously shown that NGS can identify AMR determinants for a limited number of b-lactam 

antimicrobials and that genotype correlated well with classic phenotypic testing (6). 

However, that study focused on a narrow set of both antibiotics and pathogens because the 

links between genotype and phenotype are relatively well understood for those 

antibiotic/pathogen combinations. Other groups have utilized NGS data to identify the 

presence of genes or short nucleotide sequences that confer resistance in a variety of 

pathogens (7-9). Mechanisms of AMR for many pathogen-antibiotic combinations are not 

well delineated which hinders development of genotypic-phenotypic associations. In order to 

more fully explore genotypic prediction of antibiotic resistance and build upon our previous 

efforts, we have developed novel methods for utilizing NGS data to better 1) characterize 

amino-acid based variant features, 2) expand the knowledge base of genetic associations 

with AMR, and 3) construct accurate prediction models for determining phenotypic 

resistance from NGS data in a broad array of pathogen-antibiotic combinations. This 

algorithm, called VAMPr (VAriant Mapping and Prediction of antibiotic resistance), was built 

utilizing a large dataset of bacterial genomes from the NCBI SRA along with paired antibiotic 

susceptibility data from the NCBI BioSample Antibiogram. VAMPr utilizes two different 

approaches, association models and prediction models, to assess genotype-phenotype 

relationship. In the association analysis, data-driven association models utilizing a gene 

ortholog approach were constructed. This allowed for unbiased screening of genotype and 

phenotype across a broad array of bacterial isolates. In the prediction analysis, we utilized a 

machine learning algorithm to develop prediction models that take NGS data and predict 

resistance for every pathogen-drug combination. These approaches not only confirmed 

known genetic mechanisms of antibacterial resistance, but also identified potentially novel or 

underreported correlates of resistance. 
 

MATERIAL AND METHODS 
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Overview of VAMPr  

The VAMPr workflow is depicted in Figure 1. Publicly available bacterial genomes from the 

NCBI Short Read Archive (SRA) and paired antibiotic susceptibility data from the NCBI 

BioSample Antibiograms project were downloaded. In order to identify bacterial genetic 

variants, de novo assembly was performed and assembled scaffolds were aligned to the 

Antimicrobial Resistance (AMR) KEGG orthology database (KO)(10). Through this process 

KO-based sequence variants were identified. CLSI breakpoints were used to determine the 

antibiotic phenotype (sensitive versus resistant; isolates with intermediate susceptibility were 

not included for analysis)(11). Finally, factoring both genetic variants and antibiotic 

resistance phenotypes, association and prediction models were constructed. These models 

are available to the research community through our website (see Availability). 

 

Data Acquisition and Creation of AMR Protein Database 

Bacterial isolates with antibiotic susceptibility data were identified in the NCBI BioSample 

Antibiograms database. Isolates were identified by querying "antibiogram[filter]" in the 

National Center for Biotechnology Information (NCBI) (NCBI Resource Coordinators, 2018) 

BioSample. The linked sequencing data was downloaded from the NCBI Sequence Read 

Archive (SRA). Finally, the antibiogram tables in the NCBI BioSample were downloaded 

using NCBI API. Minimum inhibitory concentration (MIC) values and reported antibiotic 

susceptibility data were recorded and checked for accuracy according to CLSI guidelines 

(11). MIC values that were clearly mis-annotated were removed. For the purposes of this 

analysis, isolates that were intermediate for any particular drug were excluded.  In addition, 

any bacterial isolate reported as both resistant and susceptible was excluded from analysis.  

 

A reference database consisting of KO genes with gene-based variants was created that 

included both AMR protein sequences as well as AMR-like protein sequences (decoy 

sequences). The AMR-like sequences are from genes known to not be involved in antibiotic 

resistance and have been shown to improve variant calling accuracies (12).  To create the 

AMR protein database, a list of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

orthology (KO) involved in antimicrobial resistance (AMR) (Supplementary Figure 1) was 

created. The protein sequences linked to AMR KOs by KEGG API and UniProt ID mapping 

(13)  were downloaded from the UniProt database. These sequences were designated as 

AMR protein sequences. Further, protein sequences from KOs not related to AMR were also 

aligned to AMR protein sequences.  AMR-like protein sequences were defined as those 

protein sequences with 80% identical amino acid alignment. The union of AMR protein 

sequences and AMR-like protein sequences formed the AMR protein database which was 

utilized in all comparative alignment steps. 
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To facilitate the identification of variants, AMR protein sequences were clustered based on 

sequence identities using CD-HIT(14). For each cluster, multiple sequence alignment (MSA) 

steps were used to determine cluster consensus sequences (CCS) using  MAFFT (15).  

