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Abstract  

Identification of epistasis affecting complex human traits has been challenging. 

Focusing on known coronary artery disease (CAD) risk loci, we explore pairwise 

statistical interactions between 8,068 SNPs from ten CAD genome-wide association 

studies (n=30,180). We discovered rs1800769 and rs9458001 in the vicinity of the LPA 

locus to interact in modulating CAD risk (P=1.75×10-13). Specific genotypes (e.g., 

rs1800769 CT) displayed either significantly decreased or increased risk for CAD in the 

context of genotypes of the respective other SNP (e.g., rs9458001 GG vs. AA). In the 

UK Biobank (n=450,112) significant interaction of this SNP pair was replicated for 

CAD (P=3.09×10-22), and was also found for aortic valve stenosis (P=6.95×10-7) and 

peripheral arterial disease (P=2.32×10-4). Identical interaction patterns affected 

circulating lipoprotein(a) (n=5,953; P=8.7×10-32) and hepatic apolipoprotein(a) (apo(a))  

expression (n=522, P=2.6×10-11). We further interrogated potential biological 

implications of the variants and propose a mechanism explaining epistasis that 

ultimately may translate to substantial cardiovascular risks. 

 

 

Main text  

Globally, coronary artery disease (CAD) is the largest contributor to morbidity and 

mortality1. Genetic understanding of CAD has benefited from recent genome-wide 

association studies (GWAS), which have identified multiple variants to independently 

and additively propagate CAD susceptibility2. Less attention has been paid to epistasis 

in which variants act non-additively or, paradoxically, are dependent on the genetic 

context3,4. Albeit epistasis has broadly been shown to affect multiple traits in fruit flies5, 

mice6, and humans7, examples demonstrating biological relevance for epistasis via 

statistical approaches have only been investigated in model organisms8-10. Earlier 

attempts were largely unsuccessful given the computational challenges such as the 

curse of dimensionality, model complexity and bias from linkage disequilibrium (LD). 

Moreover, such efforts often lacked successful replication and/or biological 

interpretations of the statistical interactions11-15. Here, we aimed to statistically identify 

pairwise SNP interactions in the context of CAD and explored how biological epistasis 

may functionally contribute to disease susceptibility.  

We started from the search space of 56 broad-sense CAD susceptibility regions 

defined as ±500kb flanking regions of known CAD risk loci reported from previous 
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CAD GWAS16 (Methods). Such focus was encouraged by the observation that 

respective regions contain substantial heritability not explained by respective lead SNPs 

(Supplementary Note I). Individual-level and imputed genotypes were utilized from 

30,180 participants of ten European CAD case-controls studies2,16-23 (Methods, 

Supplementary Table 1, Supplementary Note II). We tested statistical interactions for 

all pairwise SNPs (nSNP_LDpruned=8,068) along a two-step scheme as detailed in the 

Methods and in Supplementary Fig 1. As a result, four SNP-pairs (Methods, 

Supplementary Table 2, Supplementary Fig 2), displaying consistent (in at least eight of 

ten studies) and significant (P ≤ 4.618×10-9) effects met our statistical criteria for 

candidate epistasis (Methods, Supplementary Fig 3, 4). The top SNP-pair (rs1800769-

rs9458001) in a dosage-dosage model (Fig 1a, Supplementary Table 3) was prioritized 

for further investigation (Methods).  

Both rs1800769 and rs9458001 map to chromosome 6, close to the apo(a) or LPA 

locus with a LD of r2=0.016 (Fig 1b). Neither were dosage-wise associated with CAD 

risk by itself (P=0.59, odds ratio (OR)=0.99 for rs1800769[T]; P=0.08, OR=1.04 for 

rs9458001[A]). However, together they displayed strong association (ORint=1.42, 

P=1.75×10-13 for the rs1800769[T]-rs9458001[A] interaction term) (Supplementary 

Table 2, Fig 1a, 1b). Statistical interaction was reliably present when conditioning for 

any known GWAS susceptibility SNPs for CAD (n=164) or any available SNP in the 

flanking ±200kb region. The same applies to known GWAS susceptibility SNPs for 

lipoprotein(a) (Lp(a)) (n=3)2,24 (Methods, Supplementary Table 4, 5, Supplementary Fig 

5).  

