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Loss of CIC promotes mitotic dysregulation and chromosome segregation defects. 
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Abstract 

Background: CIC is a transcriptional repressor inactivated by loss-of-function mutations in 

several cancer types, including gliomas, lung cancers, and gastric adenocarcinomas. CIC 

alterations and/or loss of CIC activity have been associated with poorer outcomes and more 

aggressive phenotypes across cancer types, which is consistent with the notion that CIC 

functions as a tumour suppressor across a wide range of contexts. 

Results: Using mammalian cells lacking functional CIC, we found that CIC deficiency was 

associated with chromosome segregation (CS) defects, resulting in chromosomal instability and 

aneuploidy. These CS defects were associated with transcriptional dysregulation of spindle 

assembly checkpoint and cell cycle regulators. We also identified novel CIC interacting proteins, 

including core members of the SWI/SNF complex, and showed that they cooperatively regulated 

the expression of genes involved in cell cycle regulation. Finally, we showed that loss of CIC 

and ARID1A cooperatively increased CS defects and reduced cell viability. 

Conclusions: Our study ascribes a novel role to CIC as an important regulator of the cell cycle 

and demonstrates that loss of CIC can lead to chromosomal instability and aneuploidy in human 

and murine cells through defects in CS, providing insight into the underlying mechanisms of 

CIC’s increasingly apparent role as a “pan-cancer” tumour suppressor. 
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Introduction 

Capicua (CIC) is a transcriptional repressor that is mutated or rearranged in in several 

cancer types, including undifferentiated small round cell sarcomas1 (~60% frequency), 

oligodendrogliomas2,3 (~50-80%), gastric adenocarcinomas4 (~9%), endometrial carcinomas5 

(~7%), and melanomas (~8%)6,7. CIC loss has also been implicated in prostate cancer8, lung 

cancer9, and T-cell lymphoblastic leukemia/lymphoma10,11. CIC alterations and/or loss of CIC 

activity have been associated with inferior outcomes12-15 and with aggressive phenotypes such as 

increased metastatic ability9 and resistance to MAPK inhibitors16,17, indicating that CIC likely 

functions as a tumour suppressor. Though functional studies of CIC are relatively limited in 

mammalian models, recent reports have shown that these oncogenic phenotypes appear to be 

due, at least in part, to de-repression of one or more of CIC’s known target genes – which 

include the ETS transcription factors ETV1, ETV4, and ETV5 (ETV1/4/5) – upon loss of CIC8-10.  

Chromosome instability (CIN) is a process that leads to whole- or partial-chromosome 

gains and losses and that results in aneuploidy, a cellular genetic state that is considered a 

hallmark of cancer18. Common mechanisms of aneuploid and polyploid cell formation (i.e. cells 

that contain more than two complete sets of chromosomes) include cytokinesis failure, which can 

for example be due to defects in cytokinetic proteins19, errors in chromosome segregation (CS)20, 

prolonged arrests at the spindle assembly checkpoint (SAC)21,22, DNA replication errors23, and 

cell-cell fusion24. 

Here, we describe a novel function of mammalian CIC in regulating cell cycle 

progression and CS, and show that loss of CIC is associated with CS defects and CIN, resulting 

in aneuploidy. We also find that CIC interacts with core members of the SWI/SNF complex, and 
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show that together they function to regulate the transcription of genes involved in cell cycle 

regulation and the SAC.	 

 

Results 

1. Nuclear CIC is subject to dynamic spatial and temporal re-distribution during the cell 

cycle.  

To examine the spatial dynamics of nuclear CIC, we performed immunofluorescence (IF) 

assays in two neural cell lines: an immortalized normal human astrocyte line (NHA25; Figure 1a), 

and the HOG26 line (Supplementary Figure 1). We observed that CIC was dynamically re-

distributed over the course of the cell cycle in both cell lines. As shown in Figure 1a, CIC was 

found throughout the nucleus during interphase, but appeared to be excluded from condensed 

chromosomes at metaphase and telophase. During early cytokinesis, CIC foci appeared at de-

condensing chromosomes during initiation of nuclear envelope reassembly, and increasingly 

accumulated until completion of cytokinesis (Figures 1a and Supplementary Figure 1, 

arrowheads). Upon completion of nuclear envelope assembly, CIC was observed throughout the 

nucleus.  

We confirmed this observation using an N-terminal-FLAG-tagged CIC-S construct (F-CIC-

S) introduced into an isogenic CIC knockout (CICKO) cell line derived from HEK293A27 

(hereafter referred to as HEKF-CIC-S). Ectopically expressed F-CIC-S displayed similar 

localization dynamics as endogenous CIC (Supplementary Figure 1), indicating that both CIC 

isoforms were dynamically re-localized during mitotic phases, thus raising the possibility that 

some CIC functions may be related to the cell cycle. 
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2. Loss of CIC is associated with chromosomal segregation defects in human and mouse 

cells. 

