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The human brain is one of the last frontiers of biomedical research. Genome-wide 
association studies (GWAS) have succeeded in identifying thousands of haplotype 
blocks associated with a range of neuropsychiatric traits, including disorders such as 
schizophrenia, Alzheimer’s and Parkinson’s disease. However, the majority of single 
nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-
coding regions of the genome, hindering their functional validation. While some of 
these GWAS loci may contain cis-acting regulatory DNA elements such as 
enhancers, we hypothesized that many are also transcribed into non-coding RNAs 
that are missing from publicly available transcriptome annotations. Here, we use 
targeted RNA capture (‘RNA CaptureSeq’) in combination with nanopore long-read 
cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the 
genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, 
using post-mortem human brain tissue from three neurologically healthy donors. We 
find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic 
blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet 
recorded in GENCODE annotations. We validated our findings with short-read RNA-
seq, providing orthogonal confirmation of novel splice junctions and enabling a 
quantitative assessment of the long-read assemblies. Many novel transcripts are 
supported by independent evidence of transcription including cap analysis of gene 
expression (CAGE) data and epigenetic marks, and some show signs of potential 
functional roles. We present these transcriptomes as a preliminary atlas of non-
coding transcription in human brain that can be used to connect neurological 
phenotypes with gene expression.  
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INTRODUCTION 

Over the past decade, genome-wide association studies (GWAS) have facilitated a 
multitude of discoveries in human genetics, identifying variants associated with a 
number of complex phenotypes and diseases1,2. This includes many neuropsychiatric 
traits, such as schizophrenia, for which over 100 genetic risk loci have been 
discovered through GWAS studies to date3. However, the journey from GWAS hit to 
biological function has proven challenging, for several reasons. Firstly, the sentinel 
SNP identified by GWAS is rarely the causal variant for the associated trait, but is 
instead a marker for a co-inherited genomic region known as the haplotype block4. 
The causal variant could lie anywhere within the haplotype block, which extends 
outwards to all SNPs that are in linkage disequilibrium (LD) with the GWAS SNP. 
Second, even if GWAS accurately pinpoints a variant, the mechanism by which that 
variant is causally associated with the trait in question can be uncertain1. A third and 
related challenge is that the majority of SNPs identified by GWAS fall outside of 
protein-coding parts of the genome, which has hindered their functional 
characterization5-8. 

Several hypotheses exist to explain the preponderance of GWAS-identified SNPs in 
non-coding genomic regions. The most obvious is that these regions contain 
regulatory elements that have an influence on the trait in question. These may be cis-
regulatory DNA sequences such as enhancers or silencers9. Alternatively, non-
coding variants could affect chromatin looping, interfere with the binding of proteins 
or RNAs to DNA, or disrupt epigenetic marks10. These are all plausible, but another, 
not mutually exclusive, possibility is that these regions are transcribed into cis- and 
trans-acting non-coding (regulatory) RNAs, many of which may not yet be 
documented in public databases. Indeed, recent studies have indicated that human 
transcriptome annotations are far from complete, particularly in relation to long non-
coding RNAs (lncRNAs)11,12. 

lncRNAs are a diverse class of gene products that qualitatively constitute the major 
portion of the mammalian transcriptome, but which are still poorly catalogued and 
characterized13. The number of annotated lncRNAs has grown enormously in recent 
years, with almost 10,000 new lncRNA loci being added to GENCODE since 200911, 
and many more likely to exist14-17. While only a small subset of annotated lncRNAs 
have been functionally characterized (e.g. XIST, NEAT1, HOTAIR), many have been 
shown to play unexpectedly diverse roles in epigenetic signalling and gene regulation 
including genetic imprinting, shaping chromosome conformation, forming subcellular 
organelles18,19, allosterically regulating enzymatic activity, and acting as scaffolds, 
guides, decoys or signals20,21. On average, lncRNAs are less abundant than protein-
coding mRNAs, which can cause them to be missed (or dismissed as noise) by 
traditional RNA-seq assays22. This is due to the expression-dependent bias of RNA-
seq, in which lowly expressed transcripts are less frequently sampled23,24. However, 
accumulating evidence shows that lncRNAs are not simply weakly expressed but 
rather are precisely expressed in highly specific patterns25,26. For example, a striking 
~40% of all lncRNAs are exclusively expressed in the brain27. 
 
In order to address this problem, a technique known as RNA CaptureSeq has 
recently been developed. RNA CaptureSeq works by targeting specific genomic 
regions of interest for capture using oligonucleotide probes as baits, providing 
enhanced sequencing coverage of those regions15,22,28. RNA CaptureSeq has 
facilitated the identification of novel transcript isoforms within even well-studied loci 
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such as TP5315, has provided the first genome-wide map of human splicing 
branchpoints29, and has proven particularly useful for the detection and quantification 
of lncRNAs and their many isoforms14,22,30,31. The increased sensitivity and resolution 
of RNA CaptureSeq make it a logical choice for the profiling of unannotated 
transcripts arising from non-coding GWAS haplotype blocks. To date, CaptureSeq 
has typically been performed using short-read RNA-seq, which relies on 
computational assembly of reads (~100 bp) into transcript models. This process is 
notoriously difficult and error-prone, and does not provide certainty around isoform 
structures32. In contrast, long-read sequencing can sequence full-length transcripts ‘in 
one go’, and is able to resolve splicing events between distant exons33. However, 
long-read sequencing typically suffers from much lower throughput than short-read 
RNA-seq, and thus has almost exclusively been limited to profiling highly-expressed, 
protein-coding genes.  

Here, we have used RNA CaptureSeq in conjunction with Oxford Nanopore 
Technologies (ONT) long-read cDNA sequencing in order to achieve an 
unprecedented level of sensitivity and resolution. While two recent studies have 
coupled CaptureSeq with Pacific Biosciences (PacBio) sequencing14,30, the present 
study represents the first use of CaptureSeq in conjunction with ONT sequencing to 
profile brain tissue. To investigate the transcriptional landscape of GWAS-identified 
genomic loci in human brain, we performed RNA CaptureSeq targeting 1,023 
discrete haplotype blocks containing 1,352 non-coding GWAS SNPs associated with 
neuropsychiatric phenotypes. Transcripts were captured and sequenced from four 
regions of post-mortem brain tissue from three neurologically healthy donors. 
CaptureSeq was independently performed with both long-read and short-read RNA-
seq, which provided orthogonal validation of our results. We used our recently 
developed set of spliced RNA spike-ins (‘sequins’)23 as internal controls to assess the 
efficiency of RNA capture, and also to benchmark the performance of ONT’s new 
PromethION instrument. We find that the majority (62.4%) of targeted haplotype 
blocks contain novel, multi-exonic transcripts, including 13% of targeted intergenic 
blocks. We uncover a wealth of unannotated transcripts, many of which are 
supported by independent evidence of transcription and show signs of potential 
functional roles. We present these transcriptomes as the foundation of an atlas of 
non-coding transcription in human brain that can be used to connect neuropsychiatric 
phenotypes with gene expression. 

