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ABSTRACT 63 

 Plant developmental dynamics can be heritable, genetically correlated with fitness and 64 

yield, and undergo selection. Therefore, characterizing the mechanistic connections between 65 

the genetic architecture governing plant development and the resulting ontogenetic dynamics 66 

of plants in field settings is critically important for agricultural production and evolutionary 67 

ecology. We use a hierarchical Bayesian Function-Valued Trait (FVT) approach to estimate 68 

Brassica rapa growth curves throughout ontogeny, across two treatments and in two growing 69 

seasons. We find that the shape of growth curves is relatively plastic across environments 70 

compared to final height, and that there are trade-offs between growth rate and duration. We 71 

determined that combining FVT Quantitative Trait Loci (QTL) and genes/eigengene expression 72 

identified via transcriptomic co-expression network reconstructions best characterized 73 

phenotypic variation. Further, targeted eQTL analyses identified regulatory hotspots that 74 

colocalized with FVT QTL and co-expression network identified genes and mechanistically link 75 

FVT QTL with structural trait variation throughout development in agroecologically relevant 76 

field settings. 77 

 78 

INTRODUCTION 79 

 Plant developmental genetics are correlated with fitness and yield (Baker et al. 2015; 80 

Kulbaba et al. 2017). Therefore, characterizing the mechanistic connections between the 81 

genetic architecture governing plant development and the resulting ontogenetic dynamics of 82 

plants in field settings is critically important to improving agricultural production and 83 

understanding evolutionary performance. Forward genetic approaches such as quantitative 84 

trait mapping are an attractive method of characterizing genetic architecture because they do 85 

not require a priori information such as candidate loci and can be used to describe pleiotropic 86 

and epistatic loci as well as polygenic traits (Prioul et al. 1997; Mackay 2013; Csilléry et al. 87 

2018). Transcriptomic co-expression analyses and expression QTL (eQTL) have also been used 88 

to identify the underlying genetic architecture responsible for phenotypic variation (e.g. Nozue 89 

et al. 2018). Recently, combining information from genomic association studies and 90 

transcriptomic expression analyses has been used to pinpoint candidate genes (Hitzemann et 91 
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al. 2003; Li et al. 2018; Luo et al. 2018; Schaefer et al. 2018). However, co-expression network 92 

analyses can also provide insight into the mechanistic connections between QTL genotypes and 93 

phenotypes. Here, we ask whether QTL, co-expression analyses, or a combination thereof best 94 

predict phenotypic variation. In combination with a targeted eQTL analyses in agroecologically 95 

relevant field settings, we characterize the mechanistic connections between the genomic 96 

architecture, transcriptomic expression networks, and phenotypic variation throughout plant 97 

development. 98 

 Development rarely occurs in discrete steps, yet developmental data are typically 99 

collected at multiple distinct but inter-dependent time points. Function-Valued Trait (FVT) 100 

modeling is one method of estimating the underlying continuous nature of development and 101 

avoiding complicated repeated measures analyses, which often compromise statistical power in 102 

downstream analyses (Wu et al. 1999; Griswold et al. 2008). One approach to FVT modeling 103 

involves fitting mathematical functions to discrete data to estimate continuous curves that 104 

represent the change of a trait or character as a function, typically of time (Kingsolver et al. 105 

2001; Wu and Lin 2006; Stinchcombe and Kirkpatrick 2012). Although there are multiple 106 

approaches to modeling continuous growth, one particular advantage of FVT modeling is that 107 

parameters describing developmental growth curves can be extracted from the FVT models and 108 

used as biologically interpretable and inter-relatable traits such as the relationship between 109 

growth rates, durations, inflection points, and final sizes. This ‘parameters as data’ approach 110 

enables a broad array of analyses at both genetic and phenotypic levels (Hernandez 2015; 111 

Kulbaba et al. 2017). In the current study, we employ a Bayesian hierarchical approach to FVT 112 

modeling that leverages global information from the entire dataset as well as each genotype to 113 

estimate replicate-level parameters describing growth curves that underlie the developmental 114 

dynamics of plant height.  115 

 One inherent but seldom addressed complication in studying developmental genetics is 116 

that development of a given trait rarely occurs independently of organism-level attributes. For 117 

instance, in plants carbon availability can severely limit and alter development, even in 118 

determinate structures such as leaves (Schneidereit et al. 2005; Raines and Paul 2006). Further, 119 

including physiological parameters in plant breeding models is predicted to accelerate and 120 
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improve yield gains (Hammer et al. 2005). One solution is using a hierarchical Bayesian 121 

approach to FVT modeling that incorporates genotype-specific values for physiological 122 

conditions such as carbon availability (for instance, estimated using Amax) to statistically factor 123 

out variation caused by resource availability. Accounting for carbon availability in FVT 124 

parameter estimation can increase estimates of heritability and improve QTL mapping results 125 

(Baker 2018a, b). 126 

 QTL mapping provides a well-tested method of uncovering the genetic architecture of 127 

Function-Valued Traits (FVT). FVT variation may arise from structural or regulatory genes that 128 

differ among sampled genotypes. Examining gene expression can therefore provide insight into 129 

the mechanistic connections between genomic architecture and developmental dynamics of 130 

phenotypes (Schmid et al. 2005; Li et al. 2010; Jiang et al. 2015; Zhu et al. 2016). We use 131 

Mutual Rank (MR) and Weighted Gene Co-expression Network Analyses (WGCNA) to identify 132 

expression networks associated with FVT trait variation. These networks are then used to focus 133 

our analysis to specific expression traits for eQTL mapping (Munkvold et al. 2013; Ponsuksili et 134 

al. 2015). Interestingly, the genomic architecture of eQTL appears to depart from that of other 135 

phenotypic QTL such as FVT QTL in two important respects: first, gene expression traits tend to 136 

have only one or a few eQTL whereas morphological phenotypic traits are often highly 137 

polygenic (Gibson and Weir 2005). Second, eQTL from multiple expression traits in diverse taxa 138 

from yeast to Brassica can be highly colocalized into eQTL “hotspots”. These hotspots may 139 

indicate a regulatory gene or switch that has a disproportionate impact on downstream gene 140 

expression (Schadt et al. 2003; West et al. 2007; Hammond et al. 2011). In contrast, QTL for 141 

morphological traits may colocalize, but typically they do not do so to the same extent (Schadt 142 

et al. 2003; Tian et al. 2016). Whether general eQTL trends hold for targeted expression traits in 143 

agroecologically relevant field settings remains unknown. Further, to the best of our knowledge 144 

eQTL mapping has not been used to examine the mechanistic basis of developmental 145 

morphology captured via function-valued trait modeling.  146 

 Here, we estimate continuous developmental growth curves of plant height, a trait that 147 

when selected upon can lead to more effective increases in yield than directly selecting on yield 148 

itself (Law et al. 1978), in a set of Brassica rapa Recombinant Inbred Lines (RILs) while 149 
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mathematically factoring out the effects of carbon availability. We examine the patterns of 150 

genetic correlations among parameters describing change in height over time such as growth 151 

duration and final plant size, and we ask whether these developmental parameters correlate 152 

with yields. Using QTL mapping, we outline the genetic architecture of plant height 153 

development. Next, we use MR and WGCNA to identify genes and gene network module 154 

eigengenes whose expression patterns correlate with FVT parameters. We compare the 155 

predictive capacity of QTL and co-expression approaches in two ways: first, we test the relative 156 

effectiveness of QTL vs. MR genes vs. WGCNA module eigengenes (and combinations thereof) 157 

in explaining genetic variation of developmental traits. Second, we test whether QTL for FVT 158 

traits are enriched for genes identified via co-expression approaches. To explore the 159 

mechanistic basis of FVT QTL, we perform eQTL mapping on our MR genes and WGCNA module 160 

eigengenes. For eQTL and FVT QTL that colocalize, we explore the relative proportion cis- vs. 161 

trans-eQTL and their effect sizes. We ask whether eQTL colocalize to regulatory hotspots and if 162 

so how these compare to FVT QTL. Our eQTL analysis offers an additional line of inference for 163 

candidate gene identification as well as a potential mechanistic explanation for the regulation 164 

of yield-related FVT QTL.  165 

 166 

MATERIALS AND METHODS 167 

Species description 168 

Brassica rapa (Brasssicaceae) is an herbaceous crop species first domesticated in 169 

