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Abstract 
Many primary tumours have low levels of molecular oxygen (hypoxia). Hypoxic 

tumours are more likely to metastasize to distant sites and respond poorly to multiple 

therapies. Surprisingly, then, the pan-cancer molecular hallmarks of tumour hypoxia 

remain poorly understood, with limited understanding of its associations with specific 

mutational processes, non-coding driver genes and evolutionary features. To fill this 

gap, we quantified hypoxia in 1,188 tumours spanning 27 cancer types. We show that 

elevated hypoxia is associated with increased mutational load across cancers, 

irrespective of the underlying mutational class. The proportion of mutations attributed 

to several mutational signatures of unknown aetiology are directly associated with the 

level of hypoxia, suggesting underlying mutational processes for these signatures. At 

the gene level, driver mutations in TP53, MYC and PTEN are enriched in tumours 

with high hypoxia, and mutations in PTEN interact with hypoxia to direct the 

evolutionary trajectory of tumours. Overall, this work demonstrates that hypoxia plays 

a critical role in shaping the genomic landscape of cancer. 
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Introduction 
Approximately half of all solid tumours are characterized by low levels of molecular 

oxygen (hypoxia)1–4. Sub-regions of hypoxia can result from disrupted oxygen 

supply: irregular and disorganized tumour vasculature can reduce oxygen 

availability5. Hypoxia can also be caused by changes in oxygen demand: altered 

tumour metabolism6,7 can increase intra-cellular demand for oxygen, potentially 

extending hypoxia signalling to liquid tumours. The adaptation of tumour cells to this 

imbalance in oxygen supply and demand is associated with poor clinical prognosis in 

several cancer types, attributed at least in part to hypoxia-associated genomic 

instability and clonal selection8–16. 

Previous work has provided insight into the molecular origins and consequences of 

tumour hypoxia and genomic instability. Dynamic cycling of hypoxia can select for 

cells with TP53 mutations and for those that are apoptosis-deficient17,18. Indeed 

mutations in TP53 occur at a higher frequency in hypoxic primary tumours of at least 

9 types16. The abundance of proteins involved in homologous recombination (e.g. 

RAD51) and hon-homologous end joining (e.g. Ku70) are reduced under hypoxia, and 

these changes can persist for two days after reoxygenation19–21. Genes central to 

efficient mismatch repair (e.g. MLH1 and MSH2) are also downregulated under 

hypoxia22,23. Further, co-presence of tumour hypoxia and high genomic instability14,15, 

specific cellular morphologies like intraductal and cribriform carcinoma24 or specific 

mutations like loss of PTEN16, synergistically predict for rapid relapse after definitive 

local therapy in some tumour types, particularly prostate cancer. These data 

underscore the relationship between hypoxia and DNA repair defects, and suggest the 

tumour microenvironment applies a selective pressure leading to the development of 

specific genomic profiles. 

We previously evaluated the exomic and copy-number alteration (CNA) 

consequences of tumour hypoxia across 19 cancer types16. However, the influence of 

tumour hypoxia on pan-cancer driver alterations, mutational signatures and subclonal 

architectures remains unclear. To fill this gap, we calculated tumour hypoxia scores 

for 1,188 tumours with whole-genome and RNA-sequencing sequencing, spanning 27 

cancer types. This high-quality harmonized dataset represents a powerful hypothesis-

generating mechanism to suggest useful back-translational in vitro experiments and 

better define the hypoxia-associated mutator phenotype. We associated hypoxia with 
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key driver alterations in coding and non-coding regions of the genome, and find 

hypoxia is associated with specific mutational signatures of unknown aetiology. We 

illustrate the joint impact of PTEN and the tumour microenvironment in influencing 

the evolutionary trajectory of tumours. Overall, these data highlight the genomic 

changes through which hypoxia drives aggressive cancers. 

Results 
The pan-cancer landscape of tumour hypoxia 

We compiled a cohort of 1,188 tumours from 27 cancer types in the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) dataset with matched tumour/normal whole-

genome sequencing and tumour RNA sequencing data. Whole-genome sequencing25 

and RNA-sequencing26 analyses were systematically carried out by centralized teams 

with consistent bioinformatics pipelines. Normal samples had a mean whole-genome 

sequencing coverage of 30 reads per base-pair while coverage for tumour samples had 

a bimodal distribution with maxima at 38 and 60 reads per base-pair25. All samples 

underwent an extensive and systematic quality assurance process25.  

We used linear mixed-effect models to associate hypoxia with features of interest 

across cancers while adjusting for age. Cancer type and sex were further incorporated 

as random effects in every model, allowing us to consider a different baseline value 

for the feature of interest for each cancer type and sex27. As a measure of effect size, 

we report ����

�  values which reflect the variance explained by the fixed and random 

factors in each model28.  