RESULTS 
Selection of haplotype blocks and RNA CaptureSeq design 
Using the NHGRI GWAS database7,34, we identified 1,023 discrete haplotype blocks 
across the genome containing 1,352 non-coding (intronic and intergenic) SNPs 
associated with neuropsychiatric phenotypes (see Materials & Methods). These 
phenotypes include behavioural traits, predisposition to addiction, mental illness and 
neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease (see 
Supplementary Table 1). We designed tiling oligonucleotide probes targeting the 
selected GWAS-defined haplotype blocks, with annotated protein-coding exons 
(GENCODE35 v24) and repeat elements (RepeatMasker) omitted (Fig. 1). This 
resulted in a target territory of 96.2 Mb (~3% of hg38). Of the 1,023 blocks targeted, 
162 were intergenic (i.e. had no overlap on either strand with any GENCODE 
transcript). We employed targeted RNA capture (‘RNA CaptureSeq’)28 on RNA 
samples extracted from post-mortem brain tissue obtained from three neurologically 
healthy middle-aged males of European ancestry (see Materials & Methods). Brains 
were dissected into four different regions: caudate, prefrontal cortex (PFC), primary 
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visual cortex (VCx) and superior colliculus (SupCol). Samples were spiked with RNA 
sequins23 (Mix A), a subset of which were also targeted for capture (25/78 genes; 
49/164 isoforms) as part of our experimental design. 

Long-read transcriptional profiling using ONT cDNA sequencing 
RNA CaptureSeq was performed as previously described28, with some minor 
modifications for the ONT libraries (see Materials & Methods). Following capture, 
we carried out single-molecule, long-read cDNA sequencing using ONT’s 
PromethION platform. This yielded a total of 62,553,766 base-called reads (58.7 Gbp 
of sequence) with a mean length of 1,035 nt and a median quality score of 8.9 
(Supplementary Fig. 1). Reads were aligned using minimap236 to a combined index 
comprising the human genome (hg38) and in silico chromosome (chrIS)23. Overall, 
we observed an alignment rate of 82.1%, with 56.9% of reads aligning to hg38 and 
25.1% to chrIS (Supplementary Fig. 2a). We retained only reads with a perfect 
mapping score (mapQ=60). Of 22,967,553 reads that aligned to hg38 (mapQ=60), 
13,187,936 mapped to regions targeted for capture, corresponding to an average on-
target rate of 57.4% (Supplementary Fig. 2c). In parallel, we sequenced the same 
four brain cDNA samples using Illumina’s HiSeq 2500 instrument, yielding a total of 
299,140,569 read pairs. Reads were aligned using STAR37 to the hg38 + chrIS 
reference. We observed an overall alignment rate of 78.4%, with 64.1% of reads 
aligning to hg38 and 14.3% to chrIS (Supplementary Fig. 2b). For the Illumina 
samples, we observed an average on-target rate of 83.4% (Supplementary Fig. 2c). 
By analyzing reads aligned to the chrIS reference sequence, we calculated an overall 
error rate for the PromethION of 10.8733% (mismatch rate 5.11%; indel rate 
5.7633%) (Supplementary Fig. 2d). This was ~50-fold higher than the rate 
observed for Illumina reads, which had an overall error rate of 0.2341% (mismatch 
0.2241%; indel 0.01%). 

Validation of RNA CaptureSeq design and quantitative accuracy 
We used RNA sequins to assess the efficiency of RNA capture and the quantitative 
accuracy of ONT sequencing using the PromethION device. We carried out isoform-
level quantification using Salmon38, finding a strong correlation between measured 
abundance (transcripts per million; TPM) and input concentration for captured 
(R2=0.851, slope=0.822) and non-captured (R2=0.864, slope=1.07) sequins alike 
(Fig. 2a). By calculating the average difference between captured and non-captured 
sequins at each matched concentration point, we observed a ~230-fold enrichment of 
CaptureSeq (Fig. 2a). At higher concentrations, we observed diminishing capture 
efficiency, which corresponds to saturation of capture probes but is unlikely to affect 
transcripts within the physiological range of gene expression22,28. While we 
successfully detected all captured sequins, we failed to detect the 10 sequin isoforms 
of lowest input concentration that were not targeted for capture, equating to a lower 
limit of detection (LoD) of 0.059 attomoles/µL. Further, to assess the variation of 
expression measurements at different concentrations, we plotted the coefficient of 
variation (CV; SD divided by mean) for each sequin against its input concentration, 
observing that CV declined with increasing concentration for both captured and non-
captured standards (Fig. 2b). This illustrates the expression dependent bias of RNA-
seq, whereby lowly expressed transcripts are less accurately quantified. We also 
quantified sequins at the gene-level (reads per gene per 10k reads; RPG10K39), 
observing similar results (Supplementary Fig. 3).   

Concordance of splice junction detection between ONT and Illumina 
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Our spliced ONT reads aligned to hg38 (mapQ=60) contained a total of 939,558 
splice junctions. In comparison, we detected a total of 234,138 uniquely mapped 
junctions in the matched Illumina data. We found that 164,183 of these junctions 
were shared between the two technologies; that is, 17.5% of junctions detected using 
ONT were validated by Illumina, and 70.1% of junctions detected by Illumina were 
validated by ONT (Supplementary Fig. 4a). Of the ‘shared’ junctions, 144,227 
(87.8%) were previously annotated in GENCODE (v29), while the remaining 19,956 
junctions were novel (12.2%) (Supplementary Fig. 4b). ONT detected an additional 
32,777 GENCODE junctions that Illumina missed, while Illumina detected an 
additional 18,860 GENCODE junctions that ONT missed (Supplementary Fig. 4c). 
Of the 19,956 ‘shared novel’ junctions, we found that 2,036 (10.2%) were validated 
by two recent studies which coupled RNA CaptureSeq with Pacific Biosciences 
(PacBio) long-read sequencing14,30, providing independent evidence for their 
credibility. 

Benchmarking the performance of ONT cDNA sequencing 
We next used RNA sequins to assess the performance of the PromethION 
instrument in accurately sequencing full-length transcripts. In contrast to the ERCC 
spike-ins, sequins have a more realistic range of transcript sizes, with 15 isoforms 
≥2.5 kb in length. Of these 15, only six were fully sequenced ‘in one go’ with a single 
ONT read. The longest sequin isoform that was fully sequenced with single reads 
was R2_26_1, with a 4,375 nt read that covered all 18 of its exons (Supplementary 
Fig. 5a). The longest read that mapped to chrIS was 5,213 nt, which represented the 
majority of the R2_19_2 isoform (6.9 kb in total). Another notable example was a 
3,473 nt read which mapped to R1_24_1 (4.6 kb in total), spanning 33 out of 36 
exons. Most synthetic isoforms <2.5 kb were fully sequenced with single ONT reads, 
allowing complex, alternatively spliced synthetic loci to be unambiguously 
deconvoluted (Supplementary Fig. 5b). We observed a similar distribution of 
mapped reads lengths aligning to chrIS (mean=762 nt) and hg38 (mean=937 nt) 
(Supplementary Fig. 2e). 