Finally, bacterial isolate protein sequences were compared to CCSs to identify the variants 

(see next section and Supplementary: Derive explainable KO gene-based sequence 

variants). 

 

Characterization of AMR Variants 

We developed an algorithm to characterize the AMR-related variants at the protein level 

(Supplementary materials). For each individual bacterial isolate,  de novo genome 

assembly was performed using SPAdes (16). Open reading frame (ORF)s were identified, 

converted to amino acid sequences, and, protein BLAST of the sequences using the 

aforementioned AMR protein database was performed. The same query sequence was 

aligned to both AMR and AMR-like reference protein sequences using Diamond (17). After 

comparative alignments and removal of less than 80% identical amino acids, only 

alignments best matched to the AMR reference sequences were included (see 

Supplementary: Comparative alignments for filters on E-values, bit-scores and fraction of 

identical amino acids and Supplementary Figure 2). Finally, the aligned protein scaffold 

sequences were compared to the CCS to define a “normal” protein versus a variant. For 

example, given a perfect match, an isolate is designated as carrying the KO gene and thus 

denoted as normal.  In contrast, if there were mismatched amino acids within a CCS 

alignment, these would be deemed as novel variants, and in such cases, the detected 

variants would have the following nomenclature: KO number, KO cluster number, sequence 

variant types and their details (substitution, insertion, deletion). More details are provided in 

Supplementary Figure 3 and Supplementary materials.  

 

 

VAMPr association model to characterize variants 

To quantitatively assess the association between KO-based sequence variants and antibiotic 

resistance phenotypes, an association model for each species-antibiotic combination was 

created. In total, 52,479 associations between variants and antibiotic resistance were 

evaluated. Specifically, a 2-by-2 contingency table for all isolates based on carrier/non-

carrier status of the variant and susceptible/resistant phenotypes was generated and the 

odds ratio and p-values based on Fisher’s exact test were calculated in R 3.4.4 (18) and 

adjusted for false discovery rate based on Benjamin-Hochberg procedure (19). The fraction 

of resistant strains stratified by the variants’ carrying status was visualized in bar plots.  
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VAMPr prediction model for antibiotic resistance  

Prediction models for each species-antibiotic combination were developed. KO-based 

sequence variants were designated as features and curated antibiotic resistant phenotypes 

as labels. For each species-antibiotics combination, an optimal prediction model with tuned 

hyperparameters was generated.  A gradient boosting tree approach was utilized, given its 

accurate performance profile and efficient implementation (20). Nested cross-validation (CV) 

was used to report unbiased prediction performance (21,22). The outer CV was 10-fold and 

the averaged prediction metrics including accuracy are reported (Table 1); the inner CV was 

5-fold and all inner folds were used for hyper-parameter tuning based on prediction 

accuracy. The default search space hyperparameters were chosen as follows: the number of 

rounds (the number of trees) was 50, 100, 500 or 1000; the maximum allowed depth of trees 

was 16 or 64; the learning rate was from 0.025 or 0.05; the minimum loss reduction required 

to allow further partition of the trees was 0; the fraction of features used for constructing 

each tree was 0.8; the fraction of isolates used for constructing each tree was 0.9; and the 

minimum weight for each child tree was 0. The reported performance metrics included 

accuracy, F1-score, and area under the receiver operating characteristic curve (AUROC) 

(21). We assessed the prediction accuracy using an independent dataset of bacterial 

isolates recovered from cancer patients with bloodstream infections (6). In this study (11), all 

isolates were genetically (whole-genome sequence) and phenotypically (antibiotic 

susceptibility testing by broth microdilution assays) profiled. We followed the same 

aforementioned genotype and phenotype processing steps. The detected KO-based variants 

were used as predictors and the lab-measured antibiotic resistance phenotypes were used 

as the gold standard. Performance metrics were calculated as described above. 