Motivated by the apparent dynamic association of CIC with chromosomes, and to explore 

the relationship between CIC function and the cell cycle, we performed IF assays on 

synchronized NHA-derived CICKO cell lines27. We synchronized the parental NHA cell line and 

two of its derivative CICKO cell lines (A2 and H9) at G2/M phase using the reversible cyclin-

dependent kinase 1 (CDK1) inhibitor RO-330628. The synchronized populations were then 

observed at 1h after drug removal (“post-release”), corresponding approximately to metaphase; 

1.5-2.5 h post-release, corresponding approximately to telophase and cytokinesis; and 3 h post-

release, corresponding approximately to G1 phase (Figure 1b). Compared to the parental CICWT 

cell line, the CICKO lines showed 2.2 - 2.5-fold increases in metaphase alignment defects (p < 

0.05) and 2 - 2.3-fold increases in CS defects at telophase/cytokinesis (p < 0.01; Methods; Figure 

1c-d). We confirmed these observations in unsynchronized HEK and two HEK-derived CICKO 

cell lines (Supplementary Figure 1). 

To determine whether CIC deficiency was also associated with CS defects in vivo, we 

examined the appearance of mitotic chromosomes at the anaphase-to-telophase stages in a 

recently reported Cic conditional knockout mouse model29. IF staining of brain sections from 

embryonic day 13.5 animals with forebrain-specific Cic knockout (Cicfl/fl;FoxG1cre/+) and from 

their heterozygous controls (Cicfll+;FoxG1cre/+) revealed that Cic-null cells in the mitotically 

active ventricular zone (VZ) displayed an increased frequency of either lagging chromosomes or 

micronuclei (average 2.5-fold increase, p < 0.0001; Figure 1e). Along with our observations 

from cultured NHA and HEK cells, these observations link CIC loss to defects in mammalian 

CS.  
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3. Loss of CIC in NHA cells is associated with copy number alterations and aneuploidy. 

CS defects such as those observed in our CICKO lines, including the presence of 

micronuclei and lagging chromosomes, have been linked to copy number alterations in daughter 

cells30-32. To determine whether evidence of copy number defects could be observed in CIC-

deficient cells, we performed single-cell genome sequencing (DLP+33) on DNA libraries from 

the parental CICWT NHA line and NHA-derived CICKO lines (A2 and H9 described above, and 

additional lines B6 and H10). Overall, the majority (73%; 1,015/1,391) of the cells we sequenced 

were triploid, thus defining the wild type ploidy status of the NHA lines (Figure 1f). An increase 

in ploidy status (i.e. tetraploidy, pentaploidy, or hexaploidy) was observed in two of the CICKO 

cell lines. 58% (163/283) of the A2 cells and 39% (113/287) of the B6 cells displayed increased 

ploidy status. We interpret these data to indicate that, in CIC mutant cells, there is an enrichment 

of cells that fail to complete cytokinesis, resulting in genome duplication that yields 6N or partial 

6N status, which then may lead to distinct cellular subpopulations with increased ploidy. We 

confirmed increases in ploidy using interphase FISH analysis to observe the arms of 

chromosomes 1 and 19. Notably, chromosomal arm ploidy ratios showed comparable 

distributions in the FISH and DLP+ data across all cell lines, indicating concordance between the 

two methods (Supplementary Figure 2). 

We next analyzed the DLP+ data to reveal the frequency and distribution of copy number 

segments in individual cells, where segments were defined as adjacent bins with identical copy 

number and neutral copy number was defined as an individual cell’s determined ploidy state 

(Methods). While the CICKO lines did not show consistent differences in the number of neutral 

segments or segments with copy number gain or loss compared to CICWT cells (Figure 1g), 
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segments with copy number loss were consistently longer in the CICKO lines compared to the 

parental NHA line (p < 0.05; Figure 1h). Thus, while the CICKO lines did not appear to incur 

more losses than the parental CICWT line, the losses occurring in CICKO cells seemed to involve 

larger chromosomal segments. Together, these observations are consistent with the notion that 

CICKO cell lines display increased CIN: specifically, an increased proportion of the genome was 

subject to copy number loss in CICKO cells compared to CICWT cells, and results indicated that 

CICKO cells may be susceptible to events that lead to ploidy alterations. 

 

4. CIC-deficient cells display delayed mitotic progression and dysregulated CCNB1 

expression.  