To facilitate comprehension, we investigated the relative odds ratio for subgroups 

of individuals with all nine possible genotype combinations. As a result, opposing 

genetic effects were observed for rs1800769, in that increasing dosage of T-alleles 

([C][C]->[C][T]->[T][T]) went along with lower CAD risk in rs9458001[G] 

homozygote individuals, but with higher risk in rs9458001[A] homozygotes (Fig 2a). 

Comparable effects were observed but vice versa for rs9458001 given the different 

genetic context of rs1800769 (Fig 2a). The few double homozygote [T/T] - [A/A] 

genotype carriers were all found amongst CAD cases (Supplementary Note III). We 

further dissected the genetic context into four possible allele-specific subgroups of 

haplotype samples (Methods, Supplementary Fig 6). The allele combination [T-A] (~3% 

in the population) displayed an odds ratio for CAD (1.84; Fig 2b), which was higher 

than that of any other common risk alleles at the Lp(a) locus, including rs10455872 at 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/518290doi: bioRxiv preprint 

https://doi.org/10.1101/518290


 5 

the Lp(a) locus2,16 (Supplementary Fig 7). Again, paradoxical effects were observed, 

where rs1800769[T] compared to [C] displayed lower risk in co-presence of 

rs9458001[G], but in contrast, displayed higher risk in co-presence of rs9458001[A] 

(Fig 2b, Supplementary Table 6). These strengthened the plausibility that the significant 

statistical interaction detected was due to the mutual dependency of genetic context 

(alleles) of two SNPs on the risk of CAD, and that there is true epistasis underlying the 

detected interaction signal.  

We replicated the statistical interaction of the two SNPs for CAD in two 

independent cohorts (UK Biobank n=443,588, P=3.09×10-22; GerMIFSVII n=5,379, 

P=6.7×10-3; meta-analysis across all studies with ORrs1800769=0.99, ORrs9458001=1.05, 

while ORint=1.30, P=5.07×10-27, Supplementary Table 7). Furthermore, in the UK 

Biobank data we found interaction effects in the same direction and comparable 

magnitude on peripheral arterial disease (controls/cases n=475,059/4,460, 

ORrs1800769=0.94, ORrs9458001=1.03, while ORint=1.22, P=2.32×10-4) and aortic valve 

stenosis (controls/cases n=477,496/2,023, ORrs1800769=0.94, ORrs9458001=1.00, while 

ORint=1.47, P=6.95×10-7, Supplementary Table 7), both of which are other 

manifestations of atherosclerosis in coronary arteries in which Lp(a) plasma levels affect 

risk25,26.  

We next studied potential intermediary traits. Given that Lp(a), a well-known risk 

factor for CAD, is under strict genetic control (exceeding 90% in the European 

population)27-29, and is directly encoded at the locus near to rs1800769 and rs9458001, 

we analyzed circulating Lp(a) levels in a German population-based study (KORA 

F3/F424,30, n=5,953). Despite a relatively trivial association with each SNP separately, 

we identified a strong interaction effect of both SNPs on Lp(a) level (beta=0.58, 

P=8.7×10-32) (Supplementary Table 6). Again, given the context of one SNP, 

paradoxical effects were observed for the other SNP (Fig 3, Supplementary Fig 8). Up 

to 3.0% of the variance of serum Lp(a) was explained by different genotype subgroups.  

Directional effects on Lp(a) levels and CAD risk were highly correlated for the genotype 

combinations (r= 0.96, P=3×10-4, Methods). Moreover, in the LURIC study where 

2,831 individuals had both data on CAD onset and multiple lipid and coagulation 

markers, we replicated significant statistical interaction for Lp(a) levels, but found no 

other circulating factor displaying such effect (data not shown). In this cohort, the 

interaction coefficient on CAD risk was attenuated by adjustment for Lp(a) levels 
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(Supplementary Table 8). These data plausibly suggest that the SNP-pair affects Lp(a) 

serum concentration, which subsequently results in higher risk of atherosclerosis. 

Circulating Lp(a) levels show high variation in the European population31 and are 

modulated by at least two independent mechanisms. Firstly, they are inversely 

correlated with the number of Kringle IV type 2 repeats (KIV-2 copy number variation 

[CNV])27,28, which accounts for about 18% of the variability in Western Europeans32. 

