1	<i>Maturity2</i> , a novel regulator of flowering time in <i>Sorghum bicolor</i> , increases
2	expression of SbPRR37 and SbCO in long days delaying flowering
3	
4	
5	Running title: <i>Maturity2</i> - a novel regulator of flowering time in <i>Sorghum bicolor</i>
6	
7	
8	Anna I. Castal Ashlavi I. Mattiaan Sana N. Olaan Manish Thalman William I. Daanav?
9 10	Anna L. Casto ¹ , Ashley J. Mattison ¹ , Sara N. Olson ¹ , Manish Thakran ¹ , William L. Rooney ² , John E. Mullet ^{1*}
11	John E. Wullet
12	
13	
14	
15	
16	
17	
18	¹ Biochemistry and Biophysics Department, Texas A&M University, College Station, TX, United
19 20	States of America
20 21	² Soil and Crop Science Department, Texas A&M University, College Station, TX, United States
22	of America
23	
24	
24 25	
26	
27	
28	* Corresponding author
29	E mail: impllat@tamp. adv. (IEM)
30 31	E-mail: jmullet@tamu.edu (JEM)
32	
33	
34	[¶] These authors contributed equally to this work
35	

36 Abstract

37 Sorghum bicolor is a drought-resilient facultative short-day C4 grass that is grown for grain, 38 forage, and biomass. Adaptation of sorghum for grain production in temperate regions resulted 39 in the selection of mutations in *Maturity* loci $(Ma_1 - Ma_6)$ that reduced photoperiod sensitivity 40 and resulted in earlier flowering in long days. Prior studies identified the genes associated with 41 Ma₁ (PRR37), Ma₃ (PHYB), Ma₅ (PHYC) and Ma₆ (GHD7) and characterized their role in the 42 flowering time regulatory pathway. The current study focused on understanding the function and 43 identity of Ma₂. Ma₂ delayed flowering in long days by selectively enhancing the expression of 44 SbPRR37 (Ma₁) and SbCO, genes that co-repress the expression of SbCN12, a source of florigen. 45 Genetic analysis identified epistatic interactions between Ma_2 and Ma_4 and located QTL 46 corresponding to Ma_2 on SBI02 and Ma_4 on SBI10. Positional cloning and whole genome 47 sequencing identified a candidate gene for Ma_2 , Sobic.002G302700, which encodes a SET and 48 MYND (SYMD) domain lysine methyltransferase. Nine sorghum genotypes previously 49 identified as recessive for Ma_2 contained the mutated version of Sobic.002G302700 present in 50 $80M(ma_2)$.

51

52 Introduction

Sorghum bicolor is a drought resilient, short-day C4 grass that is grown globally for
grain, forage and biomass [1–4]. Precise control of flowering time is critical to achieve optimal
yields of sorghum crops in specific target production locations/environments. Sorghum
genotypes that have delayed flowering in long days due to high photoperiod sensitivity are highyielding sources of biomass for production of biofuels and specialty bio-products [3,5]. In

contrast, grain sorghum was adapted for production in temperate regions by selecting genotypes
that have reduced photoperiod sensitivity resulting in earlier flowering and reduced risk of
exposure to drought, heat, or cold temperatures during the reproductive phase. A range of
flowering times are found among forage and sweet sorghums [6]. Sweet sorghum genotypes with
longer vegetative growth duration have larger stems that have greater potential for sucrose
accumulation [6–8].

64 Flowering time is regulated by development, day length, phytohormones, shading, temperature, and the circadian clock [9–11]. In the long-day plant Arabidopsis thaliana, 65 66 circadian and light signals are integrated to increase the expression of *FLOWERING LOCUS T* 67 (FT) and flowering in long days. FT encodes a signaling protein synthesized in leaves that 68 moves through the phloem to the shoot apical meristem (SAM) where it interacts with 69 FLOWERING LOCUS D (FD) and reprograms the vegetative shoot apical meristem for 70 reproductive development [12,13]. Expression of circadian clock genes such as LATE 71 ELONGATED HYPOCOTYL (LHY) and TIMING OF CAB1 (TOC1) regulate the expression of 72 the clock output gene GIGANTEA (GI) and genes in the flowering time pathway [14–16]. 73 Photoperiod and circadian clock signals are integrated to control the expression and stability of 74 CONSTANS (CO) an activator of FT expression [17]. Under inductive long day (LD) 75 photoperiods, CO promotes the expression of FT which induces flowering in Arabidopsis [18]. 76 Many of the genes in the Arabidopsis flowering time pathway are found in sorghum and 77 other grass species such as Oryza sativa (rice) [10] and maize [19], however, the regulation of 78 flowering time in these grasses has diverged from Arabidopsis in several important ways. Both 79 rice and sorghum are facultative short-day (SD) plants. In rice, the expression of the FT-like gene 80 *Heading date 3a* (*Hd3a*) is promoted in SD [20]. In sorghum, expression of two different *FT*-

81 *like* genes, *SbCN8* and *SbCN12*, is induced when plants are shifted from LD to SD [21,22]. In 82 contrast to Arabidopsis, the rice and sorghum homologs of CO (rice Heading date1, OsHd1; 83 *SbCO*) repress flowering in LD [10,23]. Rice and sorghum encode two additional grass-specific 84 regulators of flowering Ehd1 and Ghd7. *Early heading date1* (Ehd1) activates the expression of 85 FT-like genes, and Grain number, plant height and heading date7 (Ghd7) represses the 86 expression of *EHD1* and flowering [24,25]. When sorghum is grown in short days, SbEhd1 and 87 SbCO induce the expression of SbCN8 and SbCN12, leading to floral induction [21,22,26,27]. 88 Under field conditions, time to flowering in sorghum varies from ~ 50 to >150 days after 89 planting (DAP) depending on genotype, planting location and date (latitude/day-length), and the 90 environment. A tall and "ultra-late" flowering sorghum variety called Milo Maize was 91 introduced to the United States in the late 1800s [28]. Shorter and earlier flowering Milo 92 genotypes such as Early White Milo and Dwarf Yellow Milo were selected from the introduced 93 Milo genotype to promote improved grain yield in temperate regions of the US [1,28,29]. 94 Genetic analysis determined that mutations in three independently segregating *Maturity* (*Ma*) 95 loci (Ma_1, Ma_2, Ma_3) were responsible for early flowering times in the Milo genotypes. A cross 96 between Early White Milo $(ma_1Ma_2Ma_3)$ and Dwarf Yellow Milo $(Ma_1ma_2ma_3)$ was used to 97 construct a set of Milo maturity standards, a series of nearly isogenic lines that differ at one or 98 more of the *Maturity* loci (Quinby and Karper 1945, Quinby 1966, Quinby, 1967). A fourth 99 *Maturity* locus (Ma_4) was discovered in crosses of Milo (Ma_4) and Hegari (ma_4) [30]. More 100 recent studies identified Ma_5 and Ma_6 [31]. Subsequent research showed that all of the Milos are 101 dominant for Ma_5 and recessive for ma_6 [23,26]. In addition to these six Ma loci, many other 102 flowering time quantitative trait loci (QTL) have been identified in sorghum [2,32–35].

103	Additional research has linked several of these QTL to genes such as SbEHD1 and SbCO that are
104	activators of SbCN8 and SbCN12 expression, sources of florigen in sorghum.
105	The genes corresponding to four of the six <i>Maturity</i> loci have been identified. Ma_1 , the
106	locus with the greatest influence on flowering time photoperiod sensitivity, encodes SbPRR37, a
107	pseudo-response regulator that inhibits flowering in LD [21]. Ma ₃ encodes phytochome B [36],
108	Ma_5 encodes phytochrome C [23], and Ma_6 encodes $Ghd7$ a repressor of flowering in long days
109	[26]. The genes corresponding to Ma_2 and Ma_4 have not been identified but recessive alleles at
110	either locus results in early flowering in long days in genotypes that are photoperiod sensitive
111	(Ma_1) [28]. Prior studies also noted that genotypes recessive for Ma_2 flower later in genotypes
112	that are photoperiod insensitive and recessive for Ma_1 and Ma_6 [28].
113	In this study, the impact of Ma_2 alleles on the expression of genes in the sorghum
114	flowering time pathway was characterized. A QTL corresponding to Ma_2 was mapped and a
115	candidate gene for Ma_2 identified by fine mapping and genome sequencing. The results show
116	that Ma_2 enhances Ma_1 (SbPRR37) and SbCO expression consistent with the impact of Ma_2
117	alleles on flowering time in genotypes that vary in Ma_1 alleles.
118	

119 Methods

120 Plant growing conditions and populations

The cross of 100M and 80M was carried out by the Sorghum Breeding Lab at Texas
A&M University in College Station, TX. F₁ plants were grown in the field in Puerto Rico and
self-pollinated to generate the F₂ population used in this study. The 100M/80M F₂ population

124 was planted in the spring of 2008 at the Texas A&M Agrilife Research Farm in Burleson

125 County, Texas (near College Station, TX).

126	The cross of Hegari and 80M was made in the greenhouse at Texas A&M University in
127	College Station, TX. F1 plants were confirmed and self-pollinated to generate the F2 population
128	used in this study. The Hegari/80M F_2 population (n = 432) was planted in the spring of 2011 in
129	the greenhouse in 18 L nursery pots in a 2:1 mixture of Coarse Vermiculite (SunGro
130	Horticulture, Bellevue, WA) to brown pasture soil (American Stone and Turf, College Station,
131	TX). All subsequent generations of Hegari/80M for fine mapping were grown in similar
132	conditions. Greenhouse-grown plants were watered as needed and fertilized every two weeks
133	using Peters general purpose 20-20-20 (Scotts Professional).
134	For circadian gene expression experiments, 100M and 80M genotypes were planted in
135	MetroMix 900 (Sungro Agriculture) in 6 L pots, and thinned to 3 plants/pot after 2 weeks. Plants
136	were grown in the greenhouse under 14 h days until 30 days after planting (DAP). After 30 days,
137	the plants were moved into growth chambers and allowed to acclimate for 3 days. The growth
138	chamber was set to 30°C and 14/10h L/D for the 3 days of entrainment and the first 24 h of
139	tissue collection. The lights were changed to constant light for the second 24 h of tissue
140	collection.