 

RESULTS 

Construction of NCBI datasets of curated genotypes and phenotypes 

Focusing on the isolates reported in the NCBI Antibiogram database, we retrieved 4,515 

bacterial whole genome sequence datasets (Illumina platform). Sequence reads were de 

novo assembled and aligned to Multi Locus Sequence Typing (MLST) databases to validate 

reported bacteria species identification(23). 1,100 isolates were excluded from analysis 

because of inaccurate species identification.  Our final analysis cohort included 3,393 

isolates representing 9 species: Salmonella enterica (1349 isolates), Acinetobacter 

baumannii (772), Escherichia coli (350), Klebsiella pneumoniae (344), Streptococcus 

pneumoniae (317), Pseudomonas aeruginosa (83), Enterobacter cloacae (79), Klebsiella 

aerogenes (68), and Staphylococcus aureus (31).  A total of 38,871 MIC values were 
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reported for 29 different antibiotics. (Supplementary Table 1)  In total, there were 38,248 

individual pathogen-drug data points identified (Figure 2A). 

After curation, we analyzed isolates with de novo assembled genome and MIC values, and 

this dataset included 93 species/antibiotic combinations for building association and 

prediction models (detailed in next 3 sections). The fraction of resistant isolates for any given 

bacteria and antibiotic varied greatly (the median fraction of resistant isolates was 50.0%). 

For example, for Salmonella enterica and trimethoprim-sulfamethoxazole, the fraction of 

resistant isolates was 0.6% while for Klebsiella pneumoniae and cefazolin, the fraction of 

resistant isolates was 97.3%. This dataset was used in both the association and prediction 

models. 

Characterization of explainable AMR sequence variants 

We curated a list of 537 Antimicrobial Resistance (AMR) KEGG ortholog (KO) genes 

(Supplementary Table 2) and then identified the corresponding UniRef protein sequences 

(a total of 298,760 sequences).  Protein sequences were then clustered (using a minimal 

sequence similarity of 0.7). This resulted in 96,462 KO gene clusters to serve as a reference 

AMR protein sequence database. Next, we analyzed 3,393 de novo assembled genomes, 

identified the gene locations on the assembled genomes, and aligned the gene sequences 

to the reference AMR protein sequence database. Based on the alignment results and 

stringent filtering, we can identify AMR genes for each isolate. Finally, the AMR genes were 

examined for the presence of mutations (e.g. amino acid substitutions) using multiple 

sequence alignment software.  We nominated an identifier format to represent the 

sequences. For example, K01990.129|290|TN|ID indicates that the 129th cluster of K01990 

KO gene has mutation starting from its 290th amino acid from threonine (T) and asparagine 

(N) to isoleucine (I) and aspartic acid (D). 

Association models between sequence variants and antibiotic resistance phenotypes 

retain accuracy. 

We interrogated the strength of the association model between genetic variants and 

antibiotic susceptibility phenotypes for each bacterial species and antibiotic combination. For 

a number of pathogen-antibiotic pairs, the association model accuracy was greater than 95% 

(ranged from 69.6% for Pseudomonas aeruginosa- aztreonam to 100.0% for Streptococcus 

pneumoniae- tetracycline; mean accuracy was 91.1%) (Figure 2B). Utilizing contingency 

tables of variant carrying status and resistance phenotypes with the appropriate statistical 

analysis (odds ratios and p-values from Fisher’s exact tests), we examined a subset of 5,359 

associations with false discovery rates less than 0.05. In many instances, a significantly 
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strong association confirmed an expected antibiotic resistance mechanism (Figure 3). For 

example, the sequence variant K18768.0 represents β-lactamase (Bla) encoding gene 

blaKPC, the K. pneumoniae carbapenemase whose presence is significantly associated with 

resistance to meropenem in K. pneumoniae (P-value <0.0001) (9)(Fig. 3A). Variant 

K18093.13 is oprD, a major porin responsible for uptake of carbapenems in Pseudomonas 

(24).  Loss of porin activity by Pseudomonas is well known to result in carbapenem 

resistance (25) in this pathogen, and absence of wild-type oprD is strongly associated with 

imipenem resistance (P-value <0.0001) (Fig. 3B). Other examples (OXA-1 and aac-(6’)-lb) 

of strong associations are illustrated in Fig. 3C and 3D. 