Given our observations that CIC loss was apparently associated with CS defects and CIN, we 

hypothesized that CIC loss might affect mitotic progression. To investigate this, we enumerated 

cells in pro-metaphase, metaphase and telophase/cytokinesis in synchronized CICWT and CICKO 

NHA lines at regular intervals following drug release (Methods). In the parental CICWT line and 

the CICKO lines (A2 and H9), similar percentages (~17% and ~14-15%, respectively) of the cells 

entered pro-metaphase 0.5 h post-release (Figure 2a). However, while 17% of the CICWT cells 

had entered metaphase 1 h post-release, only 4-6% of the CICKO cells (p < 0.05) had entered 

metaphase at that time. Similarly, while 15% of the CICWT cells had entered 

telophase/cytokinesis 2.5 h post-release, only 2-4% of the CICKO cells (p < 0.001) had entered 

telophase/cytokinesis at that time. These findings are consistent with the notion that, compared to 

CICWT cells, CICKO cells could enter pro-metaphase, but exhibited delayed progress through 

subsequent cell cycle phases. 
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The accumulation of various mitotic cyclins at specific stages throughout mitosis is critical 

for proper cell cycle progression34. Given CIC’s established function as a transcription factor, we 

hypothesized that the CS defects observed in CICKO cells may be associated with transcriptional 

dysregulation of key target genes. To measure gene expression in comparable populations of 

CICWT and CICKO cells, we performed reverse transcription followed by quantitative polymerase 

chain reaction (RT-qPCR) in unsynchronized cells (UN), synchronized cells enriched for G2/M 

(0 h post-release), and mitotic fractions collected by shake-off 0.5 h post-release (Methods), 

which contain 61-82% pro-metaphasic cells (referred to as PM; Supplementary Figure 3). 

CCNB1, which under normal conditions shows mRNA accumulation at the G2/M transition and 

through mitosis35, showed significantly reduced abundance in the CICKO lines (A2 and H9) 

compared to the parental CICWT line in G2/M and PM cells (p < 0.05; Figure 2b). The other 

cyclin genes tested did not show consistent changes in mRNA expression across both CICKO cell 

lines. We confirmed the decreased expression of CCNB1 protein and also observed increased 

expression of CCND1/2/3 proteins in synchronized and unsynchronized CICKO cells compared to 

CICWT cells (Supplementary Figure 3). Given that CCNB1 is a key regulator of mitotic 

progression, reduced CCNB1 through down-regulation of CCNB1 mRNA expression in mitotic 

CICKO cells supports the notion that loss of CIC can result in delayed entry into metaphase.  

 

5. Loss of CIC is associated with dysregulated expression of mitotic kinases and regulators 

of the spindle assembly checkpoint (SAC).  

Defects in the SAC, which acts at the pro-metaphase-to-metaphase transition, and defective 

cytokinesis have both been associated with CS defects and resulting aneuploidy36. Expression of 

mitotic kinases and genes regulating the SAC are tightly controlled, with mRNA accumulation 
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beginning in S-phase and peak mRNA levels occurring at the G2/M transition and throughout 

mitosis37. We thus hypothesized that mitotic kinases and regulators of the SAC might also 

display dysregulated expression in CICKO cells, contributing to the mitotic defects and 

aneuploidy we observed in these cells. To investigate this, we measured expression of the known 

CIC target genes ETV4/5, the SAC regulator HMGA1, the mitotic checkpoint complex kinases 

BUB1/3 and MAD2L1, and the mitotic kinases PLK1/3 and AURKA/B in CICWT and CICKO NHA 

cells. As anticipated, mRNAs corresponding to the known CIC targets ETV4 and ETV5 exhibited 

increased abundance in the CICKO cell lines compared to the CICWT line, both in synchronized 

and unsynchronized cells (p < 0.05; Figure 2c). The mRNA abundance of the SAC regulator 

HMGA1 and the mitotic kinase PLK3 were also significantly increased in both CICKO lines 

enriched for synchronized G2/M and PM cells (p < 0.05; Figure 2c). Conversely, mRNAs for the 

mitotic kinases PLK1, AURKA1, and the mitotic checkpoint complex kinases BUB1exhibited 

reduced abundance in G2/M and PM CICKO cells compared to CICWT cells (p < 0.05; Figure 2d). 

MAD2L1, AURKB, and BUB3 did not show significant differences in mRNA abundance in either 

CICKO line compared to CICWT cells (Supplementary Figure 3). Overall, these results are 

compatible with the notion that CIC loss is associated with dysregulated mRNA expression of 

some genes involved in regulating transitions in the cell cycle between pro-metaphase, 

metaphase, and cytokinesis.  