141

142 QTL mapping and multiple-QTL analysis

DNA was extracted from leaf tissue for all individuals described above as described in
the FastDNA Spin Kit manual (MP Biomedicals). All individuals in each mapping or HIF
population were genotyped by Digital Genotyping using FseI digestion enzyme as described in
Morishige et al [37]. DNA fragments were sequenced using the Illumina GAII platform and the

147 reads were mapped back to the sorghum reference genome (v1.0, Phytozome v6). Genetic maps 148 were created using MapMaker 3.0B with the Kosambi function [38]. QTL were mapped using 149 WinQTLCartographer (v2.5.010) using composite interval mapping with a 1.0 cM walk speed 150 and forward and backward model selection [39]. The threshold was set using 1000 permutations 151 and $\alpha = 0.05$. Upon release of v3.1 of the sorghum reference genome, the QTL coordinates were 152 updated [40].

153 To look for possible gene interactions multiple-QTL analysis was used in the Hegari/80M 154 F_2 population. A single QTL analysis using the EM algorithm initially identified two primary 155 additive QTL which were used to seed model selection. The method of Manichaikul et al. [41] 156 was employed for model selection as implemented in R/qtl for multiple-QTL analysis [42]. 157 Computational resources on the WSGI cluster at Texas A&M were used to calculate the 158 penalties for main effects, heavy interactions, and light interactions. These penalties were 159 calculated from 24,000 permutations for flowering time to find a significance level of 5% in the 160 context of a two-dimensional, two-genome scan.

161

162 Fine mapping of the *Ma*₂ QTL

163 All fine mapping populations for the Ma_2 QTL were derived from F₂ individuals from the 164 Hegari/80M population. The genetic distance spanning the Ma_2 locus is 2 cM corresponding to a 165 physical distance of ~1.8 Mbp, so 1000 progeny would be required to obtain 20 recombinants 166 within the Ma_2 QTL region. Six individuals that were heterozygous across the Ma_2 QTL were 167 self-pollinated to generate six heterogeneous inbred families (HIFs) totaling 1000 F₃ individuals. 168 These individuals were grown out in the greenhouse, and flowering time was recorded. They 169 were genotyped by Digital Genotyping as described above [37]. Two F₃ individuals that had 170 useful breakpoints with a heterozygous genotype on one side of the breakpoint were grown and 171 self-pollinated to generate an additional round of HIFs (F_4 , n = 150) that were planted in the 172 spring of 2013 and analyzed as described above. No new breakpoints were identified in the F_4 173 generation, so this process was repeated again to generate F_5 plants in the spring of 2014. 174

175 Circadian gene expression analysis

176 For the circadian gene expression analysis, 30-day-old plants were placed in a growth 177 chamber set to 14 h days for the first 24 h and constant light for the second 24 h at 30°C. Plants 178 were entrained for 3 d before beginning tissue collection. Leaf tissue was collected and pooled 179 from 3 plants every 3 h for 48 h. The experiment was repeated three times for a total of three 180 biological replicates. RNA was extracted from each sample using the Direct-Zol[™] RNA 181 Miniprep Kit (Zymo Research) according to the kit instructions. cDNA was synthesized using 182 SuperScript III kit for qRT-PCR (Invitrogen) according to the kit instructions. Primers for 183 sorghum flowering pathway genes were developed previously, and primer sequences are 184 available in Murphy et al [21]. Primer sequences for Ma_2 are available in S1 Table. Relative 185 expression was determined using the comparative cycle threshold (C_t) method. Raw C_t values for 186 each sample were normalized to C_t values for the reference gene *SbUBC* (Sobic.001G526600). 187 Reference gene stability was determined previously [43]. $\Delta\Delta C_t$ values were calculated relative to 188 the sample with the highest expression (lowest C_t value). Relative expression values were 189 calculated with the $2^{-\Delta\Delta Ct}$ method [44]. Primer specificity was tested by dissociation curve 190 analysis and gel electrophoresis of qRT-PCR products. 191

192 Ma₂ phylogenetic analysis

193	Protein sequences of the closest homologs of Ma ₂ were identified using BLAST analysis.
194	Protein sequences were aligned using MUSCLE [45] and visualized using Jalview [46].
195	Evolutionary trees were inferred using the Neighbor-Joining method [47] in MEGA7 [48]. All
196	positions containing gaps and missing data were eliminated.
197	

198 *Ma*₂ DNA sequencing and whole genome sequence analysis

Whole genome sequence reads of 52 sorghum genotypes including 100M and 80M were
obtained from Phytozome v12. Base quality score recalibration, INDEL realignment, duplicate
removal, joint variant calling, and variant quality score recalibration were performed using
GATK v3.3 with the RIG workflow [49]. Sobic.002G302700 was sequenced via Sanger
sequencing in the genotypes in Table 1 according to the BigDye Terminator Kit (Applied
Biosystems). Primers for template amplification and sequencing are provided in S1 Table.

206 **Results**

207 Effects of *Ma*₂ alleles on flowering pathway gene expression

The recessive ma_2 -allele in 80M ($Ma_1ma_2Ma_3Ma_4Ma_5ma_6$) was previously reported to cause 80M to flower earlier than100M ($Ma_1Ma_2Ma_3Ma_4Ma_5ma_6$) in long days [28]. To help elucidate how Ma_2 modifies flowering time, we investigated the impact of Ma_2 alleles on the expression of genes in sorghum's flowering time pathway. Gene expression was analyzed by

212	qRT-PCR using RNA isolated from 100M (Ma_2) and 80M (ma_2) leaves collected every 3 hours
213	for one 14h light/10h dark cycle and a second 24-hour period of constant light.
214	SbPRR37 is a central regulator of photoperiod sensitive flowering in sorghum that acts by
215	repressing the expression of SbCN (FT-like) genes in LD [21]. SbPRR37 expression in 100M and
216	80M grown in long days peaked in the morning and again in the evening as previously observed
217	[21] (Fig 1). The amplitude of both peaks of <i>SbPRR37</i> expression was reduced in 80M (ma_2)
218	compared to 100M (Ma_2) (Fig 1A). SbCO also shows peaks of expression in the morning
219	(dawn) and in the evening (~14h) [21] (Fig 5C). Analysis of SbCO expression in 100M and 80M
220	showed that both peaks of SbCO expression were reduced in 80M compared to 100M (Fig 1B).
221	
222 223 224 225 226 227 228 229 230	 Fig 1. Circadian expression of genes regulating flowering in <i>S. bicolor</i> in 100M and 80M under long days. (A) Expression of <i>SbPRR37</i> in 100M (solid black lines) and 80M (dashed red lines). The expression peaks of <i>SbPRR37</i> are reduced in 80M. This is consistent with earlier flowering in 80M because <i>SbPRR37</i> represses the expression of the sorghum <i>FT</i>-like genes. (B) Expression of <i>SbCO</i> in 100M and 80M. Expression peaks of <i>SbCO</i> are also reduced in 80M. This is consistent with earlier flowering in 80M because under long days <i>SbCO</i> is a repressor of flowering. All expression values are normalized to <i>SbUBC</i> and are the mean of 3 biological replicates.
231	SbCN8, SbCN12, and SbCN15 are homologs of AtFT that encode florigens in sorghum
232	[22]. Expression of SbCN8 and SbCN12 increases when sorghum plants are shifted from LD to
233	SD, whereas SbCN15 shows minimal response to day length [21,26]. SbPRR37 and SbCO are
234	co-repressor of the expression of SbCN8 and SbCN12 in long days, therefore, the influence of
235	Ma_2 alleles on SbCN8/12/15 expression was investigated [21,27]. When plants were grown in
236	long days, expression of SbCN12 was ~10 fold higher in 80M compared to 100M consistent with
237	earlier flowering in 80M (Fig 2).
238	

239 Fig 2. Expression of the S. bicolor FT-like genes SbCN8, SbCN12, and SbCN15 in long days 240 at the expected peak of expression. 241 Expression of SbCN genes are all elevated in 80M, which is consistent with earlier flowering in 242 that genotype. All expression values are normalized to SbUBC and are the mean of 3 biological replicates. Fold change was calculated as 2^{-[Ct(100M)-Ct(80M)]}. 243 244 245 Previous studies showed that SbGHD7 represses SbEHD1 expression and that alleles of 246 SbGHD7 differentially affect SbCN8 expression (>SbCN12) [26]. Analysis of SbEHD1 and 247 SbGHD7 expression in 100M and 80M showed that Ma_2 alleles modify the expression of these 248 genes only to a small extent (S1 Fig). 249 The timing of the two daily peaks of *SbPRR37* and *SbCO* expression in sorghum is 250 regulated by the circadian clock [21,26]. Therefore, it was possible that Ma2 modifies 251 *SbPRR37/SbCO* expression by altering clock gene expression. However, expression of the clock 252 genes TOC1 and LHY was similar in 100M and 80M (S1 Fig). Taken together, these results show 253 that Ma₂ is an activator of SbPRR37 and SbCO expression in long days. Prior studies showed 254 that co-expression of SbPRR37 and SbCO in long days inhibits expression of SbCN12 and floral 255 initiation [27]. Later flowering in sorghum genotypes that are Ma_1Ma_2 vs. Ma_1ma_2 in long days 256 is consistent with lower SbCN12 expression in Ma_1Ma_2 genotypes.