We used the gffcompare tool40 to assess the sensitivity and precision of our synthetic 
transcriptome in relation to the chrIS annotation, at the base-, exon-, intron-, 
transcript- and gene-levels. When considering the raw read alignments, we observed 
high sensitivity across these features, but large numbers of false-positive events led 
to poor precision scores (Supplementary Fig. 6a). This is due to the higher error 
rate of ONT sequencing, which leads to spurious alignments around the boundaries 
of exon junctions (Supplementary Fig. 5c). We compared the number of reads 
spanning annotated chrIS junctions (true-positives) and unannotated chrIS junctions 
(false-positives), finding that ONT performed poorly in comparison to Illumina 
(Supplementary Fig. 6b). We used the ‘Pinfish’ suite of tools 
(https://github.com/nanoporetech/pinfish) to cluster together ONT reads (mapQ=60) 
having similar exon/intron structures, and then create a consensus of the clusters by 
calculating the median of exon boundaries from all transcripts in the cluster (see 
Materials & Methods). After clustering, we observed marked improvements in 
precision with only minor drops in sensitivity, validating that the approach was 
effective in processing raw ONT reads (Supplementary Fig. 6c). After 
benchmarking the ‘Pinfish’ clustering approach using RNA sequins, we went on to 
apply this to ONT reads mapping to hg38 (mapQ=60). This generated a set of 10,528 
consensus multi-exonic transcripts that overlapped targeted regions, comprising 
12,369 unique splice junctions. We found that the rate of ONT junction validation by 
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Illumina data increased from only 17.5% before clustering to 83.0% after clustering 
(Supplementary Fig. 6d). 

Using sequins, we observed that ONT sequencing had a slight length bias, with 
synthetic transcripts at around the ~1 kb size over-represented and transcripts at 
either end of the size spectrum under-represented. This effect was seen for both 
captured (Supplementary Fig. 7a) and non-captured (Supplementary Fig. 7c) 
sequins, suggesting that the length bias was caused by ONT sequencing rather than 
by the process of capture. Similarly, we observed a slight GC content bias for 
captured sequins (Supplementary Fig. 7b), but this effect largely disappeared for 
non-captured sequins (Supplementary Fig. 7d), implying that GC bias arose due to 
the process of capture rather than ONT sequencing. In most cases, ONT sequencing 
had more uniform coverage of exons compared to Illumina (Supplementary Fig. 
8a,b). With Illumina sequencing, many exons exhibited highly uneven coverage 
profiles that were reproducible between replicates (Supplementary Fig. 8a,b). We 
calculated the coverage of each base in every sequin exon targeted for capture 
(n=279), finding that there was significantly less variation between bases for ONT 
(median CV = 0.0339) than Illumina sequencing (median CV = 0.172) 
(Supplementary Fig. 8c). This difference was statistically significant (paired t-test; p-
val < 0.0001). 

Defining a hybrid transcriptome 
Long-read sequencing provides accurate full-length isoform structures, but suffers 
from a relatively high sequencing error rate that leads to spurious splice junction 
detection41. Conversely, short-read sequencing relies on the error-prone 
computational reconstruction of short reads into transcript models, but has highly 
accurate splice junction detection32. We sought to leverage the advantages of both 
technologies by defining a hybrid transcriptome that incorporates ONT reads with 
splice junctions corrected using matched Illumina short-read data. To do so we used 
the FLAIR41 tool, which corrects misaligned ONT splice junctions using genome 
annotations and accompanying Illumina junctions (see Materials & Methods). Of 
3,586,593 spliced ONT reads that mapped to hg38, we were able to successfully 
correct 2,422,358 of these (67.5%) using GENCODE annotations (v29) and our 
matched Illumina splice junction data. These corrected reads were then collapsed 
into a non-redundant transcriptome. 

Next, we developed a comprehensive pipeline to retain only high-confidence 
transcripts that overlapped targeted haplotype blocks (see Materials & Methods). 
We filtered out all transcripts that met any of the following criteria: (i) no overlap with 
any capture probe, (ii) contained <3 exons; (iii) contained an intron >1 Mb, (iv) 
contained a non-canonical splice junction (i.e. not GT-AG, GC-AG or AT-AC); (v) had 
any of the following gffcompare40 classification codes: ‘e’, ‘p’, ‘r’, ‘s’; (vi) was <200 nt 
in length; or (vii) was redundant or contained wholly within another transcript. These 
filtering steps produced a set of 22,114 multi-exonic transcripts overlapping GWAS 
haplotype blocks associated with neuropsychiatric functions. These transcripts 
collectively comprised 27,181 unique introns (splice junctions) and 19,288 discrete 
internal exons (Fig. 3a). This represents a comparable number of features as are 
contained in the GENCODE (v29) annotation across the genomic regions we 
targeted for capture (Fig. 3a). While our transcriptome was less comprehensive than 
the MiTranscriptome annotation (v2)42, the latter was generated by merging ~6,500 
independent RNA-seq datasets into a consensus set, while our dataset was 
generated in just two experiments using four brain samples. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 4, 2019. ; https://doi.org/10.1101/539882doi: bioRxiv preprint 

https://doi.org/10.1101/539882
http://creativecommons.org/licenses/by-nc-nd/4.0/


7	

Transcriptional landscape of haplotype blocks associated with 
neuropsychiatric functions 
We compared our hybrid transcriptome to the GENCODE (v29) annotation using 
gffcompare40. Only 2,830 transcripts (12.8%) were exact matches of (or contained 
within) GENCODE transcripts, while the remainder were categorized as putative 
novel transcripts (Fig. 3b). Most of the novel transcripts represented unannotated 
splice isoforms of known genes, but we also detected 241 novel antisense transcripts 
(no GENCODE overlap on the same strand) and 109 novel intergenic transcripts (no 
GENCODE overlap on either strand) (Fig. 3b). We assessed the protein-coding 
capacity (Fig. 3c) and evolutionary conservation (Fig. 3d) of our transcriptome, 
finding that the novel antisense and novel intergenic transcripts closely resembled 
annotated lncRNAs. Overall, we found that 638/1,023 (62.4%) targeted haplotype 
blocks contained at least one novel transcript, including 21/162 (13.0%) targeted 
intergenic blocks. We used the matched short-read RNA-seq data to quantify the 
expression of our hybrid transcriptome (Fig. 3e). We also assessed the concordance 
between ONT and Illumina quantitative expression measurements for our 
transcriptome. Using Salmon38 with our hybrid transcriptome as a reference, we 
quantified the expression of transcripts in each sample individually, observing 
reasonably strong concordance between the two orthogonal technologies (Spearman 
correlation coefficient (ρ) for SupCol: 0.612; PFC: 0.616; VCx: 0.650; caudate: 0.615) 
(Supplementary Fig. 9). 

Analysis of novel intergenic transcripts 
The combined resolution of CaptureSeq with ONT long-read sequencing enabled us 
to identify 109 novel intergenic transcripts overlapping GWAS SNPs associated with 
neuropsychiatric traits. Only two of these transcripts were predicted to have protein-
coding potential; the remaining 107 are therefore classed as putative lncRNAs (Fig. 
3c). We investigated whether any of the novel intergenic transcripts were supported 
by independent signatures of transcription, such as cap analysis of gene expression 
(CAGE) peaks or epigenetic marks. We found that 21 transcripts (19.3%) had an 
annotated FANTOM CAGE robust peak43 in the vicinity of their TSS (within 500 bp on 
the same strand) (Fig. 4a). This represented a significant enrichment (odds ratio = 
1.95) compared to randomized regions, but did not reach the enrichment of CAGE 
peaks in the TSSs of annotated lncRNAs (odds ratio = 2.65) or protein-coding 
transcripts (odds ratio = 4.55) (Fig. 4b). Notably, of our intergenic transcripts that 
were not supported by CAGE peaks, 8/88 (9.1%) were independently validated by a 
recent study that coupled CaptureSeq with PacBio long-read sequencing30, thus 
providing orthogonal evidence for their veracity (Supplementary Fig. 10). In several 
of these examples, our hybrid assembly expanded upon the PacBio assembly, 
identifying additional exons and splicing events. Further, the three epigenetic marks 
that are typically associated with actively transcribed promoters (H3K4me1, 
H3K4me3 and H3K27ac) were present near the TSS of 80 (73.4%), 94 (86.2%) and 
69 (63.3%) of the novel intergenic transcripts, respectively (Roadmap Epigenomics 
Consortium44) (Fig. 4a). Finally, we overlapped our novel intergenic transcripts with a 
recent dataset of conserved RNA structures (CRSs)45. We found that 9/109 
transcripts (9.2%) contained one or more CRSs overlapping their exons, which may 
be indicative of RNA-mediated functionality. 