Antibiotic Resistance Prediction Models Developed Utilizing Machine Learning 

Our association studies demonstrated the accuracy of our genotypic approach for known 

AMR elements. To begin to explore the capacity of our approach to take sequence data and 

generate robust prediction, we first developed 93 different prediction models using the 

VAMPr pipeline. The most promising prediction models were based on an extreme boosting 

tree algorithm and all hyper-parameters were fine-tuned in the inner 5-fold cross validation. 

Other prediction models (e.g. elastic net (26), support vector machines (27), 3-layer neural 

network (28), and adaptive boosting (29)) were evaluated but did not exhibit superior 

prediction performances (Supplementary Figure 4). For all models, we used nested cross 

validation to report prediction performance metrics (Table 1). Among 93 models, half had 

prediction accuracies greater than 90%. The pathogen-antibiotic combinations that displayed 

the highest accuracy were for Streptococcus pneumoniae and clindamycin (100.0%), 

meropenem (100.0%), and tetracycline (100.0%), and Escherichia coli and kanamycin 

(100.0%). 11 prediction models for Salmonella enterica and our accuracies tended to be 

higher for this organism (minimal prediction accuracy is 98.0%) likely due to the larger 

dataset of Salmonella enterica isolates. A similar trend was also suggested by observing the 

performance of the models in Acinetobacter baumannii.   

Validation of the VAMPr prediction model using an external dataset 

To validate the prediction performance of VAMPr, we utilized 13 Enterobacter cloacae, 31 

Escherichia coli, 24 Klebsiella pneumoniae and 21 Pseudomonas aeruginosa isolates that 

were genetically and phenotypically profiled in a prior study but not present in the NCBI 

Antibiogram database (6). All isolates had been previously tested against 3 antibiotics 

(cefepime, ceftazidime, and meropenem).  Importantly, approximately 62%, 15%, 28% and 

31% of the discovered variants of these strains, respectively, were not detected in the NCBI 

isolates. As these variants are specific to the validation datasets, their roles in antibiotic 

resistance could not be modelled by the NCBI datasets. In Figure 4, we show three 
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prediction results with the highest AUROC (area under the receiver operator characteristics) 

values, as well as the important genetic variants that frequently appear in the gradient 

boosting tree models. In the Escherichia coli and meropenem model, VAMPr reached 1.0 

AUROC (Figure 4A) and the most important predictor was the presence of the blaNDM 

gene (New Dehli metallo-beta-lactamase; Class B). VAMPr had a similarly high prediction 

performance for Klebsiella pneumoniae and ceftazidime (Figure 4B). This model also has 

an AUROC value of 0.99 and the significant predictors were the presence of KPC (Klebsiella 

pneumoniae carbapenemase) and the presence of wildtype ddl; D-alanine-D-alanine ligase 

(in 4 isolates, variants of ddl were associated with sensitivity to ceftazidime). In Figure 4C, 

the prediction model for Pseudomonas aeruginosa and meropenem is 0.95, and three 

significant predictors were ebr (small multidrug resistance pump), mexA (membrane fusion 

protein, multidrug efflux system) and oprD (imipenem/basic amino acid-specific outer 

membrane pore). Among all bacteria and antibiotic combinations, the minimal AUROC 

values for all VAMPr prediction models is 0.70 (Table 2). These results suggest that the 

VAMPr prediction models identify both known AMR-related genes as well as genes or 

variants that are not currently considered as contributing to resistance.  

Offline resources for VAMPr pipeline 

Offline resources – VAMPr source codes 

We provide the source code that was used to create the association and prediction models. 

This allow users to curate and analyse their own sequence data for convenient offline 

usages. For example, users can provide FASTA sequence files and predict antibiotic 

resistance for multiple antibiotics without an internet connections. 