257

258 Genetic analysis of Ma2 and Ma4

259 An F_2 population derived from a cross of 100M (Ma_2) and 80M (ma_2) was generated to

260 map the Ma_2 locus. Because 100M and 80M are nearly isogenic lines that differ at Ma_2 , only

261 Ma_2 alleles were expected to affect flowering time in this population [28]. The F₂ population (n =

 $\label{eq:262} \ \ \ \sim 1100) \ segregated \ for \ flowering \ time \ in \ a \ 3:1 \ ratio \ as \ expected. \ The \ parental \ lines \ and \ F_2$

263 individuals were genotyped by Digital Genotyping (DG) which identifies single nucleotide

264 polymorphism (SNP) markers in thousands of sequenced sites that distinguish the parents of a

265 population [37]. The near isogenic nature of the parental lines resulted in a very sparse genetic

- 266 map that lacked coverage of large regions of the sorghum genome including all of the long arm
- 267 of SBI02. In retrospect, no Ma₂ QTL for flowering time was identified using this genetic map
- 268 because the gene is located on the long arm of SBI02 (see below).
- 269 To overcome the limitations associated with the 80M/100M population, a second
- 270 mapping population was created to identify the genetic locus associated with Ma_2 . An F₂
- 271 population (n = 215) that would segregate for Ma2 and Ma4 was constructed by crossing Hegari
- 272 $(Ma_1Ma_2Ma_3ma_4Ma_5ma_6)$ and 80M $(Ma_1ma_2Ma_3Ma_4Ma_5ma_6)$ [30,50]. The population was
- 273 grown in a greenhouse under long day conditions and phenotyped for days to flowering. QTL for

274 flowering time were identified on SBI02 and SBI10 (Fig 3). Recessive alleles of Ma2 and Ma4

- 275 result in earlier flowering when plants are grown in long days. The Hegari haplotype across the
- 276 QTL on SBI10 was associated with early flowering therefore this QTL corresponds to Ma_4 (S3
- 277 Fig). The 80M haplotype across the QTL on SBI02 was associated with early flowering therefore
- 278 the QTL on SBI02 corresponds to Ma_2 .
- 279

280 Fig 3. Quantitative trail locus (QTL) map of flowering time in the Hegari/80M F₂ 281 population.

282 Two QTL were identified for variation in flowering time in the F_2 population derived from 283 Hegari $(Ma_1Ma_2Ma_3ma_4)$ and 80M $(Ma_1ma_2Ma_3Ma_4)$. This population was expected to segregate 284 for Ma_2 and Ma_4 . Each recessive Ma allele causes earlier flowering. The QTL on LG10 285 corresponds to Ma_4 because F₂ individuals carrying the Hegari allele contributed to accelerated 286 flowering. F₂ individuals carrying the 80M allele at the QTL on LG02 flowered earlier, so this 287 QTL corresponds to Ma_2 .

288

Epistatic interactions between Ma_2 and Ma_4 289

290 Previous studies indicated an epistatic interaction exists between Ma_2 and Ma_4 [28].

291 Therefore, Multiple QTL Mapping (MQM) analysis [51] was employed, using data from the

- 292 Hegari/80M F₂ population, to identify additional flowering time QTL and interactions amongst
- the QTL as previously described [52]. MQM analysis identified the QTL for flowering time on
- SBI02 and SBI10 and an additional QTL on SBI09. Additionally, an epistatic interaction was
- identified between Ma_2 and Ma_4 (pLOD = 42). Interaction plots showed that in a dominant Ma_4
- background, a dominant allele at Ma_2 delays flowering, while in a recessive Ma_4 background,
- 297 Ma_2 has a minimal impact on flowering time (Fig 4). The interaction between Ma_2 and Ma_4
- identified by MQM analysis is consistent previous observations that in a recessive ma_4
- 299 background flowering is early regardless of allelic variation in Ma_2 [28].
- 300

301 Fig 4. Interaction plots for the Ma2 QTL and the Ma4 QTL

There is a known interaction between Ma_2 (represented by marker c2_68327634) and Ma_4 (represented by marker c10_3607821). This interaction was identified by multiple QTL mapping (MQM). Dominant alleles of the Ma genes delay flowering. In a recessive ma4 background (AA at c2_68327634), the effect of Ma_2 on days to flowering is reduced. A represents the 80M allele and B represents the Hegari allele at each QTL. Reciprocal plots are shown.

308 Ma2 candidate gene identification

309	The Hegari/80M F_2 population located Ma_2 on SBI02 between 67.3 Mbp to 69.1 Mbp
310	(Fig 5). To further delimit the Ma_2 locus, six lines from the Hegari/80M population that were
311	heterozygous across the Ma_2 QTL but fixed across the Ma_4 locus (Ma_4Ma_4) were selfed to create
312	heterogeneous inbred families (HIFs) (n=1000 F ₃ plants) [53]. Analysis of these HIFs narrowed
313	the region encoding Ma_2 to ~600 kb (67.72 Mb-68.33 Mb) (Fig 5). Genotypes that were still
314	heterozygous across the delimited locus were selfed and 100 F_4 plants were evaluated for
315	differences in flowering time. This process narrowed the Ma_2 locus to a region spanning ~500 kb
316	containing 76 genes (67.72Mb-68.22Mb) (Fig 5, S2 Table).

317

318 Fig 5. Fine-mapping of the Ma2 QTL.

319 The Ma_2 QTL spans from 67.3 Mpb to 69.1 Mbp (light blue bar). Five F₂ individuals that were 320 heterozygous across the Ma₂ QTL were self-pollinated to generate heterogeneous inbred families 321 (HIFs) totaling 1000 F₃ individuals. Genotype and phenotype analysis of these HIFs narrowed 322 the QTL region to ~600 kb (darker blue bar). Two additional rounds of fine-mapping narrowed 323 the QTL region to ~500 kb (vertical dashed lines). This region contained 76 genes. The 324 genotypes of relevant HIFs and the parents are shown to the left and their corresponding days to 325 flowering are shown to the right. Blue regions correspond to the 80M genotype and red regions 326 correspond to the Hegari genotype. Purple regions are heterozygous.

327

328	The low rate of recombination across the Ma_2 locus led us to utilize whole genome
329	sequencing in conjunction with fine mapping to identify a candidate gene for Ma_2 . Since 100M
330	and 80M are near isogenic lines that have very few sequence differences along the long arm of
331	SBI02 where the Ma_2 QTL is located, whole genome sequences (WGS) of 100M and 80M were
332	generated in collaboration with JGI (sequences available at www.phytozome.jgi.doe.gov). The
333	genome sequences were scanned for polymorphisms within the 500 kb locus spanning Ma_2 . Only
334	one T \rightarrow A single nucleotide polymorphism (SNP) located in Sobic.002G302700 was identified
335	that distinguished 100M and 80M within the region spanning the Ma_2 locus. The T \rightarrow A
336	mutation causes a Lys141* change in the third exon, resulting a truncated protein. A 500 bp
337	DNA sequence spanning the T to A polymorphism in Sobic.002G302700 was sequenced from
338	80M and 100M to confirm the SNP identified by comparison of the whole genome sequences
339	(Table 1). The T \rightarrow A point mutation was present in 80M (<i>ma</i> ₂) whereas 100M (<i>Ma</i> ₂) encoded a
340	functional version of Sobic.002G302700 that encodes a full length protein. Since this mutation
341	was the only sequence variant between 100M and 80M in the fine-mapped locus,
342	Sobic.002G302700 was identified as the best candidate gene for Ma_2 .
343	Sobic.002G302700 is annotated as a SET (Suppressor of variegation, Enhancer of Zeste,
344	Trithorax) and MYND (Myeloid-Nervy-DEAF1) (SMYD) domain-containing protein. SMYD
345	domain family proteins in humans have been found to methylate histone lysines and non-histone

346	targets and have roles in regulating chromatin state, transcription, signal transduction, and cell
347	cycling [54,55]. The SET domain in SMYD-containing proteins is composed of two sub-
348	domains that are divided by the MYND zinc-finger domain. The SET domain includes conserved
349	sequences involved in methyltransferase activity including nine cysteine residues that are present
350	in the protein encoded by Sobic.002G303700 (Fig 6) [56]. The MYND domain is involved in
351	binding DNA and is enriched in cysteine and histidine residues [57]. Protein sequence alignment
352	of Sobic.002G302700 homologs revealed that the SYMD protein candidate for Ma2 is highly
353	conserved across flowering plants (Fig 6).
354	
355 356 357 358 359 360	Fig 6. Alignment of Sobic.002G302700 with its closest homologs in several plant species. Sobic.002G302700 is highly conserved across plant species. It is annotated as a Set and MYND (SMYD) protein. SMYD proteins have lysine methyltransferase activity. The MYND region is highlighted in red. The nine conserved Cys residues typical of SMYD proteins are indicated by asterisks.
361	To learn more about Ma2 regulation, the expression of Sobic.002G302700 in 100M and
362	80M was characterized during a 48h L:D/L:L cycle. Ma ₂ showed a small increase in expression
363	from morning to evening and somewhat higher expression in 100M compared to 80M during the
364	evening (S1 Fig).
365	