For example, we discovered a novel intergenic locus overlapping a GWAS haplotype 
block associated with ‘smoking behaviour’ (rs1847461)46 on chromosome 12 (Fig. 
4c, upper). We identified 7 multi-exonic transcripts at this locus, with all splice 
junctions confirmed by Illumina short-read sequencing. Many exons were highly 
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conserved, and the two TSSs were supported by CAGE peaks (Fig. 4c, lower). 
Another example included a novel intergenic locus overlapping a GWAS SNP 
associated with multiple sclerosis (rs354033)47 on chromosome 7 (Supplementary 
Fig. 11). Once again, splice junctions were validated with Illumina sequencing, 
several exons were highly conserved, and most transcripts overlapped a CAGE peak 
at the 5’ end. 

Identification of novel isoforms in well-studied genes with 
neuropsychiatric functions 
As well as discovering novel gene loci in the vicinity of GWAS neuropsychiatric 
SNPs, CaptureSeq enabled us to identify hundreds of novel splicing events in 
annotated genes with established roles in neuropsychiatric function. For example, we 
captured a ~570 kb haplotype block on chromosome 8 that includes a SNP 
associated with cocaine dependence (rs75686122)48 (Fig. 5a). This SNP is located 
within the first intron of the RIMS2 gene, which encodes a protein that interacts with 
various synaptic proteins that are important for normal neurotransmitter release49. We 
identified three novel internal exons in the first intron of RIMS2 that are highly 
conserved and are predicted to encode novel ORFs (Fig. 5b). The first novel exon 
encodes a start codon and the first 16 amino acids of the novel ORF, while the 
second and third exons are in-frame and encode another 11 and 29 amino acids, 
respectively. Collectively, these novel exons are predicted to add 56 amino acids to 
the start of the RIMS2 protein. Whilst interesting, this finding would require further 
proteomic validation.  

In another example, we captured a ~4 kb haplotype block containing a GWAS SNP 
associated with schizophrenia (rs12807809)50, located immediately upstream of the 
NRGN gene on chromosome 11 (Supplementary Fig. 12). NRGN encodes a 
postsynaptic protein that is thought to be a direct target for thyroid hormone in human 
brain51. We identified a novel TSS located ~20 kb upstream of the annotated TSS for 
NRGN that was supported by a CAGE peak and had a highly conserved promoter 
region. The novel transcripts incorporate annotated exons of NRGN, such that the 
novel introns span SNP rs12807809. 

Using ONT sequencing to detect coordination between distant exon 
pairs 
One of the promised advantages of long-read sequencing is that it can deconvolute 
coordinated alternative splicing events between distant pairs of exons33,52. This type 
of information cannot be gleaned using short-read RNA-seq because distant exon 
pairs are never sequenced on the same fragment. Since several RNA sequin loci 
provide known examples of coordinated splicing between distant exon pairs, we first 
used chrIS as a proof-of-principle to verify that ONT sequencing could reliably detect 
such events. For example, the sequin locus R1_22 comprises two alternatively 
spliced isoforms that contain a distant mutually associated pair (dMAP) of exons 
(Supplementary Fig. 13a). With ONT sequencing, we were able to accurately 
resolve the long-range connectivity between these exons. However, with short-read 
Illumina sequencing, computational assembly (with StringTie53) produced a false-
positive transcript structure in which one exon in the pair was included and the other 
excluded. Likewise, the R1_103 sequin locus comprises two alternative isoforms that 
contain a distant mutually exclusive pair (dMEP) of exons (Supplementary Fig. 
13b). Again, ONT sequencing enabled their long-range relationship to be resolved, 
while short-read sequencing produced a false-positive transcript structure in which 
both exons were present. We used our previously published methods33,54 to search 
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for similar examples of coordinated alternative exon pairing in the human genome. 
For example, we detected a dMEP of exons in MBNL2, a gene implicated in the 
development of myotonic dystrophy that overlaps a targeted haplotype block 
associated with alcoholism (rs9556711)55 on chromosome 13 (Supplementary Fig. 
13c). This exon pair (exons number 7 and 9 of transcript ENST00000469707.5) was 
never simultaneously present on the same molecule, with no reads containing both 
exons, 19 reads containing only exon 7 but not exon 9, 37 reads containing exon 9 
but not exon 7, and 50 reads which skipped both exons (Supplementary Fig. 13c). 
This coordination was highly significant, with a Fisher’s exact test p-value of 1.23 x 
10-4.  
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DISCUSSION 

This study has successfully employed RNA CaptureSeq to reveal the rich 
transcriptional diversity hidden within non-coding regions of the genome that have 
previously been associated by GWAS with neuropsychiatric functions. In doing so, 
we have vastly expanded existing transcriptome annotations of these regions, 
creating an expression atlas of thousands of novel isoforms in human brain. Many of 
these assembled isoforms show preliminary evidence of functional roles, including 
highly conserved exons and promoter regions, TSSs supported by CAGE peaks and 
epigenetic marks, and novel predicted ORFs. 

The improved sensitivity of CaptureSeq allowed us to assemble 109 novel intergenic 
transcripts in regions of the genome that were previously thought to be 
transcriptionally silent. As a class, these transcripts resemble annotated lncRNAs, as 
judged by their protein-coding probability scores, relatively low overall expression 
and evolutionary conservation compared to protein-coding genes, which is typical of 
regulatory sequences56. While only a minority (~19%) of these were supported by 
CAGE peaks, their TSSs were nonetheless enriched for CAGE peaks compared to 
the genomic background. It is also worth pointing out that CAGE data is itself 
expression-dependent, and the fact that ~9% of our novel intergenic transcripts 
lacking CAGE support were independently validated by a recent study30 implies that 
the sensitivity of CaptureSeq surpasses that of CAGE over targeted regions. 

To date, a poor understanding of the sequence-function relationship of lncRNAs (as 
opposed to protein-coding genes) has hindered their functional characterization. 
Promisingly, several technologies for probing lncRNA functions and mechanisms 
have begun to emerge, including ChIRP-seq (for assaying DNA/protein binding 
partners) and SHAPE-seq (for RNA structure)57. Further, two landmark studies have 
recently employed CRISPR-Cas9 genome editing to perturb lncRNA loci in vivo, 
leading to the identification of hundreds of lncRNAs that have an effect on cell 
growth58,59. Mechanistically, non-coding GWAS SNPs could be located within the 
promoters of lncRNAs, hence influencing their expression. Alternatively, they could 
fall within lncRNA exons, thereby potentially affecting RNA secondary structure (so-
called ‘riboSNitches’)60,61. Indeed, we found that ~9% of our novel intergenic 
transcripts had exonic overlap with one or more CRSs45, providing potential evidence 
for RNA-mediated functionality. GWAS SNPs located in proximity to exon boundaries 
can potentially alter splicing patterns in these loci, which display complex 
transcriptional activity. 