Eurasia. This study was conducted on Recombinant Inbred Lines (RILs) derived from crossing 170 

R500, a yellow sarson oil seed variety, with IMB211, which is a rapid cycling line derived from 171 

the Wisconsin Fast Plant line (WFP). All RILs are expected to be >99% homozygous (Kokichi and 172 

Shyam 1984; Brock and Weinig 2007; Iniguez-Luy et al. 2009; Markelz et al. 2017). In 173 

comparison with IMB211, R500 flowers later, attains a larger size and greater biomass, and 174 

allocates more resources to seed production. This experiment includes 120 RILs as well as R500 175 

and representative IMB211 genotypes. 176 

 177 

Experimental Design and Data Collection 178 
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In 2011, and 2012, the IMB211 × R500 RILs were germinated in the University of Wyoming 179 

greenhouse in fertilized field soil, and transplanted into the field at two planting densities, as 180 

previously described (Baker et al. 2015). Briefly, crowded (CR) plants consisted of 5 plants of the 181 

same genotype per 4” peat pot with the central plant designated as a focal individual. The 182 

uncrowded (UN) treatment consisted of a single plant per pot. When the cotyledons were 183 

expanded, plants were transplanted to the field into randomly located blocks that consisted of 184 

either UN or CR plants. Each block contained a full RIL set (and representatives of the RIL 185 

parental genotypes), and RIL locations were randomized within blocks with 25cm between each 186 

focal plant. For phenotypic data collection 6 UN blocks were transplanted into the field in 2011 187 

and in 2012 8 CR and 8 UN blocks were transplanted. In 2011, an additional 5 UN blocks were 188 

transplanted into the field for RNAseq. Plants were watered daily to field capacity and treated 189 

with pesticides as needed following Baker et al. (2015). Each year, we collected data on the 190 

timing of germination, bolting, and flowering by surveying plants 5-7×/week. We recorded 191 

temperature data every 5s in the greenhouse and field using a series of Onset® Hobo data 192 

loggers (Bourne, MA, USA) and a Campbell Scientific (Logan, UT, USA) CR23X data logger 193 

equipped with a Vaisala (Helsinki, Finland) HMP-50 sensor. Temperature data were used to 194 

produce hourly and daily means, as well as hourly and daily minimums and maximums, for 195 

Degree Day (DD) calculations, which used a B. rapa-specific base value of 0.96°C (Vigil et al. 196 

1997). 197 

 198 

Morphological data. Plant height was recorded for all plants starting at leaf emergence. In 199 

2011, height was measured 6 times during the growing season, and these measurements 200 

captured final heights. In 2012, height was measured 2-3 times per week until senescence. 201 

Perhaps because of the increased precision in 2012 trait estimates, RNAseq data corresponds 202 

more closely to 2012 plant-level phenotypic data compared to 2011, and we focus on 2012 203 

plant-level phenotypic data. Full analyses of FVT traits and QTL including 2011 data can be 204 

found in the supplemental materials. Flowering phenology and performance were estimated 205 

based on 2012 fruit and seed numbers, as described in Baker et al. (2015).  206 

 207 
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Function-Valued Trait (FVT) modeling and data analysis. Height data were visually inspected 208 

for erroneous data points on a replicate level following Baker et al (2015). FVT modeling for 209 

trait estimation used Bayesian approaches that fit logistic growth curves to longitudinal height 210 

data (Eqn 1; adapted from Baker et al. 2018a). Height for each individual replicate plant is 211 

represented by a minimum of 5 and maximum of 13 sequential measurements. Briefly, we	212 

utilized	a	three-level	hierarchical	Bayesian	model	that	retains	the	measurement	data	213 

structure	to	account	for	information	across	all	plants	and	genetic	lines	within	the	214 

population,	including	replicate	plants	within	each	line.  215 

 
!
!"
𝐻 = 𝑟𝐻 &'()*+,'

'()*+
-   (Eq. 1) 216 

Replicate-level parameters were extracted from the fitted logistic growth curves and treated as 217 

trait data (Jaffrézic and Pletcher 2000; Kingsolver et al. 2001, Wu and Lin 2006; Stinchcombe et 218 

al. 2010; Baker et al. 2018a). These parameters include the growth rate (r, cm/DD), and an 219 

estimate of the maximum height based on the asymptote of the logistic growth curve (Hmax, in 220 

cm). Additional parameters were algebraically extracted from the growth curve and include the 221 

duration of growth (d, in DD) and the inflection point of the growth curve in Degree Days (iD, in 222 

DD). The parameter d was defined as the time in DD when 95% of the final size (Hmax) was 223 

achieved. The parameter iD reflects the transition from exponentially accelerating to 224 

decelerating growth rates. 225 

 The hierarchical Bayesian model was implemented using PyMC, a Bayesian Statistical 226 

Modeling Python module. The model parameters were estimated via MCMC using the 227 

Metropolis-Hastings algorithm (Chib and Greenberg 1995; Patil et al. 2010). The MCMC 228 

estimations were performed using a single chain to sample 500,000 iterations, which includes 229 

the first discarded 440,000 burn-in iterations; the remaining 60,000 iterations were retained. By 230 

thinning to 1 iteration in 20, the retained iterations were reduced to 3,000 samples for every 231 

FVT parameter from which the posterior distributions were tabulated. All parameters’ trace and 232 

auto-correlation plots were examined to ensure that the MCMC chain had adequate mixing and 233 

had reached convergence. All observed data for each genotype were plotted with two 95% 234 

credible interval envelopes. The inner, yellow envelope represents the credible intervals for the 235 
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model based on the observed data, and the green envelope is the 95% credible interval where 236 

future observations from the same environment are expected (Fig. 1; Kruschke 2014; Baker et 237 

al. 2018b). 238 

 239 

Phenotypic plasticity: To detect environmental factors that might affect the correspondence 240 

between genotype and phenotype, we analyzed replicate level phenotypic datasets from 2012. 241 

We tested for the main effects of genotype and treatment and all possible interactions using 242 

the lme4 and pbkrtest packages in the R statistical environment (Halekoh and Højsgaard 2014; 243 

R Core Team 2016; Bates et al. 2018). In these tests, all effects were considered random and 244 

block was nested within the treatment effect. Significant main effects of environment 245 

(treatment) were considered evidence of phenotypic plasticity, and interactions of treatment × 246 

genotype was considered evidence for genetic variation in phenotypic plasticity. 247 

 248 

Best Linear Unbiased Predictions (BLUPs): BLUPs were calculated independently for UN and CR 249 

treatments in R using the lmer function in the lme4 package while controlling for block effects 250 