We scored tumour hypoxia in all 1,188 tumours using a trio of mRNA-based hypoxia 

signatures from Buffa29, Winter30 and Ragnum31 (Figure 1a, Supplementary Figure 

1a-b, Supplementary Table 1-2). Hypoxia scores from each of these independent 

signatures were strongly correlated (ρ = 0.71 – 0.88, all p < 2.2 x 10-16, AS89; 

Supplementary Figure 1c) and consistently predicted squamous tumours of the lung 

(Lung-SCC), cervix (Cervix-SCC) and head (Head-SCC) as the most hypoxic 

(Supplementary Figure 1d-e). Comparatively, chronic lymphocytic leukemias 

(Lymph-CLL) and thyroid adenocarcinomas (Thy-AdenoCA) were the least hypoxic, 

consistent with previous16 reports (ρ = 0.94, p < 2.2 x 10-16, AS89; Figure 1b, 

Supplementary Figure 1f-h). Remarkably, subsets of patients from 23/27 cancer 

types have tumours with elevated hypoxia (hypoxia score > 0) and tumours 
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consistently have elevated hypoxia compared to normal tissues (Supplementary 

Figure 2a-c). 

Considering the strong agreement between the Winter, Buffa and Ragnum hypoxia 

signatures (Figure 1a, Supplementary Figure 1c-d), we used the Buffa signature for 

subsequent analyses. We first assessed the degree of inter-tumoural heterogeneity in 

hypoxia that lies within individual cancer types rather than between them. Over 42% 

of the variance in hypoxia scores occurs within individual cancer types, highlighting 

the microenvironmental diversity between tumours arising in a single tissue. This 

variability in hypoxia score within cancer types was especially elevated in some 

tumour types, particularly biliary adenocarcinomas (interquartile range, IQR = 43.0; 

Biliary-AdenoCA), mature B-cell lymphomas (IQR = 36.0; Lymph-BNHL), lung 

adenocarcinomas (IQR = 34.0; Lung-AdenoCA) and breast adenocarcinomas (IQR = 

32.0; Breast-AdenoCA). This was in contrast to chronic lymphocytic leukemias (IQR 

= 2.0; Lymph-CLL) and prostate adenocarcinomas (IQR = 6.0; Prost-AdenoCA) 

where little inter-tumoural variability in hypoxia was observed. The variability in 

hypoxia score was not significantly associated with the median hypoxia score within 

cancer types (ρ = 0.20, p = 0.30, AS89; Supplementary Figure 2d) or with sample 

size (ρ = 0.22, p = 0.27, AS89; Supplementary Figure 1e). Overall, extensive 

heterogeneity exists in hypoxia levels within and across cancer types. 

The genomic correlates of tumour hypoxia 

To determine whether genomic instability arising from specific mutational classes is 

associated with hypoxia, we looked to identify hypoxia-associated pan-cancer 

mutational density and summary features32. We first considered as a positive control 

the percentage of the genome with a copy-number aberration (PGA), an engineered 

feature that is a surrogate for genomic instability and is associated with hypoxia 

across several tumour types16 (Supplementary Figure 2f). Indeed, in this diverse 

pan-cancer cohort, hypoxic tumours have elevated genomic instability while 

controlling for cancer type, age and sex27 (p = 5.01 x 10-8, �����

�  = 0.57, linear 

mixed-effect model; Figure 2a). 

We then considered the association of hypoxia scores with 14 other metrics of the 

mutation density of CNAs, structural variants (SVs) and single nucleotide variants 

(SNVs) using linear mixed-effect models (Figure 2a, Supplementary Figure 2f, 

Supplementary Table 3-4). The strongest single correlate of tumour hypoxia was the 
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total number of deletions, where patients with elevated hypoxia had more deletions (p 

= 1.31 x 10-10, �����

�  = 0.59, linear mixed-effect model). Elevated numbers of other 

structural variants such as duplications (p = 2.82 x 10-4, �����

�  = 0.60, linear mixed-

effect model) and truncations (p = 2.58 x 10-3, �����

�  = 0.59, linear mixed-effect 

model) were also associated with high hypoxia. Other features associated with 

elevated hypoxia include smaller CNAs (p = 2.22 x 10-3, �����
�  = 0.59, linear mixed-

effect model) and more SNVs/Mbp (p = 7.60 x 10-3, �����
�  = 0.60, linear mixed-

effect model). Overall, hypoxia is associated with increased numbers of most types of 

somatic mutations. 