366 Distribution of Ma₂ alleles in the sorghum germplasm

367 Recessive *ma*₂ was originally found in the Milo background and used to construct Double

- **368** Dwarf Yellow Milo $(Ma_1ma_2ma_3Ma_4Ma_5ma_6)$ [28]. Double Dwarf Yellow Milo was crossed to
- Early White Milo $(ma_1Ma_2Ma_3Ma_4Ma_5ma_6)$ and the progeny selected to create 100M, 80M and
- 370 the other Milo maturity standards [1,28,58]. Several of the Milo maturity standards were
- 371 recorded as recessive Ma₂ (80M, 60M, SM80, SM60, 44M, 38M) and others as Ma₂ dominant

372 (100)	1, 90M, SM100	, SM90, 52/58	A). In order to con	onfirm the Ma_2 gen	otype of the maturity
-----------	---------------	---------------	---------------------	-----------------------	-----------------------

- 373 standards, the 500 bp sequence spanning the Lys141* mutation in Sobic.002G302700 was
- 374 obtained from most of these genotypes (Table 1). Kalo was also identified as carrying a recessive
- allele of *Ma*₂. Kalo was derived from a cross of Dwarf Yellow Milo (*ma*₂), Pink Kafir (*Ma*₂),
- and CI432 (Ma_2), therefore it was concluded that DYM is the likely source of recessive ma_2 [28].
- 377 Sequence analysis showed that the genotypes previously identified as ma_2 including Kalo, 80M,
- 378 SM80, 60M, 44M, 38M, and 58M carry the recessive mutation in Sobic.002G302700 identified
- in 80M. 100M, SM100, and Hegari that were identified as Ma_2 , did not contain the mutated
- version of Sobic.002G302700 (Table 1). Additionally, sequences of *Ma*₂ from 52 sorghum
- 381 genotypes with publicly available genome sequences were compared [40]. Sobic.002G302700
- 382 was predicted to encode functional proteins in all except one of these sorghum genotypes. A
- 383 possible second recessive Ma₂ allele was found in IS3614-2 corresponding to an M83T missense
- mutation that was predicted to be deleterious by PROVEAN [59].
- 385

Table 1. Sequence variants of Sobic.002G203700 and their predicted effect on protein
 function

Genotype	Historical Ma2 allele	Sequence variant	Effect on protein function
100M	Ma ₂	-	-
SM100	Ma_2	-	-
SM90	Ma_2	-	-
Hegari	Ma_2	-	-
80M	ma_2	L141*	Deleterious
SM80	ma_2	L141*	Deleterious
60M	ma_2	L141*	Deleterious
44M	ma_2	L141*	Deleterious
38M	ma_2	L141*	Deleterious
58M	ma_2	L141*	Deleterious
Kalo	ma_2	L141*	Deleterious
IS3614-2	-	M83T	Deleterious

*Sequenced by Sanger sequencing

390 Discussion

391	Sorghum is a facultative short day plant. In photoperiod sensitive sorghum genotypes,							
392	following the vegetative juvenile phase, day length has the greatest impact on flowering time							
393	under normal growing conditions. The development of early flowering grain sorghum adapted to							
394	temperate regions of the US was based on the selection of mutations in numerous genes that							
395	reduced photoperiod sensitivity. Genetic analysis of the loci and genes containing these							
396	mutations beginning in the 1940's [50,58] identified six <i>Maturity</i> loci (Ma_1 - Ma_6) that resulted in							
397	earlier flowering time when plants were grown in long days. Recessive alleles at each of the six							
398	Ma loci reduces photoperiod sensitivity [30,31,58]. Molecular identification of the genes							
399	corresponding to Ma_1 , Ma_3 , Ma_5 and Ma_6 and other genes in the sorghum flowering time							
400	pathway (i.e., SbCO, SbEHD1, SbCN8/12) and an understanding of their regulation by							
401	photoperiod and the circadian clock led to the model of the flowering time pathway shown in							
402	Figure 7 [60]. The current study showed that Ma2 represses flowering in long days by increasing							
403	the expression of SbPRR37 (Ma_1) and SbCO. The study also located QTL for Ma_2 and Ma_4 ,							
404	confirmed an epistatic interaction between Ma_2 and Ma_4 , and identified a candidate gene for							
405	Ma_2 .							
406								
407 408 409 410 411	Fig 7. A model of the flowering time regulatory pathway in <i>S. bicolor.</i> Ma_2 and Ma_4 work codependently to enhance the expression of <i>SbPRR37</i> and <i>SbCO</i> . In LD, SbPRR37 and SbCO in turn repress the expression of the <i>SbCN</i> genes, especially <i>SbCN12</i> , to repress the floral transition.							
412	The recessive ma_2 allele characterized in this study arose in a highly photoperiod							
413	sensitive Milo genotype that was introduced into the US in the late 1800's and then selected for							

414 early flowering to enhance grain production. Quinby and Karper [29] created near isogenic Milo

415 maturity genotypes with allelic variation at specific Ma loci to facilitate genetic and 416 physiological analysis of flowering time regulation. In the current study, we utilized two of these 417 maturity genotypes, 100M ($Ma_1Ma_2Ma_3Ma_4Ma_5ma_6$) and 80M ($Ma_1ma_2Ma_3Ma_4Ma_5ma_6$), to 418 characterize how allelic variation in Ma_2 affects the expression of genes in the sorghum 419 photoperiod regulated flowering time pathway (Fig 7). This analysis showed that mutation of 420 ma_2 (80M) significantly reduced the amplitude of the morning and evening peaks of SbPRR37 421 and SbCO expression compared to 100M (Ma_2) without altering the timing of their expression. 422 In addition, the expression of SbCN12 (FT-like) increased 8-fold in leaves of 80M compared to 423 100M consistent with earlier flowering in 80M. In contrast, expression of clock genes (TOC1, 424 *LHY*) and other genes (i.e., GHD7, EHD1) in the photoperiod regulated flowering time pathway 425 were modified to only a small extent by allelic variation in Ma_2 . Based on these results, we 426 tentatively place Ma_2 in the flowering time pathway downstream of day length sensing 427 phytochromes and circadian clock regulation and identify Ma_2 as a factor that enhances 428 SbPRR37 and SbCO expression (Fig 7). 429 The differential increase in SbCN12 expression in 80M (vs. 100M) is consistent with 430 differential inhibition of SbCN12 expression in long days by the concerted action of SbPRR37 431 and SbCO which has been previously shown to inhibit SbCN12 expression [27]. Prior studies 432 showed that 100M (Ma_2) flowers later than 80M (ma_2) in long days [28]. The impact of Ma_2 433 alleles on the expression of SbPRR37 and SbCO is consistent with the effect of these alleles on 434 flowering time in long days. Genetic studies showed that floral repression mediated by SbPRR37 435 requires SbCO as a co-repressor [27]. Therefore, enhanced expression of both SbPRR37 (Ma₁) 436 and SbCO by Ma_2 in Ma_1Ma_2 genotypes in long days is consistent with delayed flowering under 437 these conditions relative to genotypes such as 80M that are Ma_1ma_2 . Molecular genetic studies

438 also showed that SbCO is an activator of *SbCN12* expression and flowering in ma_1 genetic

439 backgrounds [27]. This is consistent with the observation that ma_1Ma_2 genotypes flower earlier

440 than ma_1ma_2 genotypes when grown in long days [28].

441

442 Interactions between Ma_2 and Ma_4

443 Multiple QTL (MQM) analysis of results from a population derived from Hegari/80M 444 identified an interaction between Ma_2 and Ma_4 as well as one additional flowering QTL on 445 SBI09. Flowering time QTL on SBI09 have been identified in other mapping populations, but 446 the gene(s) involved have not been identified [33,34]. The interaction between Ma_2 and Ma_4 447 confirmed previous observations that recessive ma_4 causes accelerated flowering in long days in 448 Ma_1Ma_2 genotypes [28]. Interestingly, the influence of Ma_2 and Ma_4 alleles on flowering time is 449 affected by temperature [28,61]. The influence of temperature on flowering time pathway gene 450 expression in 80M and 100M in the current study was minimized by growing plants at constant 451 30C. However, analysis of the temperature dependence of Ma2 and Ma4 on flowering time may 452 help elucidate interactions between photoperiod and flowering time that have been previously 453 documented [28,62]. Positional cloning of Ma_4 is underway to better understand the molecular 454 basis of Ma_2 and Ma_4 interaction and their impact on flowering time.