It is conceivable that some of our novel intergenic transcripts represent the output of 
enhancers. Indeed, recent evidence indicates that most – if not all – enhancers are 
transcribed into non-coding RNAs that have been termed ‘eRNAs’62. However, there 
is still significant controversy around whether eRNA transcripts are functional per se, 
or whether it is merely the act of their transcription that is indicative of some 
underlying function62. Of the intergenic haplotype blocks we targeted for capture, we 
failed to detect transcription in the majority of cases. However, it must be borne in 
mind that we only polled four brain regions and that many non-coding RNAs are only 
expressed in very specific cell populations26,63. 

This study also demonstrated the utility of spike-in controls in analyzing NGS data64. 
The use of RNA sequins23 provided a faithful set of internal controls that helped to 
validate our experimental design, including an assessment of capture efficiency, 
sensitivity and quantitative accuracy. Of the 15 sequin isoforms ≥2.5 kb in length, six 
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were fully sequenced ‘in one go’, including a ~4.4 kb synthetic transcript comprising 
18 exons. Furthermore, we showed how the in silico chromosome (chrIS) can act as 
a comprehensive ‘ground truth’ reference against which FP and FN findings with 
RNA-seq can be evaluated. Because chrIS emulates the features of a real human 
chromosome, we would expect similar rates of TP and FP events for human 
transcripts. Notably, this type of analysis is not possible with previous spike-in 
controls (e.g. the ERCC spike-ins24), because they are mono-exonic and do not 
recapitulate the complexity of eukaryotic gene splicing. Despite these advantages, 
this study also illustrates some of the limitations of spike-in controls. While sequins 
were added to samples at a low fractional concentration (2%), we found that a 
disproportionally high fraction of reads aligned to chrIS, thereby sacrificing reads that 
could otherwise have come from endogenous transcripts. While we added sequins in 
proportion to each sample, the process of capture positively selects on the targeted 
genomic regions in a way that is not entirely predictable, thereby inadvertently 
changing the ratio of sample to spike-ins. 

In conclusion, this study substantially expands the transcriptome annotations for 
regions of the genome associated with important neuropsychiatric traits, including 
diseases like Alzheimer’s, Parkinson’s and schizophrenia. These transcriptomes 
collectively comprise a valuable atlas that can be used to connect gene expression 
with neuropsychiatric traits. Ultimately, novel transcripts identified herein could act as 
biomarkers for disease or potential therapeutic targets.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 4, 2019. ; https://doi.org/10.1101/539882doi: bioRxiv preprint 

https://doi.org/10.1101/539882
http://creativecommons.org/licenses/by-nc-nd/4.0/


12	

MATERIALS & METHODS 
Selection of GWAS haplotype blocks 
The complete GWAS database was downloaded from the NHGRI catalog7,34, then 
filtered to include only studies with a sample size of n ≥1000 that focused on traits 
associated with the brain (including behavioural traits, mental illness, as well as 
neuropsychiatric disorders like Alzheimer’s, Parkinson’s and schizophrenia). Since 
GWAS simply associates traits with regions of the genome that are in linkage 
disequilibrium (LD), the causative SNP could be anywhere within the region of LD. In 
order to ensure the causative SNP is included, it is necessary to capture the full 
haplotype block associated with the SNP reported by GWAS. As such, we used 
SNAP65 to identify all SNPs in LD, with an LD threshold of R >0.5 and a maximum 
distance between SNPs of 500 kb. All SNPs in LD were then assumed to comprise a 
single haplotype block. This resulted in 1,323 haplotype blocks comprising a total of 
1,352 GWAS SNPs associated with neuropsychiatric phenotypes (see 
Supplementary Table 1). Since some of these haplotype blocks overlapped, we 
merged them into a set of 1,023 discrete, non-overlapping blocks. 

Probe design 
Biotinylated oligonucleotide probes were designed to tile across the abovementioned 
1,023 blocks, excluding any protein-coding exons (GENCODE v24) and repeat 
elements (RepeatMasker). Probes were designed in accordance with previous 
guidelines28. This resulted in a final capture space of 96,234,476 bp. In addition, a 
subset of our RNA sequins spike-ins23 were targeted for capture (25/78 genes; 
49/164 isoforms). In selecting spike-ins to target, we chose transcripts that spanned 
across the range of concentrations in the staggered mixture (Mix A). Probe designs 
were submitted to Roche NimbleGen for synthesis. 

Human brain samples and RNA extraction 
Brain tissue from three de-identified, neurologically healthy males of European 
ancestry was supplied by the NSW Brain Tissue Resource Centre (BTRC) under 
Project ID 0379 and ethics approval number HC16189. Donors were aged between 
61 and 64, had cardiac causes of death, with post-mortem intervals of brain 
collection between 17-41 h. From each brain, 3 mg of tissue was dissected by the 
BTRC from four regions: prefrontal cortex (PFC), primary visual cortex (VCx), 
caudate, and superior colliculus (SupCol). RNA was extracted from samples using 
the protocol for QIAGEN’s miRNeasy kit: 700 µL QIAzol was added per sample on 
ice, which were then transferred to 2 mL tubes containing a single 5 mm ball bearing 
and lysed on the Tissue Lyser II for 2 minutes at 20 Hz. Upon completion of the 
cycle, adapters were rotated and shaken for an additional 2 minutes at 20 Hz. Once 
lysed, the samples were purified according to the miRNeasy mini kit protocol 
instructions, including the on-column DNAse treatment. Elution was in 15 µL 
nuclease-free H2O, with the eluate being placed back onto the columns for an 
additional run in order to ensure maximum recovery and concentration. 

cDNA generation for Oxford Nanopore Technologies (ONT) sequencing 
RNA CaptureSeq was performed as previously described28, with the following 
modifications for the ONT platform. The samples were prepared by combining 1 µg of 
each of the four human brain samples (SupCol, PFC, VCx, and caudate) 
independently with 10 ng of RNA sequins23 (Mix A; 2% fractional abundance). 
Volumes were adjusted to 11.5 µl per sample with nuclease-free water, followed by 
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the addition of 0.5 µl of 250 mM Random Primer 6 (S1230S, NEB) and 1 µl 
Deoxynucleotide Solution Mix (N0447, NEB). Samples were mixed by tapping, briefly 
spun by microfuge, incubated at 65oC for 5 min and immediately cooled on ice. 4 µl 
of First Strand buffer and 2 µl 100mM DTT (SuperScript II Reverse Transcriptase: 
18064014, ThermoFisher) were added to the samples, which were mixed by tapping, 
briefly spun by microfuge and incubated at 42oC for 2 min. For the reverse 
transcription reaction, 1 µl of SuperScript II Reverse Transcriptase was added to the 
19 µl reaction mixes, which were mixed by tapping, briefly spun by microfuge and 
incubated with the following thermocycler conditions: RT reaction at 50oC for 50 min; 
denaturation at 70oC for 15 min; and holding indefinitely at 4oC. The second strand 
synthesis reaction mix was assembled as follows (NEBNext Ultra II Non-Directional 
RNA Second Strand Synthesis Module: E6111S, NEB): 20 µl of first strand cDNA, 10 
µl buffer, 5 µl enzyme mix, and 45 µl nuclease-free water. Reactions were incubated 
with the following thermocycler conditions: second strand synthesis at 16oC for 1 h; 
and holding indefinitely at 4oC. Resulting cDNA was purified by a 10 min incubation 
with 144 µl (1.8X) Agencourt AMPure XP beads (A63880, Beckman Coulter), 2x 200 
µl washes with 80% ethanol for 30 sec each, 5 min air drying, and elution in 52 µl 
nuclease-free water. 