Considering the strong association of hypoxia with mutational density, we next 

looked to determine if these were only general effects or selectively affected specific 

genes or chromosome regions. We leveraged a catalog of 653 driver mutations33, with 

CNA, SV and SNV data available for 1,096 patients. In cases where a patient had 

multiple mutations in the same gene (e.g. a CNA and an SNV) we denoted these as 

compound events. We again used linear mixed-effect models to associate hypoxia 

with each driver feature across cancers (Figure 2b). Adjusting for cancer type, age 

and sex, 10 driver events were associated with hypoxia across cancers (FDR < 0.10, 

linear mixed-effect models; Supplementary Figure 2f, Supplementary Table 5). 

Tumours with mutations in BCL2 (FDR = 7.09 x 10-15, �����

�  = 0.61, linear mixed-

effect model) showed lower levels of hypoxia compared to those without. All 

alterations of BCL2 in this cohort were SVs, so it is important to note that this 

association could not be identified from previous exome-sequencing data. Similarly, 

mutations in the tumour suppressor TP53 were associated with elevated hypoxia 

(FDR = 1.58 x 10-12, �����

�  = 0.58, linear mixed-effect model), consistent with 

previous descriptions of hypoxia-mediated selection of TP53-mutated cells17 and 

elevated hypoxia in breast cancer patients with TP53 mutations16. Mutations of the 

oncogene MYC (FDR = 1.09 x 10-4, �����

�  = 0.59, linear mixed-effect model) and 

tumour suppressor PTEN (FDR = 1.80 x 10-2, �
����

�  = 0.59, linear mixed-effect 

model) were also associated with elevated hypoxia. Thus, hypoxia is associated with 

both broad elevation of mutation density of most types of somatic variation, along 

with a consistent signature of alterations in oncogenes and tumour suppressors across 

cancers. 
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Hypoxia associated mutational signatures 

Previous work has used nonnegative matrix factorization to identify distinct 

mutational processes in cancer cells from endogenous and exogenous agents34. To 

identify hypoxia-associated mutational processes, we tested if hypoxia score was 

associated with the proportion of mutations attributed to each mutational signature 

using linear mixed-effect models. Of the 65 single base substitution (SBS) signatures 

tested, 9 showed differential activity in hypoxic tumours compared to non-hypoxic 

ones while controlling for cancer type, age and sex (FDR < 0.10, linear mixed-effect 

models; Figure 3a, Supplementary Table 6). Of these, six were more active and 

three less active in tumours with elevated hypoxia. Since previous work has shown 

that DNA repair is impaired under hypoxia, it was not surprising to observe that a 

higher proportion of mutations were attributed to SBS3 in tumours with elevated 

hypoxia score (FDR = 2.01 x 10-3, �����
�  = 0.60, linear mixed-effect model). Further, 

SBS6 (FDR = 2.01 x 10-3, �����
�  = 0.61, linear mixed-effect model) and SBS21 

(FDR = 3.58 x 10-2, �����

�  = 0.60, linear mixed-effect model), both related to 

defective DNA mismatch repair, had a higher proportion of attributed mutations with 

increasing hypoxia. A lower proportion of mutations were also attributed to SBS1, 

previously related to the deamination of 5-methylcytosine, with increasing hypoxia 

(FDR = 2.11 x 10-7, �����

�  = 0.61, linear mixed-effect model). 

Intriguingly, hypoxia was also associated with a number of SBS signatures with 

unknown aetiology (Figure 3b). The strongest of these was SBS5, where elevated 

hypoxia was associated with a significantly lower proportion of mutations attributed 

to the signature (FDR = 1.33 x 10-6, �����
�  = 0.59 linear mixed-effect model). A 

significantly lower proportion of mutations were also attributed to SBS12 with 

increasing hypoxia score (FDR = 3.65 x 10-2, �����
�  = 0.60, linear mixed-effect 

model). In contrast, a higher proportion of mutations were attributed to SBS17a (FDR 

= 3.38 x 10-3, �����
�  = 0.61, linear mixed-effect model) and SBS17b (FDR = 2.01 x 

10-3, �����
�  = 0.61, linear mixed-effect model) with increasing hypoxia. 

Analysis of small insertion and deletion (ID) signatures illustrated a similar story. Of 

the 17 ID signatures analyzed, the activity of 5 was associated with tumour hypoxia 

scores while controlling for cancer type, age and sex (FDR < 0.10, linear mixed-effect 

models; Figure 3b, Supplementary Table 7). Of these, 3 were more active in 

tumours with elevated hypoxia while 2 were less active in them. The defective 
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homologous recombination signature ID6 (FDR = 6.61 x 10-5, �����

�  = 0.60, linear 

mixed-effect model) and defective DNA mismatch repair signature ID2 (FDR = 4.34 

x 10-3, �����
�  = 0.61, linear mixed-effect model) had a higher proportion of attributed 

mutations as hypoxia score increased. Several signatures with unknown aetiology 

were also significantly associated with hypoxia score, including ID5 (FDR = 1.26 x 

10-3, �����
�  = 0.59, linear mixed-effect model) and ID9 (FDR = 4.34 x 10-3, �����

�  = 

0.60, linear mixed-effect model). These data suggest that oxygen levels play a direct 

or indirect role in the accumulation of specific mutations in cancer cells that are 

reflected by these signatures. 