However, individuals with the same number of KIV-2 CNV may still differ up to 200-

fold with respect to Lp(a) levels27,28, suggesting also transcriptional mechanisms. Indeed, 

in the KORA population we observed an association of the same interaction with KIV-

2 CNV (P=1.2×10-30) (Supplementary Table 6, Supplementary Note IV). Notably, the 

risky allele combination [T-A] was accompanied by predominance of shorter KIV-2 

CNV variants (i.e., 20-22 repeats) (Fig 3, Supplementary Fig 9), which facilitate Lp(a) 

release from liver cells. However, both SNPs are in minimal LD with the reported 61 

KIV-2 CNV representable variants or the 3 independent modifier variants that 

influenced the relationship between KIV-2 CNV and Lp(a) cholesterol32 

(Supplementary Table 9). More importantly, interaction of the two SNPs regarding Lp(a) 

levels remained highly significant after adjustment for the KIV-2 CNV (P=2.6×10-11) 

(Fig 3, Supplementary Table 6). Therefore, we extended our investigation to apo(a) 

mRNA expression in liver tissue (Methods, STARNET study, n=522), where LPA is 

transcribed and further assembled to Lp(a). Interestingly, a significant interaction 

between the two SNPs was found again (P=1.4×10-8) and the effects on apo(a) mRNA 

expression and circulating Lp(a) levels correlated for various genotype subgroups (Fig 

3, Supplementary Table 6, Supplementary Fig 8). This suggests that differential gene 

expression activity underlies a large component of the statistical interaction related to 

the two SNPs.   

Finally, we wish to propose a hypothetical molecular mechanism of epistasis in 

that the expression activity of the LPA gene is determined by the two SNPs co-

regulating the enhancer-promoter interaction (Supplementary Fig 10). On the one hand, 

in vitro studies have shown that the rs1800769[T] allele (which lies within at the apo(a) 

promoter region, Supplementary Table 10) leads to a higher apo(a) transcriptional 

activity33. On the other hand, the rs9458001[A] allele (which lies upstream of the apo(a) 

promoter) affects multiple binding motifs (Supplementary Table 10), suggesting 

alteration in enhancer co-activators. Moreover, given that CTCF is a critical regulator 

of context-dependent enhancer-promoter interaction34-36, we investigated the three 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/518290doi: bioRxiv preprint 

https://doi.org/10.1101/518290


 7 

CTCF-DNA binding sites spanning from rs1800769 and rs9458001 (Supplementary 

Fig 10, Supplementary Note V). Interestingly, rs1800769[T] corresponds to higher 

local CTCF-DNA binding affinity at position 1 (Supplementary Table 10), whereas 

rs9458001[A] facilitates CTCF-DNA binding at position 2 (via a decrease in local CpG 

methylation37, Methods, Supplementary Table 11), which in turn changes the CTCF-

cohesin topological structure (Supplementary Fig 10). Combinatorially, the two SNPs 

may form context-dependent promoter-enhancer interactions in four scenarios that 

finally lead to differential gene expressions on a large magnitude (Supplementary Fig 

10). A note of caution needs to be added, however, since the discussed SNP-SNP 

interaction is just one of many possible interactions as there are other SNPs at the locus 

that are in LD with the ones that we discovered. 

An inherent challenge in testing for epistasis of nearby SNPs, even if they are in 

very low LD, is to discriminate interacting SNPs from SNPs representing a specific 

haplotype. In our case, it seems that the profound biological effects of the interacting 

pair were amplified in that the genotype combination leading to the highest 

transcriptional activity is found on a haplotype that contains a low number of KIV-2 

CNV repeats, which by independent mechanisms may lead to higher Lp(a) serum levels. 

However, Lp(a) serum concentrations adjusted for the KIV-2 CNV and apo(a) 

expression levels were both strongly affected by the interacting SNP pair, which 

strongly argues – when taken together with other genetic and molecular data 

(Supplementary Note VI) – for a true epistatic effect. 

In summary, we have identified for the first time a SNP-pair at the LPA locus that 

epistatically affects CAD susceptibility via large-scale statistical interaction analyses. 