DISCUSSION 

With the growing threat of antibiotic resistance and the rapidly decreasing costs 

associated with bacterial whole-genome sequencing, there is an opportunity for developing 

improved methods to detect resistance genes from genomic data (30). However, prior to the 

routine use of genomic data to routinely identify bacterial AMR status, there are several 

hurdles to be overcome including improving understanding of the genetic mechanisms 

underlying AMR for a broad-array of pathogen-antimicrobial combinations.  To this end, we 

have developed the VAMPr pipeline to discover variant-level genetic features from NGS 

reads which then be correlated with phenotypic AMR data.  We anticipate that with the 

continued generation of WGS data for numerous medically important pathogens, the 

widespread employment of VAMPr will assist with both clarifying associations between 

genomic data and AMR as well as developing new lines of AMR mechanism research.  
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An important advance of our study was our utilization of a novel approach to classifying 

variants based on gene orthologs. Our approach is different than other prediction models 

such as in PATRIC(8,31-33) which utilized the adaptive boosting (adaboost) algorithm. Our 

results were comparable or better in performance depending on the antibiotic-pathogen 

combination. In addition, this approach is in contrast to other popular ways for looking at 

gene variants such as k-mers (34). In the k-mer method, the frequency of k consecutive 

nucleotide or amino acid bases are counted as sequence features. Although the k-mer 

approach is straightforward to compute, it is hard to explain the k-mer in the context of 

genes, which requires extra analysis steps to interpret. To avoid these limitations, we instead 

utilized gene orthologs. By aligning the bacteria genomes with a group of consensus 

orthologous gene sequences, we can determine variants that are present for any particular 

AMR gene in a particular isolate. As the sequence variants are linked to ortholog genes, this 

approach can not only identify the presence or absence of known resistance genes, but can 

also give added insight into the impact of amino acid variants on various resistance 

phenotypes.  

 

To understand how genetic variants were linked to AMR phenotypes, we built data-driven 

association models. We utilized a large collection of isolate sequence data from NCBI SRA 

and matching antibiotic resistance phenotypes reported in the NCBI BioSample Antibiogram. 

This allowed for an unbiased screening for statistically significant associations between 

genetic variants and specific antibiotics for a variety of pathogens. Thus, another strength of 

this study was the large data universe that these models were built upon with over 38,248 

pathogen-antibiotic comparisons performed . Other groups have developed some similar 

tools, including recent efforts to predict AMR for drugs used in the treatment of 

Mycobacterium tuberculosis(35). An advantage of VAMPr over existing tools is its ability to 

analyse data from any bacterial species, providing that there are sufficient numbers of 

bacterial genomes-AMR phenotypic data to develop robust models.  The publicly available 

nature of VAMPr and the NCBI Antibiogram means that the predictive models of VAMPr 

should significantly improve moving forward. 

 

Our attempt to develop prediction models utilizing machine learning algorithms allowed for 

the identification of genes that are associated with resistance to a particular antibiotic in an 

unbiased fashion. This could allow for both confirmation of known resistance markers as well 

as a discovery tool to find novel genes that contribute to resistance. It is important to note 

that the genes and variants that we identified as predictive of resistance does not imply 

causation. These are correlations, and further work will be needed to see whether identified 

genes that are not currently known to contribute to resistance are biologically active or just 
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mere bystanders with other causal genes. Future efforts will include testing whether some of 

these predicted genes or variants in genes are in fact biologically relevant.  

 

There were other limitations of our study. Our attempt to validate the prediction models with 

a small number of isolates that were not included in the original training set illustrates  

particular challenges. There was clearly strain diversity in the recently sequenced isolates 

that was not fully represented in the available NCBI training set which impacted our ability to 

fully validate our prediction models. This indicates that there continues to be a need for 

increased genome sequencing that is more broadly representative certain pathogens. In 

addition, some pathogens such as Pseduomonas aeruginosa have a smaller number of 

genomes available in the NCBI dataset with paired antibiogram data available while other 

pathogens (such as Salmonella) have a large number of genomes with AMR phenotypes 

available. It is likely that increasing the number of genomes available for training purposes in 

pathogens like Pseudomonas will likely further improve our accuracy of the prediction model 

approach. For example, the recent study of M. tuberculosis resistance collected 10,290 

samples and the large scale enabled accurate prediction of point mutations and antibiotic 

resistance(35). Our future efforts are aimed at further refining the VAMPr models to include 

larger numbers of isolates with a mixture of antibiotic susceptibility phenotypes.   