The subclonal hallmarks of tumor hypoxia 

State-of-the-art methods for subclonal reconstruction rely on whole-genome 

sequencing data35, making the PCAWG dataset an ideal place to understand the 

evolutionary pressures imposed by hypoxia. Our group and others have shown that 

some mutations consistently occur early during tumorigenesis while others occur later 

and that hypoxia is associated with CNAs occurring early in localized prostate 

cancer16,36,37. To explore if this interaction between the tumour microenvironment and 

mutational landscape exists more broadly in cancer, we assessed if hypoxia was 

related to the number of clonal or subclonal mutations across 1,188 tumours from 27 

cancer types37. Clonal mutations are common to all cells in a tumour, while subclonal 

ones are only present in a subpopulation of cells. We found that elevated hypoxia was 

significantly associated with an increased number of clonal alterations across cancers 

(Bonferroni-adjusted p = 4.51 x 10-3, �����
�  = 0.60, linear mixed-effect model; 

Figure 4a), particularly clonal structural variants (p = 3.19 x 10-6, �����

�  = 0.59, 

linear mixed-effect model). In contrast, tumour hypoxia was not significantly 

associated with the number of subclonal alterations (Bonferroni-adjusted p = 0.15, 

�����

�  = 0.60, linear mixed-effect model; Figure 4a). Further, consistent with 

previous findings in prostate cancer16, hypoxia was not associated with the number of 

subclones detected (Bonferroni-adjusted p = 0.80, �����
�  = 0.59, linear mixed-effect 

model; Figure 4a). These data suggest that hypoxia applies a selective pressure on 

tumours during early tumour development, prior to subclonal diversification. 

Next, we assessed if the mutational background of a tumour together with its 

oxygenation level was linked to its evolutionary trajectory. We previously 

demonstrated that patients with hypoxic polyclonal prostate tumours with loss of the 
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tumour suppressor PTEN tend to have a poor prognosis16. Indeed, here we observed a 

significant interaction between tumor hypoxia and loss of PTEN in predicting 

subclonal architecture (pinteraction = 3.05 x 10-3, �
����

�  = 0.56, linear mixed-effect 

model; Figure 4b). Specifically, tumours with both of these features tend to have a 

polyclonal architecture across cancers. The downstream impact of this interaction 

between the genome and the tumour microenvironment was observed in RNA data: 

tumours with both altered PTEN and elevated hypoxia had the lowest abundance of 

PTEN mRNA (p = 5.24 x 10-14, �����

�  = 0.47, linear mixed-effect model; Figure 4c). 

Thus, the evolutionary trajectory of a tumour may be driven by the presence of a 

mutation in a specific microenvironmental context (Figure 5). 

Discussion 
Hypoxia is a feature of many solid and liquid tumours and is associated with 

aggressive disease. We calculated hypoxia scores for 1,188 tumours from 27 cancer 

types and showed the vast heterogeneity that exists in this microenvironmental feature 

within and across cancer types. This reinforces previous pushes for careful patient 

selection in prospective trials of hypoxia-targeting agents16. Further, this work 

prompts the consideration of basket trials for hypoxia targeting agents to help patients 

with elevated hypoxia across several cancer types. 

For the first time, we characterized the pan-cancer whole-genome correlates of 

tumour hypoxia. We show the broad influence of the hypoxia associated mutator 

phenotype: elevated hypoxia is associated with increased mutational load across all 

mutational classes (i.e. CNAs, SVs and SNVs). This supports previous in vitro work 

that demonstrated the contextual synthetic lethality of PARP inhibition in cells with 

defective DNA repair due to hypoxia38. Regarding this co-occurrence of genomic 

instability and hypoxia, our group16 and others39 have previously described this 

metabolic reprogramming as a series of distinct genomic alterations. This is supported 

by our finding that alterations in TP53, MYC and PTEN are more common in tumours 

with elevated hypoxia across cancers. Our study cannot however conclusively say 

whether hypoxia exerts a selective pressure that enriches for specific genomic 

alterations or if these genomic changes directly result in hypoxia. Experimental 

studies of single genes support that both effects may contribute to the associations we 

describe17,22,40–42. 
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Diving into the mutational processes related to hypoxia, we confirmed that several 

single base substitution and small indel signatures related to impaired DNA repair 