To confirm that these mRNA expression changes were a consequence of CIC loss, we 

performed a rescue experiment in which we re-introduced CIC constructs into CICKO cells and 

measured gene expression using RT-qPCR. Given that CIC exists in two isoforms – namely the 

long (CIC-L) and short (CIC-S) forms – and that we have previously shown these to have 

different patterns of distribution38, we re-introduced each isoform individually to examine their 
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effects on gene expression (A2F-CIC-S and A2F-CIC-L; Figure 3a). ETV4 and HMGA1 exhibited 

reduced expression upon re-introduction of either F-CIC-S or F-CIC-L (p < 0.001 and p < 0.01, 

respectively; Figure 3b-c), presumably as a consequence of restoration of CIC-mediated 

repressor activity. ETV5 and PLK3, on the other hand, were re-repressed only upon re-

introduction of F-CIC-S (p < 0.001 and p < 0.05, respectively). Taken together, these data are 

compatible with the notion that HMGA1 and PLK3 may be novel targets of CIC. Interestingly, 

while re-introduction of CIC-S did not affect the expression of genes that show reduced 

expression upon CIC loss in unsynchronized cells (Supplementary Figure 3), it did partially 

restore higher expression of the SAC regulators PLK1, AURKA, and BUB1 (p < 0.05) and of the 

M-phase cyclin CCNB1 (p < 0.01) in synchronized G2/M populations (Figure 3d). Only BUB1 

also showed a significant difference in expression upon re-introduction of CIC-L. While this 

could be an indirect consequence of CIC re-introduction, these results also raise the possibility 

that CIC may function as a transcriptional activator acting on these genes. Together, these 

observations are consistent with the notion that CIC-S, which is found both in the cytoplasm and 

the nucleus38, plays a significant role in the regulation of mitotic genes. The reduced expression 

of CCNB1, AURKA, BUB1, and PLK1 in CICKO but not CICWT cells is consistent with the notion 

that CIC loss leads to gene expression alterations that may delay mitotic progression, perhaps 

contributing to CIN.  

To determine whether these novel candidate target genes might be direct targets of CIC 

regulation, we identified canonical CIC binding sites39 within their promoter regions (Methods; 

Supplementary Table 1) and performed targeted chromatin immunoprecipitation (ChIP) followed 

by qPCR for these sites in unsynchronized and synchronized (0 h post-release, G2/M) cells. 

Other than the sites in the promoter regions of the known CIC target genes ETV4 and ETV5 
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(Figure 3e), none of the sites tested showed enrichment compared to a negative control region 

(NCR) and compared to CICKO cells (examples in Supplementary Figure 3), indicating that CIC 

did not directly bind to these sites. Additional primers were also designed to target regions 

lacking canonical CIC binding sites in the promoter or gene body of HMGA1 and PLK3 where 

CIC binding enrichment has previously been reported by ChIP in the HOG cell line40 (PLK3-6, 

PLK-7, HMGA1-11, and HMGA1-12, Supplementary Table 1 and Supplementary Figure 4). 

The two sites tested for PLK3 and one of the sites tested for HMGA1 showed significant 

enrichment compared to CICKO cells in the G2/M-enriched population (> 2-fold difference, p < 

0.05; Figure 3e). Taken together, these observations support the contention that PLK3 and 

HMGA1 may be direct targets of CIC regulation through interaction with non-canonical binding 

sites within their gene bodies.  

 

6. Nuclear CIC interacts with core subunits of the SWI/SNF complex. 

To gain further insight into CIC’s nuclear interaction network, we performed 

immunoprecipitation (IP) assays for endogenous CIC and N-terminal MYC-fused CIC-S (using a 

MYC antibody) in nuclear fractions purified from the HEK293 cell line (Methods; 

Supplementary Figure 5a). The immunoprecipitates were then characterized using liquid 

chromatography followed by tandem mass spectrometry (IP-MS). This yielded 53 candidate CIC 

interacting proteins that were identified in at least two of the four replicate IP-MS experiments 

(Supplementary Table 2), and the known interactors ATXN1L and ATXN241 each identified in 

one replicate (Figure 4a). To identify pathways and protein complexes that were enriched for 

candidate interactors, we performed enrichment analyses using Metascape42 and Genemania43 

and identified RNA processing, RNA localization, and chromatin organization as the most 
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significantly enriched processes (FDR < 0.05; Supplementary Table 3). Given CIC’s known 

function as a transcriptional regulator, the nine candidate interactors that were associated with 

the Gene Ontology (GO) biological process term “chromatin organization” (GO term 0006325; 

MKI67, L3MBTL3, MECP2, PBRM1, SMARCA2, SMARCC1, RUVBL1, SIN3A, and UTP3; 

Figure 4a, Supplementary Table 4) were of particular interest, along with the polymerase 

POLR2A. We thus sought to replicate these candidate interactions in nuclear fractions of the 

NHA cell line using a variation of the IP-MS technique in which 'trigger peptides44' (Methods; 

Supplementary Table 5) were used to enhance the sensitivity of the MS data for these proteins of 

interest, along with the known CIC interactor ATXN1L41 and ARID1A and ARID2, which are 

known interactors of SMARCA2, SMARCC1 and POLR2A (reviewed in references45,46). We 

were thus able to observe in NHA cells the interactions between CIC and these 14 proteins, and 

we also identified additional candidate interactors, including the SWI/SNF complex proteins 

ARID1A, ARID2, and SMARCA5 (Supplementary Table 4). Since dysregulation of core 

members of the SWI/SNF complex and proteins associated with them (e.g. SMARCA247, 

ARID1A48, and SIN3A49) has previously been linked to CS defects, we hypothesized that CIC’s 

apparent interaction with members of the SWI/SNF complex might be related to its cell cycle-

related functions. 