In conclusion, we are providing the VAMPr online resources for researchers to utilize in their 

efforts to better study and predict antibiotic resistance from bacterial whole genome 

sequence data. Widespread employment of VAMPr may assist with moving whole genome 

sequencing of bacterial pathogens out of the research lab setting  and into the realm of 

clinical practice. 

 

 

AVAILABILITY 

VAMPr is an open-source program and is available in the GitHub repository 

(https://github.com/jiwoongbio/VAMPr).  

 

ACCESSION NUMBERS 

Not available. 

 

SUPPLEMENTARY DATA 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 10, 2019. ; https://doi.org/10.1101/537381doi: bioRxiv preprint 

https://doi.org/10.1101/537381


Supplementary Data are available at NAR online. 
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Table 1. Prediction metrics for 32 VAMPr prediction models. 

Among 93 prediction models, we listed the top 32 models that have the mean prediction accuracies higher than 95%. The isolate and variant 
counts derived from sequencing were used to build the prediction model using gradient boosting tree algorithms. The accuracy is reported 
using nested cross validation approach. The 10-fold outer cross validation were used to report accuracy and the 5-fold inner cross validation 
was used for hyperparameter tuning.   

Species Antibiotics Isolate 
counts 

Variant 
Counts 

Fraction of 
Resistant 

Isolates 

Accuracy 

Streptococcus pneumoniae tetracycline 315 1,321  6.0% 100.0% 

Streptococcus pneumoniae meropenem 173 1,218  5.8% 100.0% 

Streptococcus pneumoniae amoxicillin 171 1,208  2.3% 100.0% 

Escherichia coli kanamycin 75    827  13.3% 100.0% 

Staphylococcus aureus tetracycline 31    540  9.7% 100.0% 

Staphylococcus aureus clindamycin 24    479  37.5% 100.0% 

Salmonella enterica trimethoprim-sulfamethoxazole 1,349 1,620  0.7% 99.6% 

Streptococcus pneumoniae cefuroxime 178 1,221  9.6% 99.4% 

Salmonella enterica cefoxitin 1,291 1,483  15.9% 99.3% 

Salmonella enterica chloramphenicol 1,337 1,510  3.3% 99.3% 

Salmonella enterica amoxicillin-clavulanic acid 1,285 1,476  19.8% 99.1% 

Salmonella enterica kanamycin 1,036 1,373  9.4% 98.9% 

Salmonella enterica ceftiofur 1,340 1,489  19.0% 98.8% 

Salmonella enterica ceftriaxone 1,345 1,536  19.3% 98.7% 

Salmonella enterica tetracycline 1,339 1,518  53.0% 98.6% 
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Salmonella enterica ampicillin 1,349 1,620  33.2% 98.5% 

Streptococcus pneumoniae clindamycin 316 1,323  3.5% 98.4% 

Klebsiella aerogenes tobramycin 58 1,014  5.2% 98.3% 

Salmonella enterica gentamicin 1,333 1,507  12.3% 98.0% 

Klebsiella pneumoniae cefotaxime 294 1,808  97.3% 97.6% 

Acinetobacter baumannii doripenem 204 2,027  25.0% 97.6% 

Streptococcus pneumoniae trimethoprim-sulfamethoxazole 275 1,143  5.8% 96.4% 

Acinetobacter baumannii amikacin 465 3,427  9.7% 96.4% 

Acinetobacter baumannii tetracycline 261 3,096  23.0% 96.2% 

Escherichia coli amikacin 269 1,750  6.3% 95.9% 

Enterobacter cloacae doripenem 44 1,167  47.7% 95.8% 

Escherichia coli imipenem 143 1,049  22.4% 95.8% 

Acinetobacter baumannii ciprofloxacin 367 3,257  73.3% 95.4% 

Streptococcus pneumoniae erythromycin 317 1,323  28.1% 95.3% 

Enterobacter cloacae tobramycin 66 1,468  39.4% 95.2% 

Escherichia coli ampicillin 348 2,180  92.0% 95.1% 

Klebsiella pneumoniae ertapenem 318 1,983  86.2% 95.0% 
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Table 2. External validation of VAMPr prediction model. 