were associated with hypoxia. This raises the potential confounder that because 

hypoxic tumours have more mutations, we have more power to detect related 

mutational signatures. However, we demonstrated that hypoxia is indeed strongly 

associated with many mutational signatures with unknown aetiology, particularly 

SBS5, which is found in nearly all cancer types. Modelling these associations in vitro 

is particularly difficult and these data provide a high confidence measure of the 

mutational signatures that may be directly or indirectly driven by tumour oxygen 

levels. It is difficult to disentangle the timing of these events: whether a specific 

driver mutation gives rise to a specific mutational signature or if these are separate 

processes. Better mapping of the evolutionary timing of hypoxia will be particularly 

important in addressing this question and the advent of hypoxia signatures may 

facilitate future studies in this area. 

We observed a significant association between elevated hypoxia and the number of 

clonal mutations. This supports the idea that hypoxia is an early event in cancer, as we 

have suggested previously16, and other models that link hypoxia to genomic instability 

and downstream clonal selection20,41. Previous work has also demonstrated that 

patients with allelic loss of PTEN and elevated hypoxia rapidly relapse after definitive 

treatment for localized prostate cancer16. Here, we showed that tumours with 

alterations in PTEN and elevated hypoxia are enriched for a polyclonal tumour 

architecture. This illustrates the joint influence of the tumour mutational landscape 

and microenvironment in guiding evolutionary trajectories across cancers. Further, 

these data suggest that increased subclonal diversification may be a novel route via 

which PTEN drives aggressive tumour phenotypes, in concert with tumour hypoxia, 

and this can be better defined with future back-translational in vitro experiments. 

Overall, this work shows that a hypoxic tumour microenvironment is associated with 

specific mutational processes and distinct somatic mutational profiles, and may direct 

the subclonal architecture of cancers. 
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Methods 
Pan-cancer hypoxia scoring 

Hypoxia scores were calculated for all 1,188 tumours with mRNA abundance data 

using mRNA-abundance based signatures of tumour hypoxia developed previously by 

Winter et al.,30 Buffa et al.29 and Ragnum et al.31, as described previously14,16
 

(Supplementary Table 2). Briefly, patients with the top 50% of mRNA abundance 

values for each gene in a signature were given a score of +1. Patients with the bottom 

50% of mRNA abundance values for that gene were given a score of -1. This was 

repeated for every gene in the signature to generate a hypoxia score for each patient, 

and this process was repeated for each of the three signatures used in the study. High 

scores suggest that the tumour was hypoxic and low scores are indicative of 

normoxia. 

Hypoxia Score Comparison 

To compare hypoxia scores generated by the different signatures, the median hypoxia 

score was calculated for each of the PCAWG cancer types based on each signature. 

The median hypoxia scores from each signature were then scaled from +1 to -1 using 

the plotrix package (v3.7). Scaled median hypoxia values for the PCAWG cancer 

types were also compared to scaled median hypoxia values from previously 

published16 TCGA data between comparable cancer groups. The groups compared are 

as follows (PCAWG cancer type TCGA cancer type): Bladder-TCC and BLCA; 

Breast-AdenoCA and BRCA; Cervix-SCC and CESC; CNS-GBM and GBM; 

ColoRect-AdenoCA and COADREAD; Head-SCC and HNSC; Kidney-RCC and 

KIRC; Liver-HCC and LIHC; Lung-AdenoCA and LUAD; Lung-SCC and LUSC; 

Ovary-AdenoCA and OV; Panc-AdenoCA and PAAD; Prost-AdenoCA and PRAD; 

Skin-Melanoma and SKCM; Thy-AdenoCA and THCA; Uterus-Adeno and UCEC. 

Of the 27 cancer types in PCAWG, 11 (Cervix-AdenoCA, Stomach-AdenoCA, Eso-

AdenoCA, Breast-LobularCA, SoftTissue-Leiomyo, Lymph-BNHL, SoftTissue-

Liposarc, Biliary-AdenoCA, Kidney-ChRCC, CNS-Oligo and Lymph-CLL) did not 

have hypoxia data from comparable cancers in TCGA and were not used for the 

comparison16. For Spearman’s correlations, p-values were calculated using algorithm 

AS89. 
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Linear Mixed-Effect Models 

We used linear mixed-effect models to associate hypoxia with features of interest 

(e.g., PGA, TP53 mutational status, etc.) across cancers using the lme4 package (v1.1-

17). For each feature of interest we compared a full model (i.e., a model with the 

feature of interest) to a null model (i.e. a model without the feature of interest) using 

an ANOVA to determine if hypoxia was significantly associated with the feature of 

interest across cancers: 

���� � ���	
�� ~ ������� � ��� � �1|������� � �1|��
� 

���� � ���	
�� ~ ��� � �1|������� � �1|��
� 

All models were adjusted for patient age. Cancer type and sex were used as random 

effects in every model. This allows us to consider a different baseline value for the 

feature of interest for each cancer type and sex27. For each model an �����
�  value is 

reported, reflecting the variance explained by the fixed and random factors28. 