To further explore the relationships between CIC and SWI/SNF complex members, we 

first performed reciprocal IPs to validate the interactions between endogenous CIC and 

SMARCA2, ARID1A, SMARCC1, and POLR2A in the NHA line (Figure 4b-e), and between F-

CIC-S and SMARCA2 and ARID1A in HEK cells (Supplementary Figure 5). To identify 

common interactors between CIC and either SMARCA2 or ARID1A, we performed additional 

IP-MS experiments against ARID1A and SMARCA2 using whole-lysate preparations of NHA 
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cells (Supplementary Figure 5). These experiments identified 13 (ARID1A IP) and 11 

(SMARCA2 IP) interactors that overlapped with candidate CIC interactors (Supplementary 

Table 4). In addition to CIC, ten proteins (ARID1A, ARID2, FMR1, MTA2, L3MBTL3, 

PBRM1, SIN3A, SMARCA2, SMARCC1, and POLR2A) were recurrently identified as 

common interactors in the IP experiments (i.e. they interacted with CIC, ARIDIA, and 

SMARCA2). 

 

7. Nuclear CIC and core components of the SWI/SNF complex show similar spatial and 

temporal distribution during the cell cycle.  

Given CIC’s striking spatial redistribution over the course of the cell cycle, we reasoned that 

similar patterns of redistribution in candidate protein interactors might support a cooperative role 

in CS. Using IF co-localization assays, we observed a striking apparent co-localization of F-CIC-

S and ARID1A, SMARCA2 (Figure 4f-g), and SMARCC1 (Supplementary Figure 6) in HEKF-

CIC-S cells during early cytokinesis. These proteins also showed similar localization dynamics and 

co-localization with CIC over the course of the cell cycle. Interestingly, SIN3A did not localize 

with CIC at early cytokinesis but appeared to do so during interphase (Figure 4h). ARID2 

appeared to surround decondensing chromosomes in late telophase, but seemed to co-localize 

with CIC only later at early cytokinesis (Supplementary Figure 6b). 

To further explore the co-localization of CIC and core SWI/SNF proteins, we performed 

proximity ligation assays (PLAs50; Methods), which produces a read-out when antibodies 

targeting candidate protein interactors are within 40 nM of each other. In HEKF-CIC-S cells, PLA 

signals were detectable during interphase when anti-FLAG antibodies (marking CIC expression) 

were used with antibodies targeting ARID1A, SMARCA2, SMARCC1, or ARID2 (Figure 5a). 
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The greatest signal was observed for ARID1A, followed by SMARCA2, perhaps indicating that 

CIC interacts with these two proteins more frequently than the other SWI/SNF proteins tested. 

For all interactors tested, PLA signals were mostly observed in the nucleus during interphase and 

early cytokinesis, while during metaphase/telophase they were detected in cytoplasmic regions 

(example shown in Figure 5b for ARID1A). This is consistent with the IF co-localization 

observed for CIC, ARID1A, SMARCA2, and SMARCC1 over the course of the cell cycle, as 

described above. Our results thus indicate that CIC, ARID1A, SMARCA2, and SMARCC1 have 

similar spatial distributions in the nucleus over the course of the cell cycle, and that CIC is in 

close proximity to the SWI/SNF protein complex, with interactions peaking at early cytokinesis 

and at interphase. Our data are thus compatible with the notion that CIC functions with SWI/SNF 

complex proteins. 

 

8. Loss of CIC and ARID1A cooperatively affect chromosome segregation. 

Given that ARID1A and SMARCA2 are known to regulate CS47,48, we speculated that CIC 

might cooperate with these proteins to regulate CS. To test this hypothesis, we first performed 

siRNA knockdowns (KDs) of ARID1A and SMARCA2 in parental CICWT NHA cells and in 

isogenic CICKO lines and assessed cell viability using crystal violet assays. Interestingly, only 