(Bates et al. 2018; Kuznetsova et al. 2018). Broad sense heritability (H2) was calculated as the 251 

genotypic variance divided by the sum of genotypic, block, and residual variances. 252 

 253 

Genetic Correlations: We assessed the genetic correlations among height FVT and previously 254 

published phenology and fitness traits (Baker et al. 2015) across environments using Pearson’s 255 

correlations of trait BLUPs. Bonferroni corrections for multiple testing were applied to all 256 

genetic correlations. 257 

 258 

QTL mapping: QTL analyses were performed in R/qtl (Broman et al. 2003) based on a map with 259 

1451 SNPs having an average distance of 0.7 cM between informative markers (Markelz et al. 260 

2017). The scanone function was used to perform interval mapping (1cM resolution with 261 

estimated genotyping errors of 0.001 using Haley Knott regression) to identify additive QTL. 262 

QTL model space was searched using an iterative process (fitqtl, refineqtl, and addqtl) to 263 

identify additional QTL while taking into account the effects of QTL identified by scanone and 264 
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addqtl. All significance thresholds (0.95) were obtained using 10,000 scanone permutations 265 

(Broman et al. 2003; Broman and Sen 2009). QTL and their 1.5LOD confidence intervals are 266 

displayed using MapChart2.0 (Voorrips 2002). Percent variance explained (PVE) is calculated as 267 

PVE=100 × (1 - 10^(-2 LOD/ n)). We compared QTL peaks to the B. rapa genome (Version 1.5; 268 

Cheng et al. 2011) to identify positional candidate genes underlying each QTL. A similar 269 

approach was used for mapping eigengene QTL (see below). However, the R/qtl 270 

implementation of composite interval mapping (Broman and Sen 2009) was used.  271 

 272 

RNAseq. We used the RNA sequencing data previously reported in Markelz et al (2017). Briefly, 273 

in 2011 five UN blocks of plants designated for destructive sampling were transplanted into the 274 

field and allowed to establish for three weeks. Apical meristem tissue, consisting of the upper 275 

1cm of the bolting inflorescence, was collected from three individual replicate plants per RIL 276 

and immediately flash frozen on liquid nitrogen as described in Markelz et al (2017). RNA library 277 

preparation and sequencing were performed as previously described (Kumar et al. 2012; 278 

Markelz et al. 2017). Reads were mapped to the B. rapa CDS reference described in Devisetty et 279 

al. (2014) using BWA (Li and Durbin 2009), with an average of 6.52 Million mapped reads per 280 

replicate. Read counts were imported to R (R Core Team 2016) and filtered to retain genes 281 

where more than 2 counts per million were observed in at least 44 RILs. Libraries were 282 

normalized using the trimmed mean of M-values (TMM) method (Robinson and Oshlack 2010) 283 

and a variance stabilizing transformation was done using voom (Law et al. 2014).  284 

 285 

Genetic network reconstruction. To reconstruct gene co-expression networks, the fitted gene 286 

expression values for each RIL from the limma-voom fit (expression ~ RIL) were used and 287 

filtered to keep the top 10,000 genes most variable between RILs.  288 

For each sample type, two network reconstruction methods were used. First, mutual 289 

correlation rank (MR) networks (Obayashi and Kinoshita 2009) were constructed. Pairwise MRs 290 

were calculated between each of the 10,000 genes and also between each gene and the BLUP 291 

parameter estimates from the 2011 and 2012 FVT models. A series of increasingly large growth-292 

related networks were defined using genes directly connected to the FVT parameters with MR 293 
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thresholds of ≤ 10, 20, 30, and 50. Multiple different phenotypes were used to jointly seed each 294 

network, therefore networks may contain more nodes (and more genes) than the thresholds 295 

suggest. However, because some gene expression levels are uniquely correlated with specific 296 

phenotypes while others may be correlated with multiple phenotypes, the number of nodes is 297 

less than the product of the threshold value and number of phenotypes used to seed the 298 

network. Permutation analysis was used to test the network size expected by random chance at 299 

each threshold; 95 or more of 100 permutation networks had zero edges connecting FVT BLUPs 300 

and gene expression, showing that our MR networks are recovering statistically significant 301 

connections. We used the blastn algorithm (Altschul et al. 1990) with the discontiguous 302 

megablast option and an E-value cutoff of 0.001 to compare B. rapa genes to Arabidopsis 303 

thaliana genes (TAIR10 annotation; 304 

ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_cds_2305 

0101214_updated). 306 

 Second, we constructed networks using a Weighted Gene Correlation Network Analysis 307 

(WGCNA; Zhang and Horvath 2005; Langfelder and Horvath 2008). For these networks a soft 308 

threshold power of 3 was used, corresponding to the lowest power that had a correlation 309 

coefficient > 0.9 with a scale-free network topology. We used the “signed hybrid” network, 310 

which only connects genes with positive correlation coefficients. This network consisted of 50 311 

modules with a median of 91 genes per module. The eigengene expression value of each 312 

module was determined using WGCNA functions. The Pearson correlation between each 313 

module’s eigengene expression value and each FVT BLUP was calculated to identify modules 314 

potentially related to FVTs. Modules were considered significantly associated with a FVT BLUP if 315 

the multiple-testing corrected p-value (method = “holm” in R function p.adjust) for the 316 

correlation test was less than 0.05. Gene Ontology (GO) category enrichment was performed on 317 

each significant module; we only examined the Biological Process (BP) and Cellular 318 

Compartment (CC) categories. Categories were considered significantly enriched if the false 319 

discovery rate adjusted p-value was < 0.05. 320 

 321 
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Comparing approaches for genetic architecture. We compared the effectiveness of QTL, MR, 322 

and WGCNA approaches for predicting phenotypic variation in r and Hmax through a series of 323 

multivariate linear regression models (lm function in R). We extracted the effect size and 324 

direction for each QTL using the effectplot function in r/qtl (Broman and Sen 2009). In all cases, 325 

the trait BLUPs were the dependent variable, and all allele-specific effect sizes, gene expression, 326 

and eigengene expression values were independent variables. For each trait we generated 327 

three types of additive models: 1) models with one type of independent variable (genotypic 328 

information based on alleles harbored at each QTL including allele-specific effect sizes and 329 

direction or genotype specific gene expression values for MR genes or genotype specific 330 

eigengene expression values), 2) models with two types of independent variables (QTL and MR 331 

gene expression, QTL and eigengene expression, or MR gene expression and eigengene 332 

expression), and 3) full models with all three data types as independent variables. For each trait 333 

we included only significant QTL, genes from the MR30 network, and eigengenes that were 334 

significantly correlated with the trait of interest. Each model was subjected to a backwards 335 

model reduction routine where non-significant terms were iteratively removed until all terms in 336 

the model had significant effects on the dependent variable (p<0.10). We used AIC scores to 337 

compare final models.  338 

 339 

Relationships between co-expression and FVT QTL. We performed Fisher’s exact test to 340 

determine whether the FVT QTL regions were enriched for genes and/or eigengenes identified 341 

via MR and WGCNA network analyses. Enrichment of FVT QTL for MR-identified genes was 342 

interpreted as evidence that the MR-identified genes are candidate causal genes for the FVT 343 

trait of interest.  344 

 345 

eQTL Analyses. To explore the regulatory mechanisms of MR-identified genes and WGCNA-346 

identified eigengenes, as well as their potential connection to FVT QTL, we performed eQTL 347 

analyses. Our network analyses effectively allowed us to reduce the number of expression traits 348 

mapped from 10,000 to less than 75. Therefore, we used composite interval mapping (Zeng 349 