455

456 Identification of a candidate gene for *Ma*₂

457 A mapping population derived from Hegari/80M that segregated for Ma₂ and Ma₄
458 enabled localization of the corresponding flowering time QTL in the sorghum genome (SBI02,
459 Ma₂; SBI10, Ma₄). The Ma₂ QTL on SBI02 was fine-mapped using heterozygous inbred families

460 (HIFs) from Hegari/80M. Several rounds of fine-mapping delimited the QTL to a ~500kb region 461 containing 76 genes. Low recombination rates in this region of SBI02 made it difficult to delimit 462 the OTL further using break point analysis therefore comparison of genome sequences from 80M 463 and 100M was used to help identify a candidate gene for Ma2. The recessive ma_2 allele present 464 in 80M arose in a Milo genotype similar to 100M [28] and genetic analysis of 100M and 80M 465 showed that these near isogenic genotypes lacked DNA markers on the long arm of SBI02 where 466 Ma_2 is located. Indeed, a scan of the whole genome sequences of 100M and 80M identified only 467 a single T to A mutation in the 500 kb region spanning the fine-mapped Ma_2 locus. This 468 mutation caused a Lys141* change in the third exon of Sobic.002G302700 resulting in protein 469 truncation. Based on this information Sobic.002G302700 was tentatively identified as the best 470 candidate gene for Ma_2 . 471 Sobic.002G302700 encodes a SET (Suppressor of variegation, Enhancer of Zeste, 472 Trithorax) and MYND (Myeloid-Nervy-DEAF1) (SMYD) domain containing protein. In 473 humans, SMYD proteins act as lysine methyltransferases, and the SET domain is critical to this 474 activity. Therefore, Ma₂ could be altering the expression of SbPRR37 and SbCO by modifying 475 histones associated with these genes. The identification of this SMYD family protein's 476 involvement in flowering in sorghum as well as the identification of highly conserved homologs 477 in other plant species suggests that Ma2 may correspond to a novel regulator of sorghum 478 flowering. While a role for SYMD-proteins (lysine methyltransferases) as regulators of 479 flowering time has not been previously reported, genes encoding histone lysine demethylases

- 480 (i.e., JMJ30/32) have been found to regulate temperature modulated flowering time in
- 481 Arabidopsis [63].

482 J.R. Quinby [50] identified only one recessive allele of Ma_2 among the sorghum 483 genotypes used in the Texas sorghum breeding program. The maturity standard lines including 484 80M that are recessive for ma_2 and the genotype Kalo were reported to be derived from the same 485 recessive ma_2 Milo genotype [28]. To confirm this, Ma_2 alleles in the relevant maturity standards 486 and Kalo were sequenced confirming that all of these ma_2 genotypes carried the same mutation 487 identified in 80M (Table 1). Among the 52 sorghum genotypes with available whole genome 488 sequences, only 80M carried the mutation in Ma2 [40]. One possible additional allele of ma_2 was 489 identified in IS36214-2, which contained a M83T missense mutation that was predicted to be 490 deleterious to protein function by PROVEAN [59]. 491 In conclusion, we have shown that Ma_2 represses flowering in long days by promoting 492 the expression of the floral repressor SbPRR37 and SbCO, a gene that acts as a co-repressor in 493 long days (Fig 7). Sobic.002G302700 was identified as the best candidate for the sorghum 494 *Maturity* locus Ma_2 although further validation such as targeted mutation of Sobic.002G302700 495 in a Ma_1Ma_2 sorghum genotype or complementation of Ma_1ma_2 genotypes will be required to 496 confirm this gene assignment. The identification of this gene and its interaction with Ma_4 begins 497 to elucidate a new element of the photoperiod flowering regulation pathway in sorghum. 498

499 Acknowledgements

- 500 This research was supported by the Perry Adkisson Chair in Agricultural Biology and by the
- 501 Agriculture and Food Research Initiative Competitive Grant 2016-67013-24617 from the USDA
- 502 National Institute of Food and Agriculture. The authors would like to thank Dr. Daryl Morishige
- 503 for his assistance in performing the Hegari/80M cross as well as Robin Poncik for her assistance
- 504 in recording flowering dates.

505

506 **References**

- 507
- Quinby JR. The Genetic Control of Flowering and Growth in Sorghum. Adv Agron.
 1974;25:125–62.
- 510 2. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. Whole-genome sequencing
 511 reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat
 512 Commun. 2013;4:337–42.
- 513 3. Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, et al. Energy
 514 sorghum--a genetic model for the design of C4 grass bioenergy crops. J Exp Bot.
 515 2014;65(13):3479–89.
- 516 4. Boyles RE, Brenton ZW, Kresovich S. Genetic and Genomic Resources of Sorghum to
 517 Connect Genotype with Phenotype in Contrasting Environments. Plant J. 2018;19–39.
- 518 5. Olson SN, Ritter K, Rooney W, Kemanian A, McCarl BA, Zhang Y, et al. High biomass
 519 yield energy sorghum: developing a genetic model for C4 grass bioenergy crops. Biofuels,
 520 Bioprod Biorefining. 2012;6(3):246–56.
- 521 6. Burks PS, Felderhoff TJ, Viator HP, Rooney WL. The influence of hybrid maturity and planting date on sweet sorghum productivity during a harvest season. Agron J. 2013;105(1):263–7.
- 524 7. Teetor VH, Duclos D V., Wittenberg ET, Young KM, Chawhuaymak J, Riley MR, et al.
 525 Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona.
 526 Ind Crops Prod. 2011;34(2):1293–300.
- 8. Rooney WL, Blumenthal J, Bean B, Mullet JE. Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioprod Biorefining. 2007;1:147–57.
- 529 9. Song YH, Ito S, Imaizumi T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. Elsevier Ltd; 2013;18(10):575–83.
- 531 10. Tsuji H, Taoka KI, Shimamoto K. Florigen in rice: Complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol. Elsevier Ltd; 2013;16:228–35.
- 534 11. Sanchez SE, Kay SA. The plant circadian clock: from a simple timekeeper to a complex developmental manager. Cold Spring Harb Perspect Biol. 2016;a027748.
- 536 12. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, et al. Long-Distance Signaling
 537 in Floral Induction of Arabidopsis. Science (80-). 2007;316:1030–3.
- 538 13. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, et al. FD, a bZIP
 539 protein mediating signals from the floral pathway integrator FT at the shoot apex. Science
 540 (80-). 2005;309:1052–6.
- 541 14. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, et al. The late
 542 elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the
 543 photoperiodic control of flowering. Cell. 1998;93(7):1219–29.
- 544 15. Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA. Circadian clock mutants in
 545 Arabidopsis identified by luciferase imaging. Science (80-). 1995;267(5201):1161 LP546 1163.
- 547 16. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science (80-). 1999;285(5433):1579–82.
- 550 17. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G.
 551 CONSTANS mediates between the circadian clock and the control of flowering in

- **552** Arabidopsis. Nature. 2001;410(6832):1116.
- Turnbull C. Long-distance regulation of flowering time. J Exp Bot. 2011;62(13):4399–413.
- 555 19. Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M. A gene regulatory
 556 network model for Floral transition of the shoot apex in maize and its dynamic modeling.
 557 PLoS One. 2012;7(8).
- 558 20. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a Protein Is a Mobile
 559 Flowering Signal in Rice. Science (80-). 2007;316:1033–6.
- 560 21. Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, et al.
 561 Coincident light and clock regulation of controls photoperiodic flowering in sorghum.
 562 Proc Natl Acad Sci U S A. 2011;37:1–6.
- 563 22. Wolabu TW, Zhang F, Niu L, Kalve S, Bhatnagar-Mathur P, Muszynski MG, et al. Three
 564 FLOWERING LOCUS T-like genes function as potential florigens and mediate
 565 photoperiod response in sorghum. New Phytol. 2016;210:946–59.
- 566 23. Yang S, Murphy RL, Morishige DT, Klein PE, Rooney WL, Mullet JE. Sorghum
 567 Phytochrome B Inhibits Flowering in Long Days by Activating Expression of SbPRR37
 568 and SbGHD7, Repressors of SbEHD1, SbCN8 and SbCN12. PLoS One.
 569 2014;9(8):e105352.
- 570 24. Cho L-H, Yoon J, Pasriga R, An G. Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiol. 2016;170:2159–71.
- 572 25. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008;40:761.
- 574 26. Murphy RL, Morishige DT, Brady J a., Rooney WL, Yang S, Klein PE, et al. Ghd7 (Ma6)
 575 Represses Sorghum Flowering in Long Days: Alleles Enhance Biomass Accumulation and
 576 Grain Production. Plant Genome. 2014;7(2):1–10.
- 577 27. Yang S, Weers BD, Morishige DT, Mullet JE. CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biol. 2014;14:148.
- 579 28. Quinby JR. The Maturity Genes of Sorghum. Adv Agron. 1967;19:267–305.
- 580 29. Karper RE, Quinby JR. The history and evolution of milo in the United States. Agron J. 1946;38(5):441–53.
- 582 30. Quinby JR. Fourth maturity gene locus in sorghum. Crop Sci. 1966;(6):516–8.
- 583 31. Rooney WL, Aydin S. Genetic Control of a Photoperiod-Sensitive Response in Sorghum bicolor (L.) Moench. Crop Sci. 1999;39:397–400.
- 585 32. Hart GE, Schertz KF, Peng Y, Syed NH. Genetic mapping of Sorghum bicolor (L.)
 586 Moench QTLs that control variation in tillering and other morphological characters. Theor
 587 Appl Genet. 2001;103(8):1232–42.
- 33. Higgins RH, Thurber CS, Assaranurak I, Brown PJ. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3. 2014;4:1593–602.
- 590 34. Zhao J, Mantilla Perez MB, Hu J, Salas Fernandez MG. Genome-Wide Association Study
 591 for Nine Plant Architecture Traits in Sorghum. Plant Genome. 2016;9(2):1–14.
- 592 35. Lin Y, Schertz KF, Patemon AH. Comparative Analysis of QTLs Affecting Plant Height
 593 and Maturity Across the Poaceae, 1995. 1995;141:391–411.
- 594 36. Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE. The
 595 sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol.
 596 1997;113:611–9.
- 597 37. Morishige DT, Klein PE, Hilley JL, Sahraeian SME, Sharma A, Mullet JE. Digital

genotyping of sorghum - a diverse plant species with a large repeat-rich genome. BMC
Genomics. 2013;14:1–19.