ARID1A knockdown resulted in significantly lower viability in CICKO cells compared to CICWT 

cells (p < 0.0003; Figure 6a, data not shown for SMARCA2 knockdown). This decrease in 

viability was associated with an increase in metaphase alignment defects in CICKO/ARID1AKD 

cells compared to cells lacking either CIC or ARID1A (p < 0.05; Figure 6b), consistent with the 

notion that combined loss of CIC and ARID1A cooperatively increases CS defects to a degree 

sufficient to reduce cell viability.  
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We next sought to determine whether the candidate CIC target genes involved in cell cycle 

and SAC regulation that we identified in this study were co-regulated by CIC and ARID1A. In 

CICWT cells, ARID1A knockdown was associated with increased expression of the known CIC 

targets ETV4 and ETV5 (p < 0.05 and p < 0.00001, respectively; Figure 6c-d). Interestingly, 

combined loss of CIC and ARID1A was associated with a significant increase in the expression 

of ETV5 (p < 0.0001; Figure 6d) and PLK3 (p < 0.001; Figure 6e) and lower expression of 

CCNB1 (p < 0.05; Figure 6f) relative to CIC loss alone, indicating that the expression of these 

genes is cooperatively regulated by CIC and ARID1A. The mitotic regulator HMGA1 (Figure 

6g) only showed increased expression in CICKO cells and did not show a further increase in 

expression upon ARID1A knockdown, indicating that its expression is not regulated in 

cooperative fashion. 

Taken together, these results indicate that CIC can interact with members of the 

SWI/SNF complex and can cooperatively regulate genes involved in CS; furthermore, ARID1A 

knockdown appears to cooperate with CIC deficiency to decrease cell viability, perhaps through 

an increase in CS defects.  

 

Discussion 

In this study, we use human cells and a mouse model to describe a novel role for 

mammalian CIC in regulating mitotic progression and chromosome stability. We show that CIC 

is dynamically re-distributed over the course of the cell cycle, and that its loss is associated with 

defects in metaphase alignment and CS both in vitro and in vivo. Using DLP+ and interphase 

FISH analysis of NHA-derived CICKO cells, we show that these defects are associated with CIN 

and alterations in ploidy. We propose that these phenotypes result, at least in part, from the 
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transcriptional dysregulation of genes involved in cell cycle regulation, which we observed upon 

loss of CIC (Figure 7). For instance, overexpression of HMGA151,52 or PLK353, both of which 

our results supported as novel targets of CIC transcriptional repression, has been shown to 

induce mitotic arrest and apoptosis. Meanwhile, a decrease in CCNB1 levels, which we also 

observed in response to CIC loss, has been shown to contribute to polyploidization in response to 

DNA damage54.  

We also show that CIC interacts with core members of the SWI/SNF complex, namely 

ARID1A, SMARCA2, and SMARCC1. This raises the intriguing possibility that CIC might 

function as a member of the SWI/SNF complex. Of these, ARID1A knockdown was found to 

cooperatively increase mitotic defects and reduce cell viability in CICKO cells. We show that CIC 

and ARID1A cooperatively regulate the expression of genes involved in mitotic regulation, 

implying that this activity may be at least partially responsible for the defects observed in cells 

lacking both functional proteins (Figure 7). The ARID1A and CIC genes are located on 

chromosomal arms 1p36.11 and 19q13.2, respectively, and are thus both subject to loss of 

heterozygosity (LOH) in 1p/19q co-deleted LGGs2,3. Although CIC is frequently mutated in 

these tumours and ARID1A mutations are common in other cancer types55,56, only 0.02% (3/169) 

of 1p/19q co-deleted LGG cases from The Cancer Genome Atlas (TCGA) harbour mutations in 

these two genes6,7,57. This observation, together with our own results, indicates that the combined 

inactivation of CIC and ARID1A is associated with decreased cellular viability, and may not be 

compatible with proliferation of cancer cells. If the response we observed when both protein 

products are lost can be recapitulated in tumour contexts, such a synthetic lethal relationship 

could possibly be exploited in the context of therapy for tumours lacking either functional CIC or 

ARID1A. 
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Conclusions 

Our study establishes a novel role for CIC in cell cycle regulation and accurate CS and 

shows that loss of CIC is associated with a disruption in these processes, resulting in aneuploidy. 

We present evidence that these consequences are mediated through the transcriptional 

dysregulation of genes involved in cell cycle regulation and the SAC, including CCNB1 and the 

proposed novel CIC targets HMGA1 and PLK3. We also uncovered a previously unappreciated 

relationship between CIC and the SWI/SNF complex comprised of cell cycle-dependent 

interactions, showing that they function together to regulate gene expression and ensure proper 

CS. These novel roles ascribed to CIC establish it as an important regulator of the cell cycle and 

provide a plausible explanation for its role as a tumour suppressor across a wide range of cancer 

contexts.  
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Figure 1: Loss of CIC is associated with chromosomal segregation defects and CIN 

a. IF staining of endogenous CIC and the nuclear envelope protein NUP62 in the parental NHA 

line. CIC shows a punctate localization pattern (arrowheads) throughout the decondensing 

nucleus. Scale bars: 10 µm and 5 µm (zoomed image). 