1993), which is usually considered too computationally intensive for eQTL studies. Permutation 350 
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testing (Doerge and Churchill 1996) was used to establish a p < 0.05% significance threshold for 351 

each gene. The bayesint function in r/qtl was used to define 99% confidence intervals for each 352 

eQTL. For some eQTL with very high LOD scores the resulting confidence interval was a single 353 

basepair (clearly unrealistic given the limitations imposed by the number of recombination 354 

events in a mapping population). For such eQTL we used a window of +/- 20kb around the 355 

identified base pair as the eQTL interval. We defined cis-eQTL as eQTL that include the physical 356 

gene generating the mRNA transcript and trans-eQTL as any eQTL that does not include the 357 

physical location of the gene. For MR-identified genes, cis-eQTL are interpreted as evidence of 358 

variation in cis regulatory elements such as promoters whereas trans-eQTL are interpreted as 359 

evidence for trans-acting regulatory proteins such as transcription factors, other signaling 360 

proteins, or small RNAs that modulate gene expression. Because eigengenes represent the 361 

composite expression of a median of 90 genes, one cannot assign cis- vs. trans-eQTL identity for 362 

these traits (although the majority of their action is expected to be in trans). MR gene or 363 

eigengene eQTL that colocalize with FVT QTL may explain the underlying basis for the FVT QTL, 364 

and such colocalizing eQTL represent candidate causal genes for the FVT eQTL locus. An 365 

alternative explanation is that eQTL that co-localize with FVT QTL are in linkage disequilibrium 366 

with the FVT QTL candidate. eQTL that do not co-localize with FVT QTL may still be affecting 367 

plant development, but at a level not directly detectable in the FVT QTL mapping.  368 

 369 

Data availability: The linkage map used for QTL and eQTL analyses is available in Markelz et al 370 

(2017). Replicate level FVT parameters are presented in S1; RIL-specific gene expression values 371 

will be made available in supplemental materials (via FigShare) upon acceptance of the 372 

manuscript and are available to the editor and reviewers upon request. 373 

 374 

RESULTS 375 

 376 

FVT Modeling: For all FVT modeling, the data were sufficient to support all aspects of the 377 

growth curves modeled, and the models fit the data well (Fig. 1 for example model fits). Plots 378 

for all FVT models can be found in S2. 379 
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 380 

 381 
Fig. 1. Representative genotypes (A, IMB211; B, R500) of Bayesian FVT trait estimation approaches for uncrowded 382 
plants from the 2012 season. Within each panel, dots represent observed data. Colors indicate replicates within 383 
each genotype, and indicate that each replicate was measured multiple times throughout the growing season. The 384 
black line is the Bayesian estimate of logistic growth curve that best represents each genotype. The yellow 385 
envelope is a 95% credible envelope for the observed data; the green envelope is a 95% credible envelope for 386 
where new data is predicted to occur for a specific genotype and environment combination. 387 

 388 

Phenotypic Plasticity and Heritability: To assess the effects of the environment on plastic 389 

growth responses, we analyzed raw replicate level data. Although there were main effects of 390 

Block (nested within treatment) and genotype (RIL ID) for all traits, there were no significant 391 

main effects treatment (Table 1). However, there was genetic variation for a plastic response to 392 

crowding for all traits except iD (inflection time, in Degree Days; treatment-by-genotype 393 

interaction; Table 1).  394 

 In general, heritabilities were higher for plants grown in the UN relative to CR 395 

treatments for all traits. This may reflect the relatively stochastic nature of the crowding 396 

response: in some cases in the CR treatment the focal plant may have outcompeted its 397 

neighbors whereas in others it may have been outcompeted.  398 

 399 
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Table 1. Phenotypic plasticity and heritabilities of FVT parameters. Block is nested within the Treatment effect. 400 
Treat corresponds to the crowded and uncrowded treatments in 2012 and Genotype indicates RIL id. Significant 401 
effects are emphasized by bold text. 402 

  Random effects – Chi Square value (degrees of freedom) Heritabilities (%) 
Trait Model t-

value (df) 
Block (Treat) Treat Geno-type Treat* Geno-type UN 2012 CR 2012 

R 16.62 (1.08) 
* 

80.2 (2) 
*** 

7.28e-12 (1) 
NS 

136 (1) 
*** 

211 (1) 
*** 

74.5 76.0 

D 43.32 (1.57) 
** 

58.5 (2) 
*** 

3.64e-12 (1) 
NS 

294 (1) 
*** 

4.88 (1) 
* 

79.5 79.3 

iD 37.16 (1.65) 
** 

98.2 (2) 
*** 

1.42e-10 (1) 
NS 

369 (1) 
*** 

0.34 (1) 
NS 

86.8 83.7 

Hmax 8.70 (1.83) 
* 

116 (2) 
*** 

0.0 (1) 
NS 

226.4 (1) 
*** 

42.3 (1) 
*** 

81.2 68.1 

Signif. codes:  p < 0.001 ‘***’; p < 0.01 ‘**’; p <  0.05 ‘*’; p < 0.1 ‘.’; p > 0.1 ‘NS’ 403 
 404 

Genetic Correlations: To explore the genetic relationships among the height FVT parameters and 405 

previously published estimates of plant phenology and fitness, we conducted a correlation 406 

analysis on BLUPs of each trait. In general, the pattern of genetic correlations within years and 407 

treatments was similar. UNr from 2012 was correlated with all traits except Hmax (Fig 2). In 408 

contrast, CRr in 2012 was negatively correlated with other all other 2012 CR FVT traits, with all 409 

CR phenology traits (except the bolting-to-flowering interval) and CR fitness traits (S3). UNr in 410 

2012 was negatively correlated with UNd and iD but not Hmax. UNr 2012 was also negatively 411 

correlated with phenology and fitness. These patterns of genetic correlations are largely 412 

consistent across years and treatments; a representative subset are presented in Fig 2.  413 

 414 
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 415 
Fig 2. Genetic correlations among UN 2012 FVT height, phenology, and fitness traits. Each point is a genotypic 416 
mean (BLUP). Bonferroni corrections for multiple tests (n=7) have been applied. Non-significant correlations are in 417 
gray. All time is expressed in Degree Days. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, NS p ≥ 0.05. 418 

 419 

QTL mapping: To further explore the genetic architecture of the height FVT parameters, we 420 

conducted QTL mapping analyses of the height FVT traits. In total we mapped 32 individual QTL 421 

from 2012 (2011 FVT QTL are presented in S4); however, an alternative interpretation is that 422 

we mapped as few as 9 highly pleiotropic QTL. QTL were observed throughout the genome, 423 
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except on chromosomes 2, 4, and 8. Most QTL localized to chromosome 3, 9 and 10. Across all 424 

traits, each QTL explained 29% of trait variation on average. The minimum explained variance 425 

was 9.5% and the maximum was 73% of variance (Fig 3 & S4). 426 

 427 

 428 

Fig 3. A map of all QTL identified in 2012. Horizontal lines on chromosomes indicate the position of RNAseq 429 
markers used to genetic map construction. Each QTL is indicated with a vertical arrow under the trait name. 430 
Horizontal hatches indicate QTL position, the arrow length indicates 1.5 LOD support limits. Arrow heads and color 431 
(up, red = positive; down, blue = negative) indicate QTL direction relative to the R500 parent. Exact locations, 432 
markers, and LOD scores for all QTL can be found in S4. 433 