All model diagnostics were done using the DHARMa package (0.2.0) which uses a 

simulation-based approach to create standardized residuals43. For each model, scaled 

residuals were generated using the simulateResiduals function. The full model was 

used as the input for fittedModel parameter and 1,000 simulations were run. For 

correctly specified models, the scaled residuals were expected to be uniformly 

distributed and this was verified for each full model. We also compared the 

standardized residuals to the rank transformed predicted values to assess deviations 

from uniformity for each full model. 

Mutational Density Analysis 

Previously published data for 15 mutational density and summary features were 

downloaded for 1,188 tumours32. We used linear mixed-effect models to associate 

each feature with hypoxia score across cancers and compared each full model with a 

null model. Cancer type and sex were used as random effect variables. Tumours 

belonging to cancer types with fewer than 15 samples were excluded from the 

analysis. A Bonferroni p-value adjustment was applied to the p-values from linear 

mixed-effect modeling since fewer than 20 tests were conducted. 

Driver Mutations Analysis 

Data for driver mutations was first summarized at the gene level for 1,096 tumours 

with previously published driver mutation data33. For each of the 653 driver features, 
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we summarized if a patient had an SNV, CNA or SV. Some tumours had more than 

one type of event in a gene (e.g. a CNA and an SNV) and these events were classified 

as compound events. We then used linear mixed-effect models to associate the 

mutational status of each gene with hypoxia score and compared each full model with 

a null model. Cancer type and sex were used as random effect variables. The driver 

mutation analysis did not specifically consider the type of mutation in the gene and 

only considered if the gene had a mutation or was wildtype. Tumours belonging to 

cancer types with fewer than 15 samples were excluded from the analysis. An FDR 

adjustment was applied to the p-values from linear mixed-effect modeling. 

Mutational Signature Analysis 

Previously published data for mutations attributed to various specific signatures was 

downloaded for 1,188 tumours34. For each tumour, we calculated the proportion of 

total mutations attributed to each mutational signature. The proportion of mutations 

attributed to each signature were calculated by dividing the number of mutations 

attributed to each signature by the total number of mutations in the tumour. We used 

linear mixed-effect models to associate the proportion of mutations attributed to each 

signature with hypoxia score and compared each full model with a null model. Cancer 

type and sex were used as random effect variables. Tumours belonging to cancer 

types with fewer than 15 samples were excluded from the analysis. An FDR 

adjustment was applied to the p-values from linear mixed-effect modeling. 

Subclonality Analysis 

Previously reported37 subclonal reconstruction data was used to summarize the 

number of clonal and subclonal mutations in all 1,188 tumours. We used linear 

mixed-effect models to associate the number of these timed mutations with hypoxia 

score and compared each full model with a null model. Cancer type and sex were used 

as random effect variables. Tumours belonging to cancer types with fewer than 15 

samples were excluded from the analysis. A Bonferroni adjustment was applied to the 

p-values from linear mixed-effect modeling since fewer than 20 tests were conducted. 

The number of subclones was calculated for all 1,188 tumours based on the number of 

clusters of cells identified in each sample. A linear mixed-effects model were used to 

associate the number of subclones with hypoxia score and this model was compared 

to a null model. Cancer type was used as a random effect. Tumours belonging to 

cancer types with fewer than 15 samples were excluded from the analysis. 
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Patients with only one identified cluster of cells were defined as monoclonal and 

patients with more than one identified cluster of cells were defined as polyclonal36. 

Hypoxia scores were median dichotomized to classify patients as hypoxic or 

normoxic. To test for an interaction between tumour hypoxia and PTEN mutational 

status in selecting for a particular subclonal architecture, we used linear mixed-effect 

models together with an ANOVA. A full model was first created where the 

relationship between the hypoxia scores and PTEN mutational status was modelled as 

an interaction. A reduced model was also created where the relationship between 

hypoxia scores and PTEN mutational status was modelled in an additive manner: 

���� � ��	������ ~ ���	
�� � ���� � ��� � �1|������� � �1|��
� 

�� ��� � ��	������ ~ ���	
�� � ���� � ��� � �1|������� � �1|��
� 

The two models were compared using an ANOVA to test if hypoxia scores 

significantly interact with PTEN mutational status. Tumours belonging to cancer 

types with fewer than 15 samples were excluded from the analysis. The full model 

diagnostics were carried out using the DHARMa package, as described above. 