Consistent effects were validated in multiple cohorts, across different cardiovascular 

traits and intermediary risk factors and traced all the way to apo(a) expression in the 

liver. The data reemphasize profound biological effects of massively elevated Lp(a) 

levels in increasing cardiovascular risks. We propose a hypothetical mechanism 

underlying epistasis of the two SNPs in coordinating gene regulation, and call for further 

research of epistasis in complex disease.  
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Main Figures and Tables 
 
FIGURE 1 

 

Fig 1. Cis-epistasis SNP-pair at the LPA locus displaying a non-additive signal 

increasing CAD risk.  a. Forest plot displaying the effect sizes across 10 studies of the 

interaction term on CAD odds ratio between rs1800769[T] and rs9458001[A] as well as 

the meta-analysis summary effect (shown as a diamond). SNP rs1800769 was not 

available in the GerMIFSI study data, therefore it is not displayed in the forest plot. For 

this study, the summary statistics for the ORint displayed the same trend, and the meta-

analysis ORint with perfect proxy SNPs across 10 studies is shown in (Supplementary 

Fig 4), with a fixed effect meta-analysis p-value as low as 1.75e-13.  b. Manhattan plot 

displays the regional signals at the LPA locus taken from recent genome-wide 

association studies of CAD, with SNP rs1800769 (univariately p=0.08, OR=1.03, 

Supplementary Table 2) and those with a LD r2 > 0.4 are labelled in blue, SNP 

rs9458001 (univariately p=0.59, OR=0.99, Supplementary Table 2) and those with a LD 

r2 > 0.4 are labelled in green, and SNP rs10455872 (which was the so-far reported the 

top risk variant for CAD) and those with a LD r2 > 0.4 are labelled in red. LD: linkage 

disequilibrium. MAF: minor allele frequency. OR: odds ratio. 
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FIGURE 2 

 

Fig 2. Statistical interaction between SNPs on CAD risk 

a. Odds ratio of CAD and standard errors are displayed in biallelic perspective for 8 

genotype combinations, with the reference genotype combination set as 

rs1800769[C][C]-rs9458001[G][G], the most frequent genotype. Left panel: With 

increasing numbers of [T] allele, ([C][C]à[C][T]à [T][T], labelled in blue along x-

axis) rs1800769 was related to lower CAD risk against the genetic context of 

rs9458001[G] homozygotes (along with the grey dotted line as viewing assistance). By 

contrast, CAD risk largely increased against the context of rs9458001[A] homozygotes 

(along with the green dotted line and solid points as viewing assistance), the effect was 

in-between against the genetic context of rs9458001 heterozygotes (along with the green 

dotted line and hollow points as viewing assistance). Right panel: Vice versa, with 

increasing numbers of the [A] allele, ([G][G]à[G][A]à[A][A], labelled in green along 

x-axis) rs9458001 was related to lower, largely increasing, and (in-between) mildly 

increasing CAD risk against the context of rs1800769[C][C], [T][T], and [C][T], 

respectively (lines and dots colored in grey or blue as viewing assistance). Bottom panel: 

Numbers of individuals were given corresponding to the subgroups of genotype 

combinations. 
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b. Relative odds ratio of CAD and standard errors are displayed for 4 haplotypes, with 

the reference haplotype set as rs1800769[C]-rs9458001[G]. First pseudo samples of all 

possible haplotypes were generated compatible with each individual's genotype, with 

appropriate weighting where haplotypes were uncertain. In addition haplotype 

association analyses were conducted based on generalized linear models using the 

expectation-maximization (EM) algorithm (Methods). Left panel: The haplotypes are 

shown in two groups based on the rs1800769[T] allele (marked in blue along the x-axis). 

The odds ratio of CAD was slightly reduced against the genetic context of rs9458001[G] 

(along with the grey dotted line and points as viewing assistance), but on the opposite 

was drastically increased against the genetic context of rs9458001[A] (along with the 

green dotted line and points as viewing assistance). Right panel: Vice versa, in the 

presence of rs9458001[A] odds ratios of CAD were either slightly reduced or drastically 

increased against the context of rs9458001[G] and [A], respectively. Bottom panel: 

Numbers of pseudo samples were given corresponding to the subgroups of haplotypes 

(allele combinations).  
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FIGURE 3 

 

Fig 3.  Statistical interaction between SNP effects on circulating Lp(a) level and 

apo(a) expression activity. a. Relative effect sizes (with reference to the genotype 

[C][C]-[G][G]) are displayed for 8 genotype subgroups ([TT]-[AA] carriers were not 

found in KORA) respectively for inverse-normal transformed total Lp(a) level (INT-

Lp(a), light blue), inverse-normal transformed total Lp(a) level independent of the KIV 

size (INT-Lp(a) indep KIV, salmon), LPA mRNA expression in liver (LPA, brown), and 