 434 

Genes under FVT QTL: To determine positional candidates within mapped FVT QTL, we 435 

compared our FVT QTL to the B. rapa genome and identified genes underlying the QTL. We 436 

restricted our search to QTL with LOD > 9 (Table 2). All 9 of these QTL were on either 437 

chromosome 3 or 10. Because several of the QTL co-localized (had overlapping 1.5 LOD 438 

confidence intervals), we often found the same genes under multiple QTL. After removing 439 

duplicate entries, we found 490 unique genes underlying the 9 QTL investigated (S5).  440 

 441 
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RNAseq. We used RNA sequencing (RNAseq) to understand the genetic mechanisms underlying 442 

FVT QTL and as an alternative approach for examining the genetic architecture of our FVT traits 443 

without a priori knowledge. 21,147 genes of 28,668 genes with detectable expression in UN 444 

treatment were differentially expressed among RILs (FDR < 0.01). The 10,000 genes with the 445 

most variable expression among RILs were used for downstream network analysis.  446 

 447 

Mutual Rank Network Analysis: 448 

To find gene co-expression networks relevant to the FVT model parameters, we built Mutual 449 

Rank (MR) networks nucleated on each FVT model parameter and performed permutation 450 

analyses to determine the statistical significance of our networks. Ninety-five or more of 100 451 

permutations had zero connections between FVT parameters and gene expression. Therefore, 452 

our MR networks are enriched for bona fide connections at a variety of MR threshold cutoffs 453 

(The MR30 network is shown in Fig 4; larger networks become difficult to visualize and are 454 

presented in S6). Complete gene membership for all MR-thresholds annotated with the best hit 455 

obtained by blastn against the predicted A. thaliana proteome are presented in supplemental 456 

materials S7.  457 

We used Fisher’s exact test to determine whether FVT QTL were enriched for MR-458 

identified genes. We found no evidence for enrichment for MR10 networks (p=1.0) but 459 

significant evidence for enrichment for MR20, MR30, and MR50 networks (p<5E-09; Table 4). In 460 

theory, MR10 networks should contain only those genes whose expression values are most 461 

highly correlated with FVT phenotypes. The non-significant results for MR10 may be caused by 462 

low power due to the single gene identified. 463 
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 464 
Fig 4: A scale-free diagram of the Mutual Rank network nucleated around FVT traits from 2012 with a cutoff of 30. 465 
Network nodes consist of either FVT traits or co-expressed genes. FVT traits are shown in red circles and genes are 466 
indicated in blue circles. Network edges indicate significant correlations. Purple lines indicate positive correlation 467 
values while green lines indicate negative correlation values and line thickness corresponds to strength of the 468 
correlation. UN, uncrowded; r, growth rate; d, duration of growth; iD, time in degree days when the growth curve 469 
reached its inflection point; Hmax, estimated maximum height based on FVT modeling. Additional network cutoffs, 470 
2011, and 2012 crowded networks are in S6; gene names and annotations are in S7. 471 

 472 
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 473 

Table 4. Fishers exact tests for enrichment of FVT QTL for MR-identified genes. 474 
  QTL   

  Yes No p-value 

MR10 Yes 0 2 1.0  

 No 5,816 37,645 (NS) 

MR20 Yes 16 0 6.91e-13 

 No 6,800 37,647 *** 

MR30 Yes 25 4 4.98e-09 

 No 5,791 37,643 *** 

MR50 Yes 46 10 9.93e-21 

 No 5,770 37,637 *** 

p> 0.05, NS; p<0.0001, **** 475 

 476 

Weighted Gene Co-expression Network Analysis (WGCNA):  477 

In a second approach to identifying gene expression networks related to estimates of FVT trait 478 

parameters, we used a Weighted Gene Co-expression Network Analysis (WGCNA) to identify 479 

eigengene modules. Modules of interest were identified as those showing a significant 480 

correlation between eigengene expression values and FVT model parameters across the RILs 481 

(Figure 5). Gene Ontology (GO) enrichment analysis was performed to examine the potential 482 

function of correlated module (S8); below we discuss correlations with modules that had at 483 

least one GO term enriched. There are positive correlations between 2012 BLUPs for maximum 484 

height (Hmax), growth duration (d), and the time that the growth curve reached its inflection 485 

point (iD) and the cyan module (related to protein translation), the midnight blue module 486 

(related to wounding/herbivore defense responses as well as some abiotic stress responses), 487 

and the blue module (enriched for genes related to cell division and development). This 488 

suggests that plants that have a longer duration of growth and reach a higher maximum height 489 

are producing more protein, undergoing more rounds of cell division, and have increased 490 

defense signaling. These three parameters also showed negative correlation with the brown 491 

module (enriched for actin cytoskeleton and protein dephosphorylation terms). Hmax is 492 

negatively correlated with yellow (enriched for terms related to photosynthesis). This 493 
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correlation could be caused by a difference in cellular maturation rates: plants with more rapid 494 

cellular differentiation would be expected to show an upregulation of chloroplast genes and 495 

reduced growth due to earlier differentiation and consequently relative lack of cell elongation. 496 

 497 
Fig 5. Correlations among WGCNA identified eigengenes and UN 2012 FVT traits. Significant correlations are 498 
denoted with an asterisk. r, growth rate; d, duration of growth; iD, time in degree days when the growth curve 499 
reached its inflection point; Hmax, estimated maximum height based on FVT modeling.  500 

 501 

Comparisons of QTL and network modeling for phenotypic prediction: To compare the 502 

effectiveness of various approaches and combinations of these approaches in explaining the 503 

variation in FVT trait estimates, we compared a series of additive linear models based on QTL, 504 

MR genes, or WGCNA eigengenes both singly and in combination. For UNr (in 2012), models 505 

containing only QTL outperformed models containing either MR30 identified gene expression 506 

or WGCNA-identified eigengene expression (Table 5). For two-data type models, models with 507 

only QTL outperformed those containing multiple data types. For Hmax, MR gene expression 508 

outperformed both QTL and WGCNA-identified eigengene expression as well as combinations 509 

of two data types. For both traits, the full model (with all three data types for r, but which 510 

reduced to WGCNA and MR gene expression values for Hmax) were the best models for 511 

explaining phenotypic variation (r: F(5,110)=25.31, p<0.0001; Hmax: F(9,106)=33.16, p<0.0001). 512 

Similarly, the best two-data type models were a significantly better fit to the data than the best 513 

single-data type models (r: F(5,114)=40.182, p<0.0001; Hmax: F(4,113)=80.398, p<0.0001). For all 514 

comparisons, the significantly better model according to ANOVA also had lower AIC scores 515 
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(Table 5). Taken together, these results indicate that although each approach has significant 516 

predictive capacity, combining multiple approaches improves estimation of trait variation.  517 

 518 

Table 5. Comparison of additive linear models using genetic and transcriptomic data to explain 2012 uncrowded 519 
phenotypic data. 520 

Trait Best single-data 
type model AIC 

Next best AIC 
(next best 

model) 
Formula§ 

Best model F-value 
(DF), significance 
and adjusted R2 

r QTL -1305.97 -1256.43 
(WGCNA) y ~ rQTL2 + rQTL2 +r QTL3 

F(3, 113)= 30.9 
*** 

R2=0.4361 

Hmax MR 735.5348 783.6546 
(WGCNA) 

y ~ Bra03899 + Bra011761 + 
Bra006755_Bra006756 + 
Bra036465 + Bra008859 + 

Bra037542 

F(6,109)=45.48 
*** 

R2=0.6989 

Best 2-data type model     

r 
QTL + WGCNA 

(reduces to just 
QTL) 