The external dataset includes 31 Escherichia coli, 24 Klebsiella pneumoniae and 21 Pseudomonas 

aeruginosa isolates. All isolates were tested against 3 antibiotics (cefepime, ceftazidime and 

meropenem). We reported the accuracy as the fraction of correct predictions, and the AUC (area 
under the curve) represents the area under the operator-receiver characteristic. The AUC value is n/a 

for E. cloacae as all 13 isolates are susceptible to meropenem. 

 

Species Antibiotics Isolate 

counts 

Accuracy AUC 

Enterobacter cloacae cefepime 11 100.0% 1.00 

Enterobacter cloacae meropenem 13 92.3% n/a 

Escherichia coli cefepime 30 63.3% 0.70 

Escherichia coli ceftazidime 28 78.6% 0.88 

Escherichia coli meropenem 31 96.8% 1.00 

Klebsiella pneumoniae cefepime 24 70.8% 0.87 

Klebsiella pneumoniae ceftazidime 24 66.7% 0.99 

Klebsiella pneumoniae meropenem 23 78.3% 1.00 

Pseudomonas aeruginosa cefepime 18 83.3% 1.00 

Pseudomonas aeruginosa ceftazidime 21 52.4% 0.88 

Pseudomonas aeruginosa meropenem 20 95.0% 0.98 
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Figure 1. Overview of the VAMPr workflow. 

The VAMPr pipeline processed sequence data from the NCBI Short Read Achieve (SRA) and NCBI 
BioSample Antibiograms for phenotypes. The curated AMR genotypes and AMR phenotypes were 

used to create both association and prediction models.  
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Figure 2. Summary of significant variant associations  and prediction accuracies from 93 
species-antibiotics combinations.  

Both heatmaps display the counts of curated isolates by the combination of 9 bacteria species and 
29 antibiotics from 13 drug categories.  The boxes without a number indicates that no isolates were 
available for this particular bacteria species and antibiotic combination. A) the color of the boxes 
indicates the number of gene-antibiotic resistance associations with nominal p-values <0.05 from 
VAMPr association models; B) the color indicates cross-validated prediction accuracies from VAMPr 
prediction models. 
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Figure 3. Examples of variant-phenotype relationships determined by the association models. 

(A) K18768.0 indicates blaKPC, the K. pneumoniae carbapenemase. The presence of blaKPC is associated with 
resistance to ceftazidime in K. pneumoniae as shown. The numbers in the plots represent the frequency of 
certain MIC values. Numbers in the plot represent total number of isolates with the given MIC value. (B) 
K18093.13 is oprD, an imipenem/basic amino acid-specific outer membrane pore; absence of oprD is 
associated with resistance to imipenem in P. aeruginosa. (C) K18790.0 represents blaOXA-1, the beta-
lactamase class D OXA-1. Its presence is associated with resistance to cefepime in E. coli. (D) K19278.0 is aac6-
lb gene. The presence of this variant is associated with amikacin resistance in A. baumannii. The “+” and “-
“ sign in the X-axis represent whether the wild-type gene exists or not. The red horizontal lines mark the mean 
and standard error of the groupwise MIC measurements. Each gray dot represents an MIC value. P-values are 
calculated based on Fisher’s exact test.  
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Figure 4. Validation performance metrics using an external dataset.  

AUROC (Area under the Receiver Operating Characteristic) for the prediction of the external dataset and top 
three predictors (KEGG orthlog variants based on importance) from the prediction models are reported.  
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Figure 5. VAMPr provides rich sets of online resources for association models and prediction 
models.  

Users have the flexibility to explore known or novel antibiotic resistance-associated variants, and can 
upload their own sequence assembly and obtain predictions on antibiotic resistance. (A) association 
results webpage: users can explore variants, their interpretations, their statistical significance 
assessments; (B) detailed information, contingency table and odd-ratio for variant K18768 in the 
association model, and distribution plots; (C) Distribution plots for variant K18768 in the association 
model page; (D) prediction models allow for uploads of users’ sequence data for antibiotic resistance 
prediction. 
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