Following reverse transcription, the four samples had an average fragment length of 
1500 bp with the following concentrations: 6.99 ng/µl (SupCol), 5.56 ng/µl (PFC), 5.5 
ng/µl (VCx), and 6.5 ng/µl (caudate) according to a genomic DNA screentape 
analysis (Agilent 5067-5365, 5067-5366). The samples were each end-prepped and 
dA-tailed using the NEBNext Ultra II End Repair/dA-Tailing Module (E7595) as 
follows: 45 µl DNA, 7 µl Ultra II End-prep reaction buffer, 3 µl Ultra end-prep enzyme 
mix, and 5 µl nuclease-free water. Each reaction was incubated at 20˚C for 30 min 
followed by 65˚C for 30 min. Following end-prep, the samples were purified using 
AMPure beads (A63882) at a 1:1 ratio with incubation at room temperature for five 
minutes, two 140 µl washes with 70% ethanol, and elution for two minutes in 31 µl 
nuclease-free water. The PCA adapters from the ONT ligation sequencing kit 1D 
(SQK-LSK108) were ligated onto the end-prepped samples as follows: 30 µl of the 
end-prepped DNA, 20 µl PCR adapters (PCA), and 50 µl Blunt/TA ligase master mix 
(NEB) were combined and incubated at room temperature for 10 minutes. The 
adapted DNA was purified using Agencourt AMPure Beads as described above. The 
DNA was then eluted in nuclease-free water. Next, each sample was amplified in a 
100 µl reaction using NEB Long-Amp Taq (M0323) as follows: 1X LongAmp Taq 
reaction buffer, 300 µM dNTPs, 2 µl PRM primers, and 48 µl DNA from the previous 
step. The reaction for each sample was divided into two 50 µl reactions and amplified 
with the following thermocycler conditions: an initial denaturation at 95˚C for 1 min; 
18 cycles of 95˚C for 15 sec, 62˚C for 15 sec, and 65˚C for 2 min; a final extension at 
65˚C for 10 min; and a 4˚C hold. Following amplification, the samples were purified 
using a 1:1 dilution of AMPure beads as described above. 

Targeted enrichment and preparation of ONT sequencing libraries 
Following ligation of the PCR adapters, the four samples had the following 
concentrations: 36.0 ng/µl (SupCol), 25.2 ng/µl (PFC), 30.2 ng/µl (VCx), and 24.6 
ng/µl (caudate) according to genomic DNA screentape analysis (5067-5365 / 5067-
5365, Agilent). To prepare the hybridisation reaction, 1 µg of each of the samples 
was combined with 5 µg Cot-1 DNA (15279011, ThermoFisher) and 1 µl of 1mM 
blocking oligo (5’ 
AGGTTAAACACCCAAGCAGACGCCGCAATATCAGCACCAACAGAA 3') and dried 
down in a vacuum concentrator for 1h. The dry contents were resuspended by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 4, 2019. ; https://doi.org/10.1101/539882doi: bioRxiv preprint 

https://doi.org/10.1101/539882
http://creativecommons.org/licenses/by-nc-nd/4.0/


14	

addition of 7.5 µl hybridization buffer and 3 µl hybridization component A (SeqCap EZ 
Hybridization and Wash Kit: 05 634 261 001, Roche), mixed by tapping, briefly spun 
by microfuge, and denatured at 95oC for 10 min. The 10.5 µl contents were briefly 
spun by microfuge and immediately transferred to a pre-warmed 4.5 µl aliquot of the 
NimbleGen SeqCap EZ Capture probe in a 0.2 ml PCR tube housed in a 
thermocycler set to 47oC (lid 57oC). Following overnight incubation (~18 h), 100 µl M-
270 Streptavidin Dynabeads (65305, ThermoFisher) per sample were washed twice 
with 200 µl 1x wash buffer (SeqCap EZ Hybridization and Wash Kit: 05 634 261 001, 
Roche), once with 100 µl, and then placed in the thermocycler set to 47oC. Incubated 
samples (15 µl) were transferred immediately to the beads for 45 min. Non-target 
DNA was removed through washing the beads with buffers of the SeqCap EZ 
Hybridization and Wash Kit (05 634 261 001, Roche) as per manufacturers 
instructions with the following modifications: pipette-mixing was replaced by 
inversion-mixing and brief centrifugation. Beads were finally resuspended in 48 µl 
nuclease-free water. The following PCR reaction was set up: 48 µl sample; 2 µl PRM 
primers; 50 µl LongAmp Taq 2x master mix (M0287S, NEB). The reaction mixes 
were split into 50 µl aliquots and amplified with the following thermocycler conditions: 
initial denaturation at 95oC for 3 min; 22 cycles of 95oC for 15 sec, 62oC for 15 sec, 
and 65oC for 10 min; a final extension at 65oC for 10 min; and holding indefinitely at 
4oC. Resulting DNA was purified by a 10 min incubation with 70 µl (0.7X) Agencourt 
AMPure XP beads (A63880, Beckman Coulter), 2x 200 µl washes with 80% ethanol 
for 30 sec each, 3 min air drying, and elution in 52 µl nuclease-free water. Sample 
concentrations were determined by Qubit as: 43.5 ng/µl (SupCol), 48.6 ng/µl (PFC), 
30.5 ng/µl (VCx), 38.2 ng/µl (caudate). 

The captured samples were barcoded using ONT 1D native barcoding genomic DNA 
kit (EXP-NBD103), and the library prep was performed using the 1D genomic DNA by 
ligation kit and protocol for the PromethION sequencer (SQK-LSK109). The 
preparation was performed according to manufacturer recommendations with some 
modifications. Briefly, each sample underwent end-prep in a 60 µl reaction containing 
the product from capture, 7 µl Ultra II End-prep reaction buffer, and 3 µl Ultra end-
prep enzyme mix. The resulting DNA samples were purified with AMPure beads at a 
ratio of 1:1 as above. After end-prep, 120 ng of each sample was barcoded by 
ligation of a barcoding adaptor in a 50 µl reaction containing 2.5 µl of the respective 
barcode and 25 µl NEB Blunt/TA ligase master mix (M0367). The reaction was 
incubated at room temperature for 10 min and the resulting product was purified with 
AMPure beads at a 1:1 dilution as above. Then, 100 ng of each sample was 
combined into a final reaction to ligate on the sequencing adaptor in a 100 µl reaction 
containing 400 ng total combined DNA, 25 µl ligation buffer, 10 µl NEBNext Quick T4 
DNA ligase, and 5 µl adapter mix. The reaction was incubated for 10 min at room 
temperature and then purified with AMPure beads at a .55 ratio, to preserve the 
smaller cDNA fragments, at room temperature for 5 min. The DNA bound to the 
beads was then washed with and resuspended in 250 µl short fragment buffer and 
rebound to the magnets twice before being eluted from the beads for 10 min in 25 µl 
of elution buffer. A PRO002 PromethION flow cell was primed and loaded with the 
resulting 41.04 ng of captured and barcoded cDNA according to the manufacturer's 
recommendation. The LSK109 sequencing protocol was executed, and the 
sequencing ran for 52 hours.  