- 38. Lander Eric S., Green Philip, Abrahamson Jeff, Barlow Aaron, Daly Mark J., Lincoln
 Stephen E., et al. MAPMAKER: An interactive computer package for constructing
 primary genetic linkage maps of experimental and natural populations. Genomics.
 1987;1(2):174–81.
- Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University; 2012.
- 40. McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The Sorghum
 bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas,
 and signatures of genome organization. Plant J. 2018;93(2):338–54.
- Manichaikul A, Moon JY, Sen Ś, Yandell BS, Broman KW. A model selection approach
 for the identification of quantitative trait loci in experimental crosses, allowing epistasis.
 Genetics. 2009;181(3):1077–86.
- 612 42. Broman KW, Wu H, Sen Ś, Churchill GA. R/qtl: QTL mapping in experimental crosses.
 613 Bioinformatics. 2003;19(7):889–90.
- 614 43. Casto AL, McKinley BA, Yu KMJ, Rooney WL, Mullet JE. Sorghum stem aerenchyma
 615 formation is regulated by SbNAC_D during internode development. Plant Direct.
 616 2018;2(11):e00085.
- 617 44. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time
 618 Quantitative PCR and the 2-ΔΔCt Method. Methods. 2001;25(4):402–8.
- 619 45. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. England; 2004;32(5):1792–7.
- 46. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics.
 2009;25(9):1189–91.
- 624 47. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
- 48. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis
 Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4.
- 49. McCormick RF, Truong SK, Mullet JE. RIG: Recalibration and Interrelation of Genomic
 Sequence Data with the GATK. G3 (Bethesda). 2015;5(4):655–65.
- 630 50. Quinby JR, Karper R. The inheritance of three genes that influence time of floral initiation and maturity date in Milo. J Am Soc Agron. 1945;(901):916–36.
- 632 51. Arends D, Prins P, Jansen RC, Broman KW. R/qtl: high-throughput multiple QTL mapping. Bioinformatics. 2010;26(23):2990–2.
- 52. Truong SK, McCormick RF, Rooney WL, Mullet JE. Harnessing genetic variation in leaf angle to increase productivity of sorghum bicolor. Genetics. 2015;201(3):1229–38.
- 53. Tuinstra MR, Ejeta G, Goldsbrough PB. Heterogeneous inbred family (HIF) analysis: A
 method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl
 Genet. 1997;95(5–6):1005–11.
- 54. Xu S, Zhong C, Zhang T, Ding J. Structure of human lysine methyltransferase Smyd2
 reveals insights into the substrate divergence in Smyd proteins. J Mol Cell Biol.
 2011;3(5):293–300.
- 55. Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci. 2015;16(1):1406–28.

- 644 56. Min J, Zhang X, Cheng X, Grewal SIS, Xu RM. Structure of the SET domain histone
 645 lysine methyltransferase Clr4. Nat Struct Biol. 2002;9(11):828–32.
- 646 57. Gross CT, McGinnis W. DEAF-1, a novel protein that binds an essential region in a
 647 Deformed response element. EMBO J. 1996;15(8):1961–70.
- 648 58. Quinby JR, Karper RE. Effect of Different Alleles on the Growth of Sorghum Hybrids.
 649 1948;255–9.
- 650 59. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS One. 2012;7(10):e46688.
- 652 60. Mullet JE. High-Biomass C4 Grasses Filling the Yield Gap. Plant Sci. Elsevier;
 653 2017;261:10–7.
- 654 61. Major DJ, Rood SB, Miller FR. Temperature and Photoperiod Effects Mediated by the
 655 Sorghum Maturity Genes. Crop Sci. 1990;30(2):305–10.
- 656 62. Tarumoto I. Thermo-sensitivity and photoperiod sensitivity genes controlling heading
 657 time and flower bud initiation in Sorghum, Sorghum bicolor Moench. Japan Agric Res Q.
 658 2011;45(1):69–76.
- 659 63. Gan ES, Xu Y, Wong JY, Geraldine Goh J, Sun B, Wee WY, et al. Jumonji demethylases
 660 moderate precocious flowering at elevated temperature via regulation of FLC in
 661 Arabidopsis. Nat Commun. 2014;5:1–13.
- 662

663 Supporting information

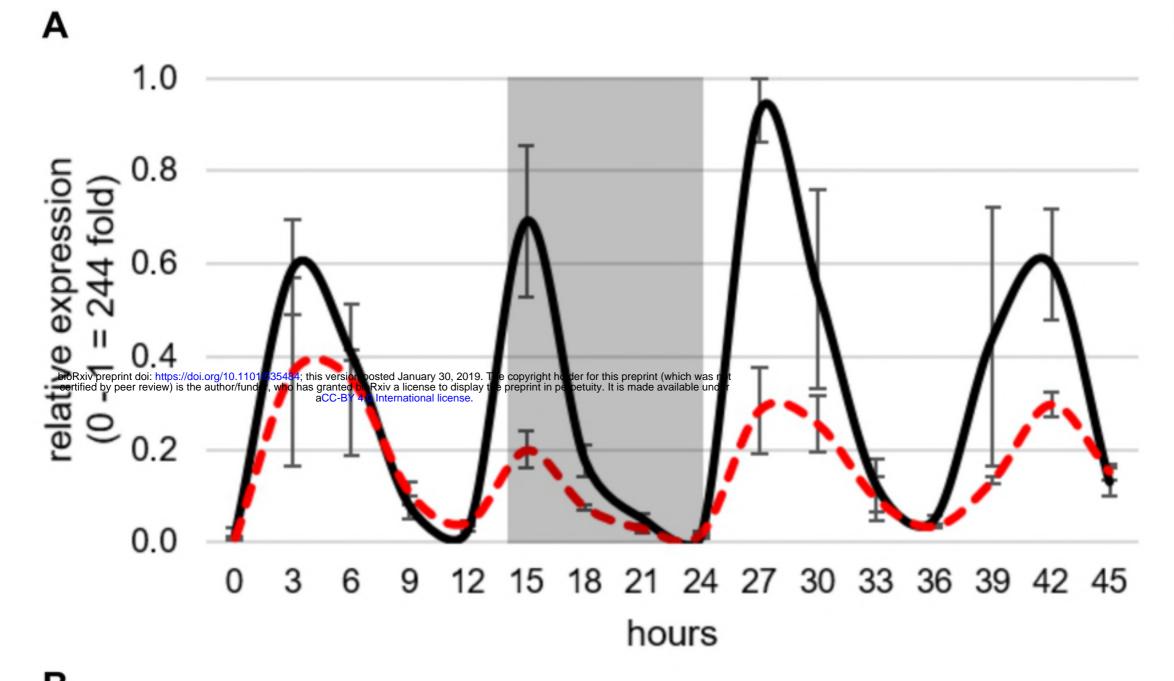
664

665 S1 Fig. Circadian expression of Sobic.002G302700 in 100M and 80M

666 The expression of Sobic.002G302700 does not cycle diurnally in 100M (solid black line) or 80M

- 667 (dashed red line). There was no difference in expression between 100M and 80M in the first day.
- Expression was slightly elevated in 100M compared to 80M during the night and through the
- 669 following morning.
- 670

671 S2 Fig. Circadian expression of *SbTOC1*, *SbLHY*, *SbGhd7*, and *SbEhd1*


- There were no consistent differences in expression of (A) *SbTOC1*, (B) *SbLHY*, (C) *SbGhd7*, and (D) *SbEhd1* between 100M (solid black line) and 80M (dashed red line).
- 674

675 S3 Fig. Genotype x phenotype plots for the QTL on SBI02 and SBI10

- 676 Recessive alleles of *Maturity* genes contribute to earlier flowering. 80M (AA) is recessive for
- ma_2 , while Hegari (BB) is dominant. Individuals genotyped AA for the QTL on SBI02
- 678 (represented by marker c2_68327634) flowered ~100 d earlier than those genotyped BB. 80M is
- 679 dominant for Ma_4 , and individuals genotyped AA at the QTL on SBI10 (represented by marker
- 680 $c10_{3607821}$) flowered ~100 d earlier than those genotyped BB.
- 681