-1305.97 --1297.869 
(MR+WGCNA) y ~ rQTL1 + rQTL2 + rQTL3  

F(3,113)=30.9 
*** 

R2=0.4361 

Hmax 
MR + WGCNA 

(reduces to just 
MR) 

734.2895 

752.3889 
(QTL+MR; 

reduces to just 
MR*)† 

y ~ Bra011761 + 
Bra006755_Bra006756 + 
Bra13959 + Bra08840 + 

Bra008859 + Bra037542 _ 
Bra002411 

F(7,108)=40.16 
*** 

R2=0.7045 

Best overall model     

r Full model (QTL+ 
MR+ WGCNA) 

-
1308.602 

-1305.97 (QTL 
+ WGCNA) 

y ~ rQTL2 + yellowgreen + 
Bra006755_Bra06756 + 
Bra025790 + Bra028216 

F(5, 110)=25.31 
*** 

R2=0.5138 

Hmax 
Full model 

(reduces to MR + 
WGCNA) 

731.63 

-734.2895 (MR 
+ WGCMA;  

reduces to just 
MR*) 

y ~ yellow + Bra011761 + 
Bra006755_Bra006756 + 
Bra008575 + Bra008577 + 
Bra008840 + Bra008859 + 
Bra037542 + Bra002411 

F(9,106)=33.16 
*** 

R2=0.7157 

*** p < 0.0001 521 
* This model reduced to include just MR gene expression values but is different from the best Hmax single-data 522 
type model that also includes just MR gene expression values. 523 
§ rQTL 1-3 have markers at A03x 6417941, A05x23393567, and A10x11427369, respectively, 524 

 525 

eQTL analyses and colocalization of eQTL with of FVT QTL 526 

Because including MR and WGCNA results both improved upon linear models for FVT traits that 527 

contained just QTL (Table 5) and because all models that included MR and WGCNA 528 
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gene/eigengene expression values were significant and predicted FVT trait variation, we used 529 

eQTL analyses to assess the mechanistic relationship between gene/eigengene expression and 530 

FVT QTL. For the 29 MR30-identified genes, we found significant eQTL on all chromosomes 531 

except 5 and 8. In congruence with FVT QTL mapping results, there were eQTL with particularly 532 

high LOD scores on chromosomes 3 and 10 (LOD >75; Figure 6). There was significant overlap 533 

among 2012 FVT-QTL confidence intervals and MR-eQTL confidence intervals based on 534 

permutation tests (n=1000, p=0.003).  535 

 536 

 537 
Fig 6. Expression trait QTL (eQTL) identified using Composite Interval Mapping (CIM) for MR30-identified genes 538 
where MR networks were nucleated around UN FVT traits. Note the eQTL hotspots on chromosomes 3 and 10. 539 

 540 

 Of the 57 MR50 genes, 42 genes had a total of 47 eQTL that overlapped with FVT QTL 541 

with LOD scores ranging from 100.5-4.6. Six of the 42 MR50 genes with eQTL that colocalized 542 

with FVT QTL had cis-eQTL, and of those six, three were in networks with cutoffs of MR30 or 543 

below (Table 6). The co-occurrence of these loci as MR-identified cis-eQTL and FVT QTL 544 
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indicates that they are strong candidate genes for regulating the FVT traits. For any given FVT 545 

trait, none of the MR genes with cis-eQTL also had trans-eQTL that colocalized with other FVT 546 

QTL. Of the 36 MR genes with trans-eQTL that colocalized with FVT QTL, 33 had a single trans-547 

eQTL that colocalized with FVT QTL. Three genes (Bra012899, Bra014655, and Bra029573) had 548 

trans-eQTL that colocalized with two or more distinct FVT QTL (Table 7). 549 

 550 

Table 6. MR-identified genes with cis-eQTL that co-localize with UN 2012 FVT QTL. Note that because FVT QTL 551 
overlap a single MR cis-eQTL may colocalize with FVT QTL for multiple traits. 552 

MR gene MR 
Network Chromo-some FVT trait eQTL LOD range AGI A. thaliana 

symbol 
Bra008840 20 10 r, Hmax 22.526-23.419 AT5G13280 AK;AK-LYS1;AK1 
Bra008859 20 10 r, Hmax 41.593-41.593 AT5G13070 NA 

Bra008750 30 10 r, iD, Hmax 15.375-17.671 AT5G14600 NA 

Bra008711 50 10 r, Hmax 24.585-26.594 AT5G15250 ATFTSH6;FTSH6 
Bra008931 50 10 r, Hmax 8.515-10.223 AT5G11880 NA 

Bra029100 50 3 r 28.288-30.055 AT5G53045 NA 

 553 

Table 7. MR-identified genes with multiple trans-eQTL that co-localize with FVT QTL. 554 
MR gene MR Network Chromosome FVT Trait eQTL LOD range 

Bra012899 10 3 iD 8.315-9.854 

  10 Hmax 6.970-9.214 

Bra014655 50 3 r, iD, d, Hmax 2.857-4.930 

  6 iD 6.526-8.333 

  10 r, Hmax 3.290-5.176 

Bra029573 50 3 Hmax 5.096-7.279 

  6 iD 3.052-5.367 

  10 Hmax 2.906-4.812 

 555 

Next we performed eQTL analyses (Figure 7) for the 11 WGCNA-identified eigengene 556 

modules based on UN 2012 FVT (see Figure 5). Chromosome 3 harbored strong eQTL for 557 

“darkslateblue”, “steelblue”, and “yellowgreen” (all with no go enrichment; nge). Chromosome 558 

6 had QTL for “blue” (cell division), “cyan” (translation), and “midnightblue” 559 

(herbivore/wounding). Chromosome 10 had Eigengene eQTL in two locations, one for “brown” 560 

(actin cytoskeleton) and “lightgreen” (nge), the other for “cyan” (translation), “midnightblue” 561 
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(herbivore/wounding), “turquoise” (nge), and a suggestive peak for “blue” (cell division). Five of 562 

the eleven eigengenes had eQTL also colocalized with FVT QTL, indicating a potential causative 563 

connection between eigengenes and FVT for r, iD, and Hmax (Table 8). However, each 564 

eigengene had only one eQTL that colocalized with an FVT QTL.  565 

The second chromosome 10 location (“cyan”, “midnightblue”, and “turquoise”) overlaps 566 

with the FVT QTL9 and the Eigengenes has significant correlations with d and iD FVTs indicating 567 

a possible causative connection. We then performed permutation tests and determined that 568 

FVT-QTL were enriched for WGCNA-eQTL (n=1000, p=0.005). 569 

 570 

 571 
Fig 7. Expression trait QTL analysis (eQTL) for WGCNA-identified eigengenes that significantly correlate with UN 572 
FVT traits. 573 
 574 
Table 8. Eigengene eQTL and FVT QTL colocalization. 575 
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cyan 10 iD, r, Hmax 4.900-5.880 
darkslateblue 3 r, iD 47.828-47.828 

midnightblue 10 r, Hmax, 8.826-9.674 

turquoise 10 r, Hmax 3.967-5.840 
yellowgreen 3 Hmax 48.424-48.550 

 576 

 577 

DISCUSSION 578 

 Plant height is often correlated with fitness and yield. Height is a complex and dynamic 579 

trait that changes over the course of development, and variation in plant height is necessarily 580 

generated through variation in developmental dynamics. However, similar heights can be 581 

achieved through multiple different growth curves. Quantifying the underlying genetic 582 

architecture and mechanistic basis of growth dynamics may result in improved estimations of 583 

final plant height, fitness, and yield. Here, we use Bayesian hierarchical modeling to estimate 584 