Read mapping and clustering of ONT reads 
ONT reads were base-called using Guppy base-calling software (ONT) (v1.8.5). 
Quality control of reads was undertaken using ONT ‘fastq deconcatenate’ (v0.6.2) 
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and POREquality (https://github.com/carsweshau/POREquality). Base-called reads 
were demultiplexed using Porechop (v0.2.3) (https://github.com/rrwick/Porechop) 
with the enforced barcode detection parameter. Demultiplexed ONT reads were 
mapped to a combined index comprising the human genome (hg38) and in silico 
chromosome (chrIS)23 using minimap236 (v2.14-r883). The following parameters were 
used: –ax splice --secondary=no. After retaining only uniquely mapped reads 
(mapQ=60), reads were processed using the Pinfish suite of tools 
(https://github.com/nanoporetech/pinfish). First, BAM files were converted into GFF 
files using the ‘spliced_bam2gff’ tool. We then used the ‘cluster_gff’ tool, which 
clusters together reads having similar exon/intron structure and creates a rough 
consensus of the clusters by taking the median of exon boundaries from all 
transcripts in the cluster. The following parameters were used: –c 3 –d 10 –e 30 –p 1. 
To assess the performance of ONT in sequencing RNA sequins, we isolated all 
clustered transcripts aligned to chrIS and compared them against the chrIS synthetic 
gene annotations using gffcompare40 (v0.10.6), with the following non-default 
parameters: –M –C –K. 

Illumina short-read sequencing 
Samples were spiked with RNA sequins23 (Mix A; 2% fractional abundance) before 
library preparation. RNA CaptureSeq was performed as previously described28, using 
the KAPA Stranded RNA-Seq Library Preparation Kit (Roche). Pre-sequencing 
quality control qPCR and LabChip GX results were normal. The samples were 
partitioned into capture pools by RNA yield similarity in order to minimize variation in 
sample dilution. Sequencing was carried out on an Illumina HiSeq 2500 instrument in 
high output mode, with 2 x 125 bp paired-end reads. 

Read mapping and assembly of short-read data 
Adapters were trimmed from reads using CutAdapt66 (v1.8.1) and basic quality 
control undertaken using FastQC 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were aligned 
using STAR37 (v2.5.3a) to a combined index comprising hg38 and chrIS. STAR was 
run with the following parameters: --alignMatesGapMax 1000000 --alignIntronMax 
1000000 --outFilterIntronMotifs RemoveNoncanonicalUnannotated. Alignments were 
then assembled into transcript models using Stringtie53 (v 1.3.3), without providing 
any reference annotations to guide the assembly process. The minimum isoform 
abundance of predicted transcripts for each locus was required to be at least 1% (–f 
0.01). Library type was set as --rf.  

Quantification of gene expression 
We compared quantitative gene expression measurements for ONT and Illumina 
using Salmon38 (v0.11.3), providing the chrIS annotation and our hybrid 
transcriptome as a reference. For ONT samples, we used the following non-default 
parameters: --fldMean 1000 --fldSD 100 --libtype U. For Illumina samples, we used --
libtype ISR. Salmon outputs expression measurements in transcripts per million 
(TPM). 

Assessment of capture efficiency and quantitative accuracy 
Uniquely mapped reads were isolated from BAM files using samtools67 (v1.6) ‘view’ 
(–q 60 for ONT or –q 255 for Illumina). BAM alignments were converted to BED12 
files using BEDtools68 (v2.25.0) ‘bamtobed’ tool (using the –split flag). We retrieved 
reads that mapped to targeted regions using BEDtools ‘intersect’; the on-target rate 
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was calculated as the number of reads mapping to targeted regions as a fraction of 
all reads mapping to hg38. 

To assess the performance of CaptureSeq, we plotted the observed abundance 
(TPM) of each sequin isoform against its input concentration (log10 scale). We then 
carried out simple linear regression of captured and non-captured sequins 
separately. The limit of detection (LoD) was defined as the spike-in transcript of 
lowest abundance that was detected in more than one sample. To estimate the 
enrichment provided by capture, we compared the measured abundance (TPM) of 
captured vs non-captured standards at each of the shared concentration points. At 
each shared point, we divided the average TPM for captured standards by the 
average TPM for non-captured standards, and then averaged all of these to obtain an 
overall enrichment. Coefficient of variation (CV) was calculated by dividing the 
standard deviation (SD) of each spike-in by its mean TPM across all four samples. 
To assess quantitative accuracy at the gene-level, we first counted the number of 
reads mapping uniquely to annotated sequin loci with featureCounts69 (v1.6.3) (using 
the –L option for ONT data). We then quantified gene expression by calculating the 
number of reads per gene per 10k reads (RPG10K)39 for each sequin locus. 

Assessing the uniformity of sequencing coverage 
To assess the uniformity of sequencing coverage, we calculated the read coverage of 
every base in every sequin exon targeted for capture (n=279) using BEDtools68 
(v2.25.0) ‘coverage’ (with –d and –split options). We then computed the mean and 
standard deviation (SD) for each exon using BEDtools ‘groupby’, then calculated 
coefficient of variation (SD / mean) from these metrics. We compared the difference 
between ONT and Illumina using a paired t-test (2-tailed). 

Generating a hybrid transcriptome 
To generate a hybrid transcriptome that leverages both long- and short-read data, we 
used the FLAIR41 tool (v1.2). First, we used FLAIR ‘correct’ by inputting spliced ONT 
read alignments (from minimap2) and correcting misaligned ONT splice junctions 
using genome annotations (GENCODE v29; with the –f option) and our 
accompanying Illumina splice junctions (with the –j option). We used the default 
window size of 10 bp for correcting splice sites. We then collapsed corrected reads 
into a non-redundant transcriptome using FLAIR ‘collapse’ with default parameters. 
This produced a PSL file containing corrected ONT reads, which we converted to 
BED and GTF files using the UCSC Table Browser https://genome.ucsc.edu/cgi-
bin/hgTables). 

We then undertook a number of steps in order to produce a high-confidence set of 
multi-exonic transcripts overlapping GWAS haplotype blocks associated with 
neuropsychiatric functions. First, we filtered our transcripts using gffread40 with the 
following options: –i 1000000 –U –N –M –K –T . We then annotated our transcripts 
using gffcompare40 (v0.10.6), providing GENCODE v29 as a reference annotation 
(and using the options –C –K). Any transcript with any the following gffcompare 
classification codes was removed: ‘e’, ‘p’, ‘r’ or ‘s’. Finally, we removed any transcript 
that met any of the following criteria: (i) was <200 nt in length, (ii) had <3 exons, or 
(iii) had no overlap with any capture probe. 

Comparison of our transcriptome to existing annotations 
Our set of filtered transcripts was split into unique introns and internal exons using in-
house Perl scripts (we disregarded terminal exons because their boundaries are 
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imprecise). We compared these feature counts with the current version of GENCODE 
(v29), three previous GENCODE releases (v3c, v10 and v19) and MiTranscriptome 
(v2)42. Only multi-exonic transcripts that overlapped targeted haplotype blocks were 
considered in this analysis. Hg19 annotations were converted to hg38 coordinates 
using LiftOver70.  