All data analysis was performed in the R statistical environment (v3.4.3). Data 

visualization was performed using the BPG package44 (v5.9.1). Figures were 

compiled using Inkscape (v0.91). 
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Figure Legends 
Figure 1 – The pan-cancer landscape of tumour hypoxia 

We quantified tumour hypoxia in 1,188 tumours spanning 27 different cancer types. 

a) Hypoxia scores for 27 types of cancer, based on the Buffa mRNA abundance 

signature. Cancer types are sorted by the median hypoxia score (horizontal black line) 

for each cancer type. Each dot represents one tumour. Sample sizes for each cancer 

type are listed near the bottom along with the percent of tumours that have elevated 

hypoxia (hypoxia score > 0). The variability in hypoxia within cancer types was 

measured by the interquartile range (IQR), shown along the bottom. The IQR was 

particularly high in biliary adenocarcinoma (IQR = 43.0; Biliary-AdenoCA), mature 

B-cell lymphomas (IQR = 36.0; Lymph-BNHL), lung adenocarcinoma (IQR = 34.0; 

Lung-AdenoCA) and breast adenocarcinoma (IQR = 32; Breast-AdenoCA). By 

contrast, chronic lymphocytic leukemia (IQR = 2.0; Lymph-CLL) and thyroid 

adenocarcinoma (IQR = 11.0; Thy-AdenoCA) showed less variance in hypoxia score. 

b) Analysis of hypoxia between 16 comparable cancer types in PCAWG and TCGA. 

Dots represent the mean of the scaled median hypoxia scores from three different 

mRNA-based hypoxia signatures. Error bars represent the standard deviation of the 

scaled median hypoxia scores. Overall, the pan-cancer quantification of hypoxia 

between the PCAWG and TCGA datasets shows strong agreement. 

Figure 2 – The genomic correlates of tumour hypoxia 

We associated tumour hypoxia with mutational density/summary features (a) and 

driver mutations (b) across 27 cancer types using linear mixed-effect models. 

Hypoxia scores for all 1,188 tumours are shown along the top. a) Elevated tumour 

hypoxia was strongly associated with more deletions, elevated PGA, smaller CNAs 

and a higher number of SNVs per megabase (n = 1,188 independent tumours). 

Bonferroni-adjusted p-values are shown on the right. b) We tested if driver mutations 

(e.g. any of SNV, CNA, SV or a compound event with more than one type of 

mutation) were associated with hypoxia in 1,096 patients with driver mutation data. 

Tumours with mutations in BCL2 showed lower levels of hypoxia while patients with 

mutations in TP53 showed remarkably elevated tumour hypoxia. Other driver 

mutations associated with elevated hypoxia include the oncogene MYC and the 

tumour suppressor PTEN. FDR-adjusted p-values are shown along the right. SV, 
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structural variant; PGA, percentage of the genome with a copy-number aberration; 

CNA, copy-number aberration; SNV, single nucleotide variant; H-H, head-to-head; T-

T, tail-to-tail. 

Figure 3 – Hypoxia associated mutational signatures 

We associated hypoxia with the proportion of mutations attributed to specific 

mutational signatures using linear mixed-effect models. Hypoxia scores for 1,188 

tumours are shown across the top while FDR-adjusted p-values are shown on the 

right. a) Hypoxia was associated with a series of single base substitution signatures 

with unknown aetiology including SBS5, SBS17a, SBS17b and SBS12. Some of 

these mutational signatures may reflect hypoxia-dependent mutational processes. 

Hypoxia was also associated with a lower proportion of attributed mutations to SBS1, 

which reflects deamination of 5-methylcytosine, and a higher proportion of attributed 

mutations to SBS3, which is related to deficiencies in DNA double-strand break 

repair and homologous recombination. b) Several signatures of small insertions and 

deletions were also associated with hypoxia, including ID6 and ID2, which reflect 

defective homologous recombination and defective DNA mismatch repair, 

respectively. ID5, ID9 and ID4, all with unknown aetiology, were significantly 

associated with hypoxia score. 

Figure 4 – The subclonal hallmarks of tumor hypoxia 

We associated tumour hypoxia with features related to the subclonal architecture of 

1,188 tumours from 27 cancer types using linear mixed-effect models. a) Hypoxia 

scores are shown along the top while Bonferroni-adjusted p-values are shown on the 

right. Hypoxia was not associated with the number of subclones in the tumour but 

elevated hypoxia was associated with a higher number of clonal mutations. b) We 

also observed a significant interaction between hypoxia and altered PTEN where 

tumours with both of these features were particularly likely to be polyclonal. c) The 

mRNA abundance of PTEN is modulated by both PTEN mutational status and tumour 

hypoxia. Tumours with altered PTEN and elevated hypoxia have the lowest 

abundance of PTEN mRNA. 