Function-Valued Trait (FVT) parameters describing continuous plant growth and explore their 585 

correlations with phenology and fitness. We test whether QTL mapping, genes identified 586 

through Mutual Rank (MR) co-expression, or eigengenes identified through Weighted Gene 587 

Network Co-expression Analysis (WGCNA) co-expression, or combining these information types 588 

best explain genetic variation in agroecologically relevant FVT traits in the field. Further, we 589 

employ eQTL analyses to explore the molecular genetic regulatory mechanisms that 590 

mechanistically connect FVT QTL with phenotypic variation.  591 

Although development typically occurs in a continuous fashion, most studies quantifying 592 

development necessarily collect data at discrete timepoints. We take a “parameters as data” 593 

approach to FVT modeling to estimate the continuous nature of plant development (Hernandez 594 

2015; Kulbaba et al. 2017). Much as floral development or leaf development has well defined 595 

core molecular genetic pathways that govern organ formation, elaboration, or elongation 596 

(reviewed in Bowman et al. 2012), there is likely a core genetic architecture that contributes to 597 

plant height. However, exogenous and endogenous factors can influence the outputs of these 598 

developmental programs. For instance, crowding may trigger a shade avoidance response and 599 

lead to rapid increases in height (e.g. Schmitt et al. 2003). Similarly, plant carbon status can 600 

affect the developmental morphology and final size of organs such as leaves (Schneidereit et al. 601 
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2005; Raines and Paul 2006; Baker et al. 2018a). We took two approaches to examining the 602 

core developmental genetics of plant height. First, we grew plants across multiple growing 603 

seasons and in crowded and uncrowded conditions. Second, we included a genotype-specific 604 

co-factor in our FVT models that accounts for variation in photosynthetic rates (approximated 605 

through Amax), thereby statistically factoring out variation due to carbon availability and 606 

allowing us to more directly interrogate the developmental genetic architecture and molecular 607 

mechanisms contributing to plant height (Baker et al. 2018a; b). In our study, all FVT traits had 608 

relatively high broad sense heritabilities (>70%), and all had significant main effects of 609 

genotype. Interestingly, although there were no significant main effects of treatment (i.e. 610 

population means did not differ), all FVT trait estimates (except iD) exhibited genetic variation 611 

for carbon-independent phenotypic plasticity via a treatment-by-genotype interaction, likely 612 

because of rank-order differences across treatments at the genotypic level (Table 1). 613 

Morphological phenotypes, such as components of yield and height, can be highly 614 

integrated throughout development (reviewed in Klingenberg 2014). Final height is often used 615 

as a proxy for yield or fitness, yet plant growth dynamics throughout ontogeny may also be 616 

correlated with aspects of yield such as fruit and seed set (Yin et al. 2011; Tanger et al. 2017). In 617 

our experimental set of Brassica rapa Recombinant Inbred Lines (RILs), plant developmental 618 

dynamics including duration of growth (d), the inflection point in the growth curve that 619 

represents the change from exponentially accelerating to decelerating growth (iD), and 620 

estimates of final plant height (Hmax) were all significantly and positively genetically correlated 621 

(Fig 2). Interestingly, growth rates (r) were negatively correlated with d and iD, but were not 622 

correlated with Hmax, indicating that while there is a trade-off between growth rates and 623 

durations, duration of growth may be more important for final plant height than growth rate. 624 

All of our estimates of plant growth and final size were significantly genetically correlated with 625 

both phenology and yield traits. The significant correlations of r with yields indicates that 626 

developmental dynamics of a given trait can be related to crop yields and plant fitness through 627 

mechanisms that may be at least partially independent of final size. Because final size is 628 

positively correlated with yields while growth rates are negatively correlated with yields, 629 
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selection for maximum yields at early harvest dates may come at the expense of late harvest 630 

yields and vice versa. 631 

To examine the genetic architecture underlying the FVT estimates of growth rates, 632 

durations, and final sizes, we used standard QTL mapping procedures, which revealed a number 633 

of QTL. Of particular note, when QTL for r colocalized with d, the QTL were of opposite sign, 634 

confirming our negative genetic correlations between growth rates and durations, and 635 

indicating potentially pleiotropic loci contributing to both traits. On average, FVT QTL explained 636 

24% of trait variation and the number of genes under each QTL ranged in to the hundreds. In 637 

part to narrow down the list of candidate genes and in part to understand the mechanistic 638 

regulation of FVT via QTL, we took two additional transcriptomic co-expression approaches to 639 

exploring the genetic architecture of FVT traits: First, we seeded a Mutual Rank (MR) co-640 

expression network with FVT traits and asked which gene expression values correlated with 641 

variation in FVT traits. Second, we constructed 50 eigengenes based on a Weighted Gene Co-642 

expression Network Analysis (WGCNA) and asked which eigengenes were correlated with 643 

individual FVT trait. We found that FVT QTL were significantly enriched for MR genes, indicating 644 

that these two approaches were identifying some common drivers of FVT traits. To compare 645 

the effectiveness of all three approaches, we asked whether QTL, MR genes, or eigengenes best 646 

explained variance in FVT traits. Although QTL outperformed both co-expression network 647 

modeling approaches for r, combining data from multiple approaches yielded improvements in 648 

our models, indicating that even though QTL, MR genes, and eigengenes often physically co-649 

localize within the genome, they are not synonymous with one another (Table 5). 650 

To better understand the potential function of genes related to growth WGCNA and MR 651 

networks, we used gene annotations and homology to A. thaliana. Although about half of the 652 

eigengenes that correlated with FVT BLUPs had no gene ontology enrichment, three eigengenes 653 

with eQTL on chromosome 10 were enriched for actin/cytoskeleton, herbivore/wounding and 654 

cell division, respectively. The MR30 genes include a homolog of the homeodomain gene BEL1 655 

(NACA3 (Reiser et al. 1995) which is negatively correlated with Hmax); BEL1 homologs have 656 

been implicated in regulation of the shoot apical meristem (Rutjens et al. 2009) and thus could 657 

be related to plant growth. An additional gene was identified with homology to the COBRA 658 
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family gene COBL4/IRX6 (negatively correlated with iD), involved in secondary cell wall 659 

biosynthesis. The MR30 network also contains a number of genes involved in metabolic 660 

homeostasis. Four of these genes are localized to the plastid and negatively correlated with d 661 

and iD, including three orthologs of the plastidic lipid phosphate phosphatase epsilon 2 gene 662 

(LPPe2), which is potentially involved in synthesis of diacylglycerol, a precursor to essential 663 

photosynthetic membrane components (Nakamura et al. 2007). Another plastid-localized MR30 664 

network gene is ENHANCER OF SOS3-1 (ENH1); ENH1 functions to mitigate the effects of 665 

reactive oxygen species (Zhu et al. 2007). Thus, plants with longer growing periods appear to 666 

put less resources into photosynthesis. The MR30 network also includes a homolog of the A. 667 

thaliana LATERAL ORGAN BOUNDARY DOMAIN37 (LBD37) gene, an important regulator of 668 

nitrogen response in both A. thaliana and Oryza sativa (Rubin et al. 2009; Albinsky et al. 2010). 669 