b. Time points at which cells were collected following synchronization with RO-3306. 

c. Synchronized CICKO cells show defects in metaphase alignment and a lagging chromosome at 

telophase (arrowhead). Left: DAPI staining alone. Scale bars: 10 µm. 

d. Top: example images of cells with normal or defective metaphase or cytokinesis.  Bottom: 

proportions of cells assigned to each category. Bars represent the mean from three independent 

experiments and error bars indicate the standard error of the mean (s.e.m). *p < 0.05, **p < 0.01 

(two-sided Student’s t-test comparing combined minor and severe defects). 

e. Left: mitotically active (boxed) VZ region from a E13.5 Cicfl/+;FoxG1cre/+ mouse forebrain 

and representative images of lagging chromosomes and micronuclei (arrowheads, bottom left 

and right, respectively) in Cicfl/fl;FoxG1cre/+ mice. Right: proportions of cells with defective 

anaphase/telophase. Bars represent the mean from four animals for each genotype and error bars 

indicate s.e.m (n = 186 total for Cicfl/+;FoxG1cre/+ mice and 180 for Cicfl/fl;FoxG1cre/+ mice). 

****p < 0.0001 (Student’s t-test). Scale bars: 100 µm (top left) and 10 µm. 

f. Number of cells with indicated ploidy status profiled by DLP+. 

g-h. Tukey boxplots of segment counts (g) and mean length of segments (h) for indicated copy 

number statuses. *p < 5x10-2, **p < 5x10-10, ***p < 5x10-20 (Wilcoxon test with Bonferroni 

correction for each copy number status). 
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Figure 2. Loss of CIC is associated with transcriptional dysregulation of cell cycle 

regulators and members of the SAC complex. 

a. Proportion of CICWT (NHA) and CICKO (A2 and H9) cells classified as being in pro-

metaphase, metaphase, or telophase/cytokinesis based on DAPI and α-tubulin staining (see 

examples in Figure 1a and c) at six time points following RO-3306 release. Bars represent the 

mean of at least 747 cells from three independent experiments, and error bars represent s.e.m. *p 
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< 0.05, **p < 0.01, ***p < 0.001 (one-way ANOVA with Holm-Sidak’s multiple comparison 

test for each time point). 

b-d. mRNA expression of CCNB1, CCND1, CCNE2, and CCNA2 (b), the known CIC targets 

ETV4 and ETV5 and the mitotic regulators HMGA1 and PLK3 (c), and the mitotic kinases PLK1, 

AURKA1, and BUB1 (d) in unsynchronized cells (UN), synchronized cells at G2/M (0 h post-

release) and pro-metaphasic (PM) cells obtained by mitotic shake-off at 0.5 h post-release, as 

measured by RT-qPCR. Expression is shown as fold-changes relative to the unsynchronized 

NHA cells. Error bars indicate s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001 (one-way ANOVA 

with Holm-Sidak’s multiple comparison test for each time point).	  
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Figure 3. CIC regulates the expression of mitotic regulators. 

a. Western blot showing expression of endogenous CIC-L and CIC-S in the parental NHA line 

(CICWT), CICKO lines (A2 and H9), and A2 cells ectopically expressing an empty vector (V), F-

CIC-S, or F-CIC-L, detected using antibodies against CIC (top) or FLAG (bottom).  

b-d. Relative expression of the known CIC targets ETV4 and ETV5 (b) and mitotic regulators 

showing increased (c) or decreased (d) expression in CICKO cells compared to CICWT cells. Gene 

expression in A2 cells expressing F-CIC-S or F-CIC-L was measured in independent 

experiments. Panels b and c represent measurements made in unsynchronized cells, while panel 

d represents measurements made in synchronized cells 0.5 h post-release. Expression is shown as 

fold-changes relative to the NHA cells. Bars represent the mean from three independent 

experiments and error bars indicate s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

(two-sided Student’s t-test). 

e. Enrichment of CIC binding at indicated sites relative to the NCR, as measured by ChIP-qPCR 

for CIC in CICWT (NHA) and CICKO (A2) cell lines in unsynchronized (UN) and synchronized 

G2/M cells. Bars represent the mean from three independent experiments and error bars 

represent sem. *p < 0.05 (two-sided Student’s t-test).	  
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Figure 4: Nuclear CIC interacts with members of the SWI/SNF complex. 

a. Interaction map showing select CIC interactors identified by IP-MS assays, namely the nine 

candidate CIC interactors that belong to the “Chromatin organization” GO term (blue), POLR2A 