682 S1 Table. *Ma*₂ (Sobic.002G302700) sequencing and qPCR primers

- 683 S2 Table. Genes in the fine-mapped *Ma2* QTL region
- 684

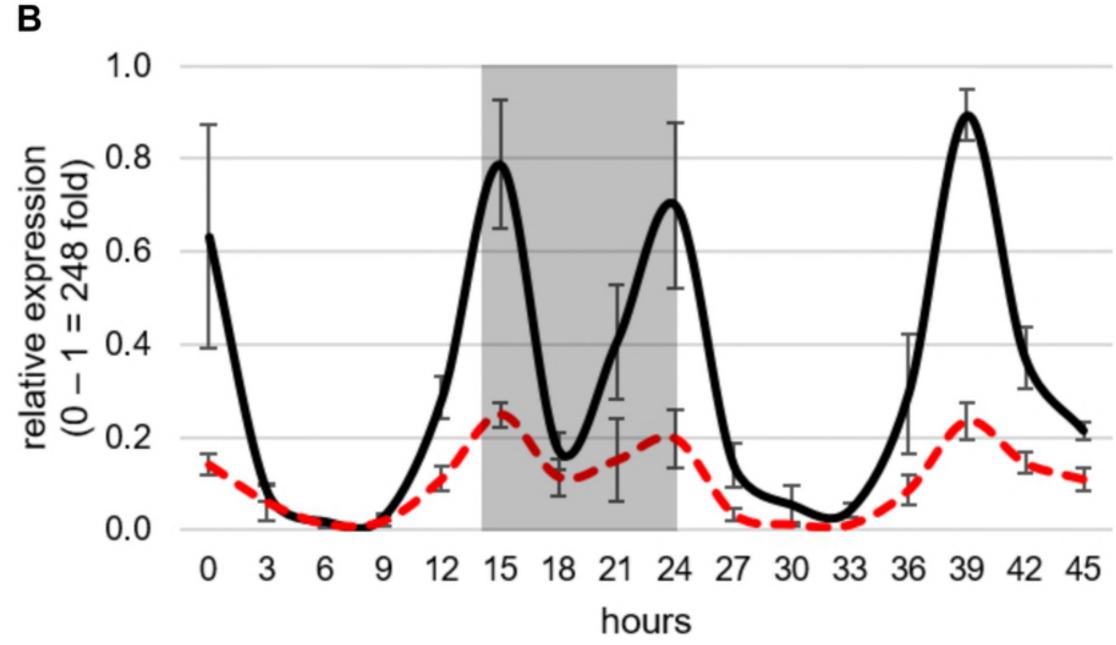


Figure 1`

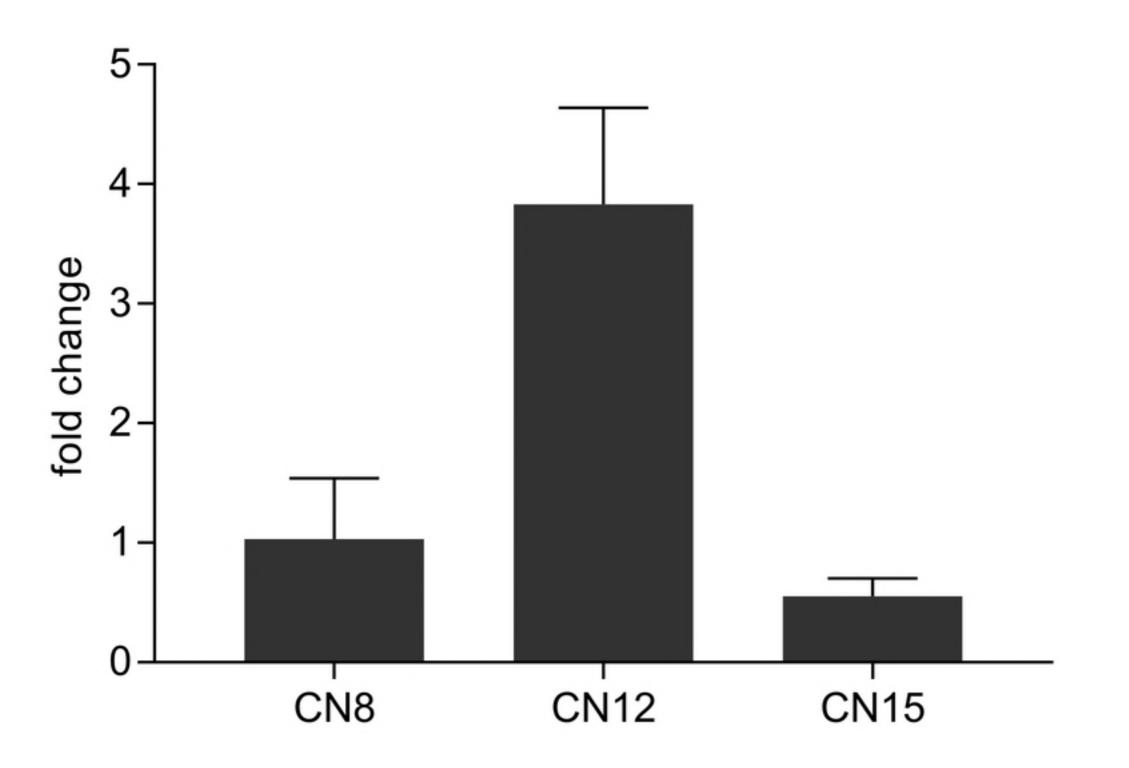


Figure 2

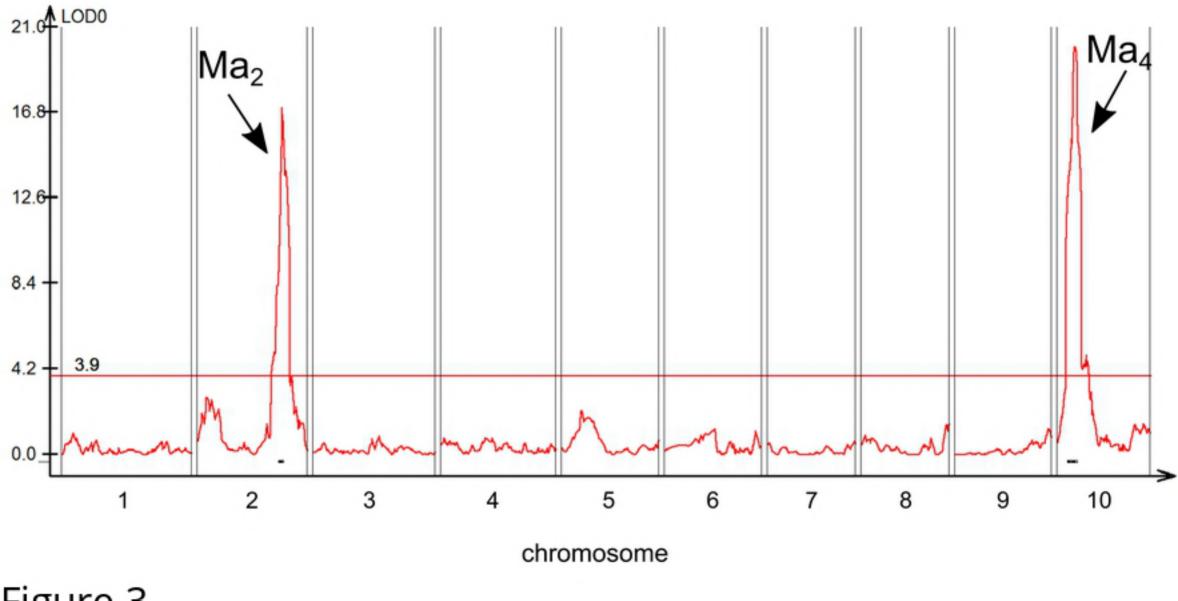


Figure 3

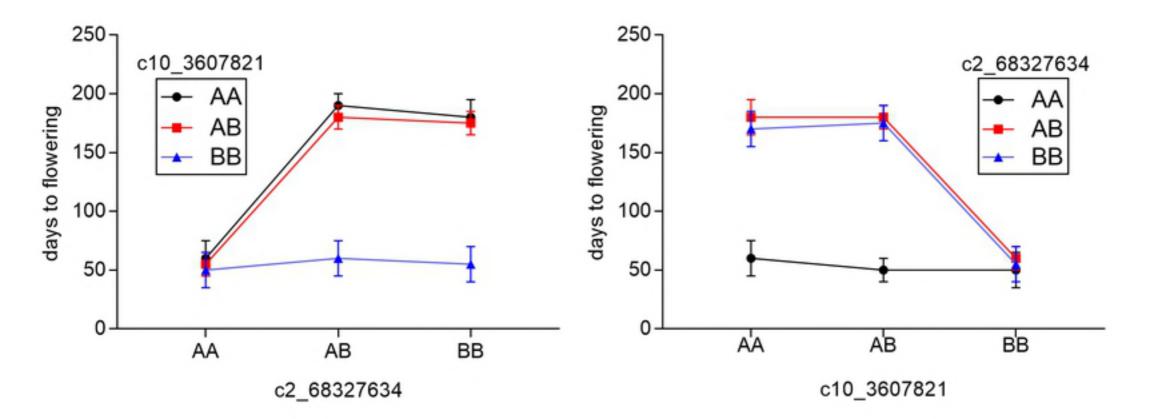


Figure 4

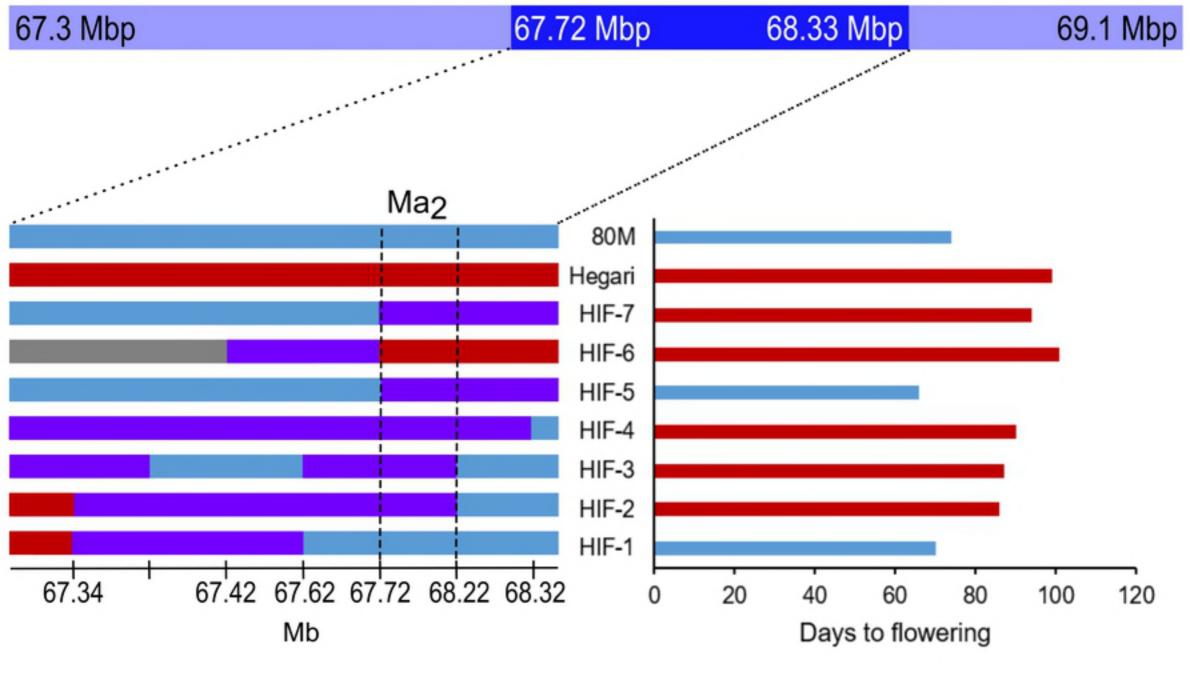


Figure 5

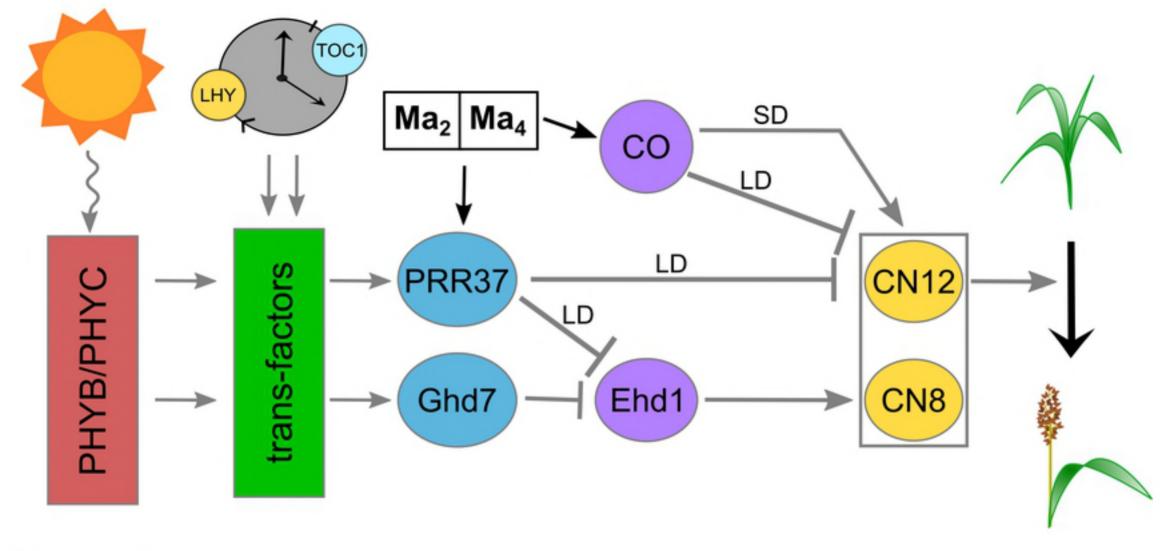


Figure 7

					*		*	*	
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70150.1/1-374 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	1			MSS	<mark>MEC</mark> MEC MEC L STAMEC <mark>MEC</mark>	A A KG L A A A A KG L A A A A RG F A T A A KG L V A A A KG SGG	E P C A G E P C A G R - C V G E P C A G R - C G G S G	- G V A D R R C G G - G V A D R R C G G - G V A D R R C G S - P - P T R R C G Q - G - A H R R C G S S G G A T R L C A R - E - A R R R C G G	24 24 22 30
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70id500 pleptint doi? https://doi.org/10 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	25 CGAVAY 25 CGAVAY 0.11235 (AGAVAY 0.11235 (AGAVAY 27 CEAVAY	CSRVHQII CSRAHQII posed January 80 201 bioRxiv a license to displ O biten AichtQ dense. CSLSHQIA	HWRVHKEE HWRVHKEE 91 WesopyinghKhaida ay the preprint in perpe HWSRHKHE	CERFAEQ CERFAEQ for this preprint two tuity. It is made availa CDRLQQQ	MRHINAL MRRVNLL Washow DLL SHIDVL LKSVEVL	SQFPFTF SQFPFTF NDFPFTF SQFPFVF NNFPFTF	- L E P P A L - L E P P A L T E E AT IQ S I E S P A L S R E S T F Q	NHEFPSARCL NHEFPSARCL NHEFPSARCF VSQKHETRCS NHAIPNTRCF VCVKQETRCS NHTFPSLRCF	83 83 82 90 86
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70150.1/1-374 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	84 FLQSIK 84 FLQMFK 83 FFIKRG 91 FLESFK 87 FFSKRG	LHQKGLWK LHQKGLWK LHRVGMWM VHLKGLWK LHQVGMWM	S E C I CG R D S E C I CG S D Y E C N CG A - S E C R CG P E H E C H CG A S	VAPLKGL VASAKDL -LAFDSF ISSVKDL STSFDCL	SVEAEWN SIAAEWN NIE-GWH SITAEWN GLNNG <mark>W</mark> D	L Q S S L C P L Q S S L C P L P S S S C P ME S S L C P L P S S L C P	C A E P K N P C T E P E N P C R G P L S P C T E P G N S C C E P S S P	V P S V L A S WE D V S S A L A S WE A V P A V L A S WE D I T K Q L C T WK D L S A P L A S WE E V S E Q L H C WR D V S T P L T S WK D	143 143 139 150 146