Assessing the protein-coding and evolutionary conservation of 
transcripts 
We assessed protein-coding capacity of all assembled transcripts with CPAT71 
(v1.2.3), using the prebuilt hexamer frequency table and training model (human) 
obtained from https://sourceforge.net/projects/rna-cpat/files/v1.2.2/prebuilt_model/. 
For putative coding transcripts (coding probability ≥0.364), open reading frames 
(ORFs) were predicted and annotated using TransDecoder72 (v5.3.0). Protein 
homology searches were carried out on selected transcripts using the BlastP73 and 
UniProt74 databases. Evolutionary conservation of transcripts was investigated using 
the phastCons 100-way vertebrate alignment75; the average score of all nucleotides 
in each transcript was computed using UCSC’s ‘bigWigAverageOverBed’ script70. For 
both analyses, previously annotated protein-coding transcripts and lncRNAs 
(GENCODE v29) were included as controls. 

Overlapping transcripts with independent signatures of transcription 
We retrieved promoter coordinates from our transcripts using BEDtools ‘flank’ (with –l 
1 –r 0 –s options). We downloaded the latest dataset of cap analysis of gene 
expression (CAGE) robust peaks (hg38) from the FANTOM5 consortium43. We used 
the BEDTools68 ‘window’ feature to identify transcripts whose TSS was within 500 bp 
of a CAGE robust peak on the same strand. We calculated odds ratios of enrichment 
using the script from Bartonicek et al. (2017)4. We also overlapped our transcript 
TSSs with the epigenetic marks that are typically associated with actively transcribed 
promoters (H3K4me1, H3K4me3 and H3K27ac). We downloaded broad peak calls 
for these marks (human brain) from the Roadmap Epigenomics Consortium44, again 
lifting them over to hg38 coordinates. Again, previously annotated protein-coding 
transcripts and lncRNAs (GENCODE v29) were included as controls. Finally, we 
overlapped our transcripts with a recently published dataset of conserved RNA 
structures (CRSs) which may be indicative of RNA-mediated functionality45. 

Long-range exon coordination analysis 
We used our previously developed scripts33,54 to look for coordination between distant 
pairs of exons. 

Visualizing genomic data 
Genomic alignments were visualized using the UCSC genome browser70 and IGV76 
(v2.4.10). 

Statistical analyses 
Statistical analyses and plotting were carried out using Prism (v7) and R (v3.5.0). 

Data availability 
Sequencing libraries have been deposited to GEO with the accession code 
GSE118158.  
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FIGURE LEGENDS 

Figure 1 | Schematic outline of experimental design. 
(a) First, haplotype blocks were predicted around 1,352 non-coding GWAS SNPs 
(coloured circles) associated with neurological phenotypes. Blocks were defined by 
identifying all SNPs in linkage disequilibrium (LD) with the GWAS SNP (white circles). 
Of the 1,023 blocks, 780 overlap an annotated exon (GENCODE v24), 81 are located 
entirely within an annotated intron, and 162 are intergenic. (b) Biotinylated 
oligonucleotide probes (orange bars) were designed to tile across haplotype blocks 
(with annotated protein-coding exons and repeat elements omitted). (c) Probes are 
used as baits to capture any transcripts generated from targeted regions, followed by 
pull-down enrichment and subsequent transcriptional profiling with both long- and 
short-read RNA sequencing. (d) Sequence reads are aligned to the genome (hg38) 
and a hybrid transcriptome is assembled by leveraging the advantages of both long- 
and short-read RNA-seq. 

Figure 2 | Validation of CaptureSeq design and ONT sequencing. 
(a) A subset of RNA sequins were targeted for capture as part of our CaptureSeq 
design (n=25/78 genes; 49/164 isoforms). By plotting the measured abundance 
(TPM; y-axis) against the known input concentration (x-axis) for captured (red) and 
non-captured (green) sequin isoforms, we can compare the quantitative accuracy of 
captured vs non-captured transcripts. Open circles indicate sequin isoforms that were 
not detected. Vertical dotted green line indicates the limit of detection (LoD) for non-
captured transcripts. By comparing the difference between the measured abundance 
of captured and non-captured transcripts, we observe a ~230-fold enrichment of 
CaptureSeq. Error bars represent standard deviation (SD) between the four replicate 
ONT samples. (b) Scatter plot shows the coefficient of variation (SD divided by 
mean) of each spike-in plotted against its respective input concentration, indicating 
the expression dependent bias of RNA-seq. 

Figure 3 | Transcriptional landscape of haplotype blocks associated with 
neuropsychiatric functions. 
(a) Bar charts show the number of transcripts, introns and internal exons contained in 
our filtered hybrid transcriptome (red) compared to existing annotations (four versions 
of GENCODE and MiTranscriptome v2). Only multi-exonic transcripts that overlap 
with targeted haplotype blocks are considered in this analysis. (b) Table shows the 
classification of transcripts in our hybrid transcriptome in relation to the latest 
GENCODE annotation (v29). (c) Cumulative frequency histograms show the coding 
potential of our transcripts, as assessed by CPAT. Colours refer to the categories 
defined in part (b). Vertical dotted line indicates the commonly used cut-off for human 
transcripts (0.364). GENCODE (v29) annotated lncRNAs (grey dotted line) and 
protein-coding genes (grey solid line) are also plotted for reference. (d) Box plots 
show the distribution of phastCons scores75 (vertebrate 100-way alignment) of our 
transcripts, coloured by type. Box edges indicate lower and upper quartiles, centre 
lines indicate median, notches indicate the 95% confidence interval around the 
median. (e) Density plots show the mean expression (log10 TPM) of transcripts 
across all four samples, as measured by Illumina short-read sequencing. 

Figure 4 | Identification of novel intergenic transcripts. 
(a) Bar charts indicate the fraction of transcription start sites (TSSs) occupied by cap 
analysis of gene expression (CAGE) peaks (blue), as well as the three epigenetic 
marks that are typically associated with actively transcribed promoters: H3K4me1 
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(red), H3K4me3 (green) and H3K27ac (purple). GENCODE (v29) lncRNAs and 
protein-coding genes are also plotted for reference. (b) Bar charts show the 
enrichment of the promoter regions of transcripts for CAGE peaks. Odds ratio of 
enrichment is plotted for novel intergenic transcripts compared to lncRNAs and 
protein-coding genes. (c, upper) Genome browser view shows a novel intergenic 
locus identified overlapping a GWAS haplotype block (solid black bar, top) associated 
with smoking behaviour (rs1847461) on chromosome 12. Transcripts from our filtered 
hybrid transcriptome are shown below, followed by spliced ONT sequencing 
coverage (red), spliced Illumina sequencing coverage (blue), PhyloP conservation 
track, and CAGE robust peaks. (c, lower) Two separate magnified views show novel 
TSSs supported by CAGE peaks and highly-conserved promoter regions. ONT read 
alignments are also shown. 

Figure 5 | Identification of novel internal coding exons in RIMS2 gene. 
(a) Genome browser view shows a ~570 kb GWAS haplotype block (solid black bar, 
top) on chromosome 8 associated with cocaine dependence (rs75688122). 
CaptureSeq detected multiple novel splice isoforms of RIMS2, a gene involved in 
neurotransmitter release. (b) Magnified views show three novel, highly conserved 
exons detected in the first intron of RIMS2, which are predicted to collectively add 56 
amino acids to the start of the RIMS2 protein. The first novel internal exon includes a 
start codon (left), while the second and third exons (right) are in-frame (33 and 87 bp, 
respectively). 
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