LDB37 is negatively correlated with Hmax. Two genes involved in amino acid synthesis or 670 

homeostasis are present in the MR30 network and show positive correlations with d and iD: a 671 

homolog of ASPARTATE KINASE1 (AK1), required for regulation of aspartate, lysine, and 672 

methionine (Clark and Lu 2015), and AROMATIC ALDEHYDE SYNTHASE (AAS), which converts 673 

phenylalanine into phenylacetaldehyde (Gutensohn et al. 2011). Overall the MR30 network 674 

results point to a close connection between metabolic regulation and growth. 675 

Transcriptomic data allowed us to further explore the regulatory control of the FVT 676 

using eQTL mapping of WGCNA eigengenes and MR genes. eQTL mapping treats gene 677 

expression levels as quantitative traits. When combined with QTL studies of morphological 678 

phenotypes, the ultimate goal of eQTL mapping is to identify the molecular genetic changes in 679 

gene expression that lead to structural phenotypic variation, thus providing mechanistic 680 

explanations for the associations between genotype and phenotype (Schadt et al. 2008). In 681 

humans, such studies demonstrate that eQTL can be used in a cell-type specific fashion to 682 

annotate GWAS associations (Brown et al. 2013). In our study, 42 MR genes had eQTL that 683 

colocalized with FVT QTL and 6 of the 11 WGCNA eigengenes that correlated with FVT also had 684 

eQTL that colocalized with FVT QTL. These data demonstrate that the relationship between 685 

genomic loci (FVT QTL) and phenotypic variation in FVT traits is likely mediated by gene 686 
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expression, specifically the expression of the genes and eigengenes we identified via MR and 687 

WGCNA.  688 

Our eQTL results qualitatively departed from common morphological trait QTL analyses 689 

in two ways. First, MR-identified gene expression traits mapped to all chromosomes except 690 

chromosome 2, but two locations had multiple eQTL with very high LOD scores (>75): the top of 691 

chromosome 3 and the middle of chromosome 10. Virtually all genes had eQTL that mapped to 692 

one of these two locations, a common result potentially indicating an eQTL ‘hotspot’. A 693 

previous study of the effects of soil phosphorous using the same B. rapa RILs also identified 694 

eQTL hotspots (Hammond et al. 2011), but on different chromosomes. The colocalization of 695 

eQTL hotspots and FVT QTL may indicate novel regions involved in pleiotropic co-regulation of 696 

several downstream genes in the regulatory network contributing to change in plant height 697 

(Gibson and Weir 2005).  698 

Although the presence of eQTL hotspots indicates pleiotropic gene regulation, our eQTL 699 

analyses also qualitatively departed from the FVT QTL analysis in that most of the gene 700 

expression traits we mapped were not polygenic. Of the 42 MR gene expression traits mapped, 701 

only three had eQTL that colocalized with more than one FVT QTL. eQTL studies commonly find 702 

a relative paucity of polygenic regulation compared to structural QTL studies, and our results 703 

support the general consensus that expression traits and structural phenotypes have distinctly 704 

different genetic architectures (but see West et al. 2007 for a counter-example). However, most 705 

eQTL are of relatively large effect, meaning that many small effect eQTL could remain 706 

undetected and contribute to polygenic regulation of gene expression traits (Gibson and Weir 707 

2005), and these eQTL may or may not occur in regulatory hotspots.  708 
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 709 
Figure 8. Function-Valued Trait QTL (2012 uncrowded data), Weighted Gene Co-expression Network Analysis 710 
(WGCNA) identified eigengene eQTL, and genes identified via Mutual Rank (MR) co-expression occur at 711 
regulatory hotspots on chromosomes 10 and 3, indicating that these MR genes are candidate master regulators that 712 
integrate information to generate developmental trait variation. MR gene cis-eQTL (pink links) on chr10 and 3 lend 713 
further credence to this relationship. MR genes with trans-eQTL (green links) that map to these hotspots are putative 714 
upstream genes feeding in to the FVT regulatory network. By integrating information from multiple analyses. From 715 
exterior to center: chromosomes in black, linkage map in gray, FVT QTL in red, eigengene eQTL in blue, MR genes 716 
in cyan, MR trans-eQTL in light green and MR cis-eQTL in pink. 717 

 718 

To further understand the regulation of expression traits and FVT QTL, we divided MR 719 

eQTL into two classes: putative cis- and trans-eQTL where cis-eQTL likely correspond to cis-720 

regulatory elements influencing gene expression (Doss et al. 2005). In contrast, trans-eQTL do 721 

not contain the gene whose expression pattern is mapped and likely correspond to trans-acting 722 

factors such as transcription factors that influence the MR gene expression (Hansen et al. 723 

2008). In our study, of the 42 MR genes with eQTL that colocalized with FVT QTL, only five were 724 

in cis and the remaining 37 were in trans, which is only slightly higher than the proportion of 725 

trans-eQTL identified in an intraspecific maize cross (Swanson-Wagner et al. 2009). Because the 726 

B. rapa RILs are also generated from an intraspecific cross, our results are consistent with 727 

theoretical and experimental work suggesting that trans gene regulation should be more 728 
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prevalent than cis regulation at the intraspecific level (Wittkopp et al. 2008; Goncalves et al. 729 

2012, but see O’Quin et al. 2012 for an exception). Although unlikely given the genetic 730 

architecture of our eQTL, biases towards trans regulation may also stem from highly pleiotropic 731 

genes (reviewed in Signor and Nuzhdin 2018). Other authors have offered an alternative 732 

interpretation: in A. thaliana the proportion of cis- to trans-eQTL appears to scale with 733 

statistical power and the ability to detect small effect eQTL. Trans-eQTL are typically assumed 734 

to be of small effect and so increasing sample size, replicate number, or density of markers on 735 

the genetic map should in theory increase the proportion of trans-eQTL detected (Hansen et al. 736 

2008). The fact that we detected so many trans-eQTL may indicate that our study system has 737 

ample power to detect small effect trans-eQTL (our percent variance explained was 10%). 738 

Interestingly, a subset of the trans-eQTL we identified (located in eQTL hotspots) had 739 

exceptionally high LOD scores (75-100) that were twice as large as the largest cis-eQTL LOD 740 

score. Clearly, not all trans-eQTL have small effect sizes. 741 

 Our study demonstrates the importance of examining not just final plant height, but the 742 

developmental dynamics that contribute to height growth curves in agroecologically relevant 743 

field settings. We fit function-valued trait models to our data and, while statistically factoring 744 

out aspects of physiology such as carbon assimilation rates, demonstrate that parameters 745 

describing continuous developmental growth curves are correlated with plant fitness and yield. 746 

The shape of these growth curves (as described by r, d, and iD) is phenotypically plastic, while 747 

estimates of final height (Hmax) are relatively robust across environments. However, changes in 748 

the sign of bivariate correlations indicate a trade-off between yields at given final size vs. yields 749 

at early developmental times. We map FVT QTL to multiple chromosomes and utilize a guided 750 

eQTL mapping approach to investigate the regulatory mechanisms connecting genotype to FVT 751 

phenotype. Specifically, we use WGCNA to identify eigengenes for actin/cytoskeleton and cell 752 

division processes whose expression values that correlate with FVT traits. FVT trait seeded MR 753 

co-expression networks had an overall association with metabolic regulation and growth 754 

processes. We demonstrate that combining multiple approaches yields the best explanation of 755 

phenotypic variance. We identify more trans- than cis-eQTL and these trans-eQTL are highly 756 

colocalized at regulatory hotspots, likely including transcription factors that influence 757 
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downstream gene regulation. Because our cis- and trans-eQTL hotspots colocalize with FVT 758 

QTL, these expression traits are likely components of the molecular regulatory mechanisms 759 

mediating the generation of FVT phenotypic variation from genomic variation (Fig 8). 760 
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