Figure 5 – Altered PTEN and hypoxia may drive subclonal diversification. 

Many primary tumours have elevated hypoxia due to increased demand or decreased 

supply of oxygen. Tumours with elevated hypoxia tend to have altered PTEN. 
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Elevated hypoxia and altered PTEN may drive subclonal diversification and poor 

outcomes. 
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Supplementary Figure Legends 
Supplementary Figure 1 – Pan-cancer landscape of hypoxia in primary 
tumours 

Tumour hypoxia scores for 1,188 tumours from 27 cancer types based on the Winter30 

(a) and Ragnum31 (b) hypoxia signatures. The black horizontal lines indicate the 

median hypoxia score within each cancer type. The number of tumours from each 

cancer type are shown along the bottom. IQR values for each cancer type are also 

shown along the bottom. c) Hypoxia scores based on the three independent signatures 

were highly correlated for 1,188 tumours from 27 cancer types. d) Comparison of 

median hypoxia scores within cancer types based on the Buffa29, Winter30 and 

Ragnum31 hypoxia signatures. Median hypoxia values were scaled from +1 to -1. e) 

The mean of the scaled median hypoxia scores for each cancer type are shown by the 

filled circle Lines show the standard deviation of the scaled median hypoxia score. 

Squamous tumours of the lung (Lung-SCC), cervix (Cervix-SCC) and head (Head-

SCC) are amongst the most hypoxic cancer types. f-h) Association of hypoxia scores 

between 16 comparable types of cancer in PCAWG and TCGA. Dots represent the 

mean of the scaled median hypoxia scores from the Buffa29 (f), Winter30 (g) and 

Ragnum31 (h) hypoxia signatures. Pan-cancer calculations of hypoxia between the 

PCAWG and TCGA datasets is strongly correlated based on independent hypoxia 

signatures. 

Supplementary Figure 2 – Hypoxia in tumour vs. normal samples and the 
genomics of hypoxia across cancers 

Tumour samples consistently have elevated hypoxia compared to normal samples 

from the same tissue based on the Buffa (a), Ragnum (b) and Winter (c) hypoxia 

signatures. The IQR values of cancer types were not associated with the median 

hypoxia score within that cancer type (d) or the sample size (e). f) A partial summary 

of the knowledge around the genomics of hypoxic tumours. Hypoxia-related 

associations that have been previously examined within 19 tumour types in TCGA are 

shown along the left based on data from Bhandari et al.16. CNAs and SNVs in several 

genes were found to be associated with elevated hypoxia within tumour types. 

Hypoxia was also associated with elevated PGA in 10 tumour types. The right side of 

the figure partially summarizes the analyses carried out in this work. Several of the 

previous intra-tumour type findings have been extended in this work as pan-cancer 
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features of hypoxia and several novel features, particularly related to structural 

variants, have been assessed and found to be significantly associated with hypoxia. 

This is in addition to the novel pan-caner work presented around single-base 

substitution signatures, indel signatures and tumour subclonality. 
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Supplementary Table Legends 
Supplementary Table 1 – PCAWG cancer type codes 

Cancer type codes for the 27 PCAWG cancer types examined in this study and their 

descriptions. 

Supplementary Table 2 – Hypoxia scores and genomic data for 1,188 
tumours 

Data for hypoxia scores, mutational density/summary, driver mutations, mutational 

signatures and subclonality for 1,188 tumours from 27 cancer types. For driver 

mutations, 0 represents wildtype, 1 represents an SNV, 2 represents a CNA, 3 

represents an SV and 4 represents a compound event (i.e., those with multiple types of 

alterations). Mutational signature data for single base substitution signatures and 

insertion and deletion (ID) signatures are provided as the proportion of alterations 

attributed to the signature. 

Supplementary Table 3 – Mutational density data by deciles 

For each of the 15 mutational features analyzed, the value corresponding to each 

decile is provided. 

Supplementary Table 4 – Hypoxia associated mutational density features 

Results from linear mixed-effect models associating hypoxia with mutational density 

features while controlling for cancer type, age and sex. 

Supplementary Table 5 – Hypoxia associated driver mutations 

Results from linear mixed-effect models associating hypoxia with driver mutations 

while controlling for cancer type, age and sex. 

Supplementary Table 6 – Hypoxia associated single base substitution 
signatures 

Results from linear mixed-effect models associating hypoxia with the proportion of 

mutations attributed to single base substitution signatures while controlling for cancer 

type, age and sex. 

Supplementary Table 7 – Hypoxia associated small insertion and deletion 
signatures 

Results from linear mixed-effect models associating hypoxia with the proportion of 

mutations attributed to small insertion and deletion signatures while controlling for 

cancer type, age and sex. 
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