(white), a known interactor of SMARCA2 and SMARCC1, and known CIC interactors (pink).  
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b-e. Reciprocal IPs confirming the interaction between CIC and ARID1A (b), SMARCA2 (c), 

SMARCC1 (d), and POLR2A (e) in the parental NHA cell line, visualized by western blot. CIC-

L and CIC-S bands are marked with arrowheads. 

f-h. Localization of F-CIC-S (FLAG, red), ARID1A (f) SMARCA2 (g), and SIN3A (h, all 

green) in HEKF-CIC-S cells at indicated phases of the cell cycle, detected by IF. DNA was stained 

with DAPI (blue). Arrowheads indicate co-localization of CIC and the relevant interactor at early 

cytokinesis (yellow foci). Scale bars: 10µm and 5µm (zoomed image in g).	  
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Figure 5: PLA assays indicate CIC and SWI/SNF complex proteins are in close proximity.  

a. Top: representative PLAs using antibodies against FLAG and ARID1A, SMARCA2, 

SMARCC1, or ARID2 in HEK-derived CICKO cells expressing F-CIC-S (HEKF-CIC-S, top) or an 

empty vector (HEKF-Vec, bottom). DNA was visualized using DAPI staining (blue), and PLA 

spots indicating close proximity of the proteins assayed (< 40nm) are visualized in red. Bottom: 

quantifications of PLA spots per nuclear region. The line represents the median of at least 532 

cells, the hinges represent the first and third quartiles, and the error bars represent the total range. 

Scale bars: 10µm.  ****p < 0.0001 (Welch’s t-test). 

b. Top: representative PLAs using antibodies against FLAG and ARID1A in HEKF-CIC-S (top) 

and HEKF-Vec (bottom) cells. Bottom: quantification of PLA spots in nuclear (Nuc) and 

cytoplasmic (Cyto) regions in cells at metaphase and early cytokinesis. The nuclear envelope 

was visualized by IF staining of NUP62 (green). In the box and whiskers plots, the hinges 

represent the first and third quartiles, the line represents the median, and the error bars represent 

range. Scale bars: 10µm. ****p < 0.0001 (one-way ANOVA with Holm-Sidak’s multiple 

comparison).	  
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Figure 6. Concurrent loss of CIC and ARID1A cooperatively increases mitotic defects and 

decreases cell viability. 

a. Crystal violet cell viability assay in NHA (CICWT) and A2 and H9 (CICKO) cells treated with a 

non-targeting siRNA (control, scramble) or one of two independent siRNAs against ARID1A 

(KD1 and KD2, KD1 is shown in the representative image). Proliferation indices were generated 

relative to their respective controls, and quantifications from three independent experiments are 

shown below. Bars represent the mean and error bars indicate s.e.m. *p < 0.05, **p < 0.01 (one-

way ANOVA with Holm-Sidak’s multiple comparison). 

b. Top: representative IF images of NHA (CICWT) and A2 (CICKO) cells treated with a non-

targeting siRNA (negative control, NC1) or an siRNA against ARID1A (ARID1AKD1). DNA 

(DAPI, blue) and expression of β-tubulin (green) were visualized at metaphase and 

telophase/cytokinesis. Arrowheads indicate multipolar chromosome alignments at metaphase and 

lagging chromosomes at cytokinesis in CICKO cells. Bottom: quantification of defects. Bars 

represent the mean across three independent experiments and error bars indicate s.e.m. Scale 

bars: 10µm. **p < 0.01 (one-way ANOVA with Holm-Sidak’s multiple comparison). 

c-g. Relative expression of select genes in NHA (CICWT) and A2 (CICKO) cells treated with a 

non-targeting control siRNA (scr) or a siRNA targeting ARID1A (KD2), as measured by RT-

qPCR. Expression is shown as fold-changes relative to the NHA cells treated with the non-

targeting control siRNA. The known CIC targets ETV4 (c) and ETV5 (d) are shown, as are the 

mitotic regulators PLK3 (e), CCNB1 (f), and HMGA1 (g). *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001 (t-tests with Holm-Sidak’s multiple correction). 
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Figure 7. Working model: CIC functions as a tumour suppressor through regulation of 

CIN and ploidy alteration. 

a. When CIC is present, it interacts with members of the SWI/SNF complex to regulate the 

expression of target genes, including mitotic regulators 

b. In the absence of CIC, the known targets of CIC transcriptional regulation ETV4 and ETV5, as 

well as HMGA1 and PLK3, which our results indicate are novel direct targets of CIC regulation, 

show elevated expression. Mitotic regulators, including AURKA, BUB1, and PLK1 also show 

dysregulated expression that may be an indirect consequence of CIC loss. Together, these 

transcriptional changes appear to contribute to defective mitosis, CIN, and aneuploidy, which are 

observed at higher frequency in CICKO cells.  
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