KIV size of the dominantly-expressed apo(a) isoform (KIV, purple). b. Relative effect 

sizes for monoallelic-wise 4 haplotypes are displayed in bar graph with the error bars 

representing the standard errors, respectively on inverse normal transformed total Lp(a) 

level (light blue), the total Lp(a) level but with adjustment of the prevalent KIV size in 

the same sample (salmon), and the LPA mRNA expression in liver (brown). The 

statistics for the original Lp(a) level without transformation are provided in 

Supplementary Table 12 and 13. 
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Online Methods 

 

CAD Case-control studies 

Individual level genotypes were obtained from ten CAD case-control studies. Most 

individuals were collected from Germany and have been published before: the German 

Myocardial Infarction Family Studies (GerMIFS) I17, II18, III (KORA)19, IV16, V20, 

VI2,VII and the LUdwigshafen RIsk and Cardiovascular Health Study (LURIC)38; from 

Germany and France: Cardiogenics; from England: Wellcome Trust Case Control 

Consortium (WTCCC)21,22; and from France, Italy and the United States: Myocardial 

Infarction Genetics Consortium (MIGen)22,23. GerMIFS VII represents CAD cases with 

early and severe onset of disease from the Deutsches Herzzentrum München and 

population-based controls from the Heinz-Nixdorf-Recall (HNR) Study39. 

Data for WTCCC were obtained via the Leducq network “CADgenomics” 

(https://www.fondationleducq.org/network/understanding-coronary-artery-disease-

genes/). Data for MIGen were obtained via the database of Genotypes And Phenotypes 

(dbgap)40 (project ID #49717-3). All subjects in all studies were of European origin and 

gave written informed consent before participating. All individuals provided informed 

consent that specifically addresses that the materials will be used for studying the effect 

of genetic variants on coronary risk. All respective studies have obtained IRB approval 

from their local Ethical Committees. Ascertainment and assessment methods CAD of 

each study is provided in the corresponding publications. Sample size in Supplementary 

Table 1, and the genotype processing procedures including QC and imputation are 

provided in Supplementary Notes II. 

 

UK Biobank 

The UK Biobank project (http://www.ukbiobank.ac.uk) is a large prospective cohort 

study of ~500,000 individuals from across the United Kingdom, aged 40-69 years at 

recruitment41. Following informed consent, a rich variety of phenotypic and health-

related information was collected for each participant, making the resource 

unprecedented in its size and scope. In addition to self-reported information, including 

basic demographic data, dietary and exercise habits, multiple physical, cognitive and 

biochemical measurements were obtained. However, biochemical data for each of the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/518290doi: bioRxiv preprint 

https://doi.org/10.1101/518290


 13 

four main blood lipids were not available at the time of analyses. UK Biobank 

participants are being followed up through electronically linked health-related records. 

Health-related outcome records include death notifications and cancer diagnoses 

through linkage to national death and cancer registries, and hospital inpatient episode 

statistics, which contain coded data on admissions, operations and procedures (primary 

and secondary). In this study, CAD cases were defined using the “HARD” criteria2 as 

individuals with fatal or nonfatal myocardial infarction (MI), percutaneous 

transluminal coronary angioplasty (PTCA) or coronary artery bypass grafting (CABG).  

Peripheral arterial disease (PAD) cases were defined as self-reported history of PAD or 

leg claudication/ intermittent claudication, or hospitalization or death due to ICD9-

443.9, 444, ICD10-I73.9,I74. Aortic valve stenosis cases were defined as self-reported 

history of aortic stenosis, or hospitalization or death due to ICD9-424.1, ICD10-I35.0. 

 

KORA F3/F4 studies 

Individual-level genotypes were obtained from Augsburg population studies from 

Germany30: KORA F3 and KORA F442,43. The KORA F3 study, conducted in the years 

2004/05, is a population-based sample from the general population living in the region 

of Augsburg, Southern Germany, which has evolved from the WHO MONICA study 

(Monitoring of Trends and Determinants of Cardiovascular Disease). The KORA F4 

survey is an independent non-overlapping sample drawn from the same population in 

the years 2006/08. The lipid measurements include total Lp(a) levels, and the number 

of kringle repeats of the Lp(a) protein, determined by Western blotting24. Apo(a) 

isoforms were determined by quantitative analysis of the Western blots. For each 

analysis, which included isoforms/KIV-2 copy number variation (CNV) repeats, the 

predominantly expressed isoform for each person was used. More detailed information 

is given in Supplementary Note IV.  