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70150.1/1-374 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	144 YYQWRS 144 YYQWRS 140 YFEWRK 151 YYRWRS 147 YYKWRC	L P L H S P V A L P L H S P V A L P L D S P V A L P L H S P A A I P L D S P V A	V L L HWP L T V L L HWP L T L L L HWP L T V L L HWP L T L L L QWP L T	LYHCVQL LYHCLQL IYHAVQA LYHCLQL IYHAARL	SRTQTPR YRLQTSK IGMGNLT SRIQASR VGITALN	Y DGQ DT L Y DGQ DT L PQ IS DE L C DANDT L PE IS DK L	C IHYLGP C IHYLGP R IHYLGP R IHYLGP Y IHYLGP	EKELLQLAAF EKELLQLAAF QKELGQLGVF EKELLQLPVF EKELLQLAVF EKELHQLAVF	203 203 199 210 206
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70150.1/1-374 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	204 G E L R A L 204 G E L R A L 200 A E L Q A L 211 A E L L A L 207 G E L L A L	F P S V Q I H I F P G V Q I H I F P G L R I Y V F P G V H L C I F P G V R I H I	E L VG P E V P E L VG P E V P D L I G P D V P E L VG P T V P E L VG P A I P	K S R DG E V K S R DG E V Q HM DG E M R S R DG E V P Q R DG E M	V N I S R Y A V N I S R Y A I S L C R Y S L N I S S Y A I H I S K Y P	C C S D K S C R C S D E S C P C M G K E C H C S A E S C C N E D E C	C <mark>C K</mark> C C K E C K NS S K C C R E <mark>C K</mark> IG S K	- SSIGSKELS - SSIGSKDLS - SSIGSEDSS ILNSGSKPAL - SFAASEDVN NTFLETQSGI - SSIGSKDLS	258 258 259 265 266
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70150.1/1-374 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	259 C T A V T L 259 C T A V R L 260 V S A V S L 266 C S A L T L 267 T S T L T L	K L WK G F Y H K L WK G F Y H Q L R R G F Y H K L WK G V Y H Q L WQ G F Y H	E R C S D I L K E R C S D I M K D R Y N D I T K E R Y S DM D R Y R D I V K	DSV-PQL DSN-PHL DSFPPHI DSN-PHL DSF-PHL	IFAPNAG IVAPNAG VIAPNAG IVAPNAG IIAPNGG	V A A Y P S W V A A Y P S W I A A Y P S W L A A Y P T W I A A Y <mark>S</mark> S W	M P T I E M I M P T I E I I I P T I E L I I P T I E M I I P S I E L I	R R T G I P A V F T RQ T G I P A I F T RQ T G I P A I F T K E I Q V P A V F S R K I G I P A M F T K K I D V P V V F T R K V G I P A I F T	317 317 319 322 325
Sbicolor-Ma2/1-401 GRMZM2G007190_T02/1-37. Pahal.B03925.1/1-372 AT1G70150.1/1-374 Bradi1g27807.2/1-377 Glyma.01G037400.1/1-380 LOC_Os07g29770.1/1-384	318 DF CEEA 318 DF CEEA 320 DY CEEA	AYLASCCI CHLAACCI AHLASCCI CHLAANCI	SSITGQPL SSITGQPL KTITGQPL SSITGQPL KTVTGSPL	K I P IQ V N K I P IQ V N S S P I E L N R V P IQ V N K L P V O L N	P F RQ P V A P F RQ P V A P F RQ P M A P F RQ P I A P F RQ P M A	AENNALY ADNSALY VEESTLF ENNSALY	V P C Y S N C L P C Y S N C I P C Y S N C I P C Y S N C	F V F G M F I F G M F I F A M F I F G M	401 372 372 374 377 380 384

Figure 6