 

STARNET Study 

RNAseq have been generated from liver in a total of 522 CABG CAD patients from the 

Stockholm-Tartu Reverse Network Engineering Task (STARNET) study44. All patients 

were Caucasian (30% females), 27% had diabetes, 77% had hypertension, 68% had 

hyperlipidemia, and 37% had a myocardial infarction before age 60. Patients diagnosed 

with CAD who were eligible for open-thorax surgery at the Department of Cardiac 

Surgery, Tartu University Hospital were enrolled. Informed consent was obtained from 
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all subjects (Ethics Approvals Dnr 154/7 and 188/M-12). Blood DNA Genotyping was 

done using the Illumina Infinium assay45, and the results were analyzed with 

GenomeStudio 2011.1 (Illumina). A 2–3 cm incision in the diaphragm was made to 

access the peritoneal cavity. This incision was placed to enable direct access to the outer 

edge of the left lateral liver lobe, from which a 3–5 mm3 biopsy was obtained. The liver 

incision was sutured to control any bleeding. Samples RIN scores of > 7 were accepted 

and sequenced on Illumina HiSeq with single-end at read length 50 or 100 base pairs. 

DNA and RNA qualities were assessed with the Agilent 2100 Bioanalyzer system 

(Agilent Technologies, Palo Alto, CA). Detailed procedures for genotype and RNA 

processing, including QC and imputation are provided in Franzén et al 201644. 

 

Broad-sense CAD susceptibility regions 

We focused our analysis on loci with previous evidence of genome-wide association 

with CAD in order to restrict the number of variants for testing of statistical epistasis 

with the aim to enhance speed and the likelihood of positive finding. We collected the 

lead SNPs from the 56 published CAD susceptibility loci16,22, and decided on ±500kb 

as a balanced threshold for the flanking range surrounding the known loci (i.e. the 

broad-sense CAD susceptibility regions), which could meanwhile maximize the 

heritability covered by the regions and minimize the computational burden. Indeed, 

variance explained by the lead SNPs only achieved 46% proportion to that could be 

explained by including their flanking ±500kb regions together (Supplementary Note I). 

Altogether there are 8,068 SNPs with pairwise r2 < 0.5 located in the broad-sense CAD 

susceptibility regions. 

 

Statistical interaction analysis for CAD 

We used the general framework of detecting statistical epistasis in quantitative genetics 

as proposed by Hansen and Wagner46, and as a pilot study focused specifically on the 

pairwise epistasis between two loci (SNPs). Formally (Eq. (1)), the case-control status 

of each CAD individual was taken as a quantitative dependent variable y in a linear 

model, with snp1 and snp2 representing the encoded individual genotype for each SNP, 

respectively. The genotype encoding each variant included four possible models, i.e., 

dosage (minor allele copy counts; absence as zero), dominant (presence of at least one 

minor allele copy counts as one; absence as zero), heterozygous (presence of only one 

minor allele counts as one; otherwise zero), and recessive (two copies of the minor allele 
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counts as one; otherwise zero). Independent variables are snp1, snp2, and their dot 

product. Regression was performed for each combination of SNP-pair. The 

corresponding regression coefficients were estimated with b1, reporting the main effect 

of the coded variable of snp1, b2 reporting the main effect of the coded variable of snp2, 

and bint for the interaction effect (epistasis coefficient) of the coded variables (snp1 and 

snp2). In this way, the epistasis coefficient bint indicates the directionality and quantifies 

the strength of the effect between both loci (snp1 and snp2).   

     (1) 

  

                 (2) 

We started exploration of statistical epistasis with all available SNPs located in 

the broad-sense CAD susceptibility regions across the genome but with LD redundancy 

pruned to pairwise r2 < 0.5 (nSNP_LDpruned =8,068). The statistical interaction calculations 

were done on this set of SNPs with a low LD structure, with I – primary filtering of 

potential candidates, and II - screening and final confirmation (Supplementary Fig 1). 

Step I aimed the fast speed identification of potential significant interaction terms, as 

well as their respective genotype models, with the assistance of GLIDE GPU 

computation tool47 (ntests_of_each_model = nSNP_LDpruned × (nSNP_LDpruned - 1) / 2 = 32,542,278; 

ngenotype_models = 4 ×4 = 16). General linear regression was performed with the basic 

model of epistasis (Eq.(1)). A loose and arbitrary significance level was applied (p < 

1e-8) for primary filtering with the assumption that if there exists true epistasis between 

two lead SNPs, loose signals should be detectable between the SNPs within the 

corresponding LD block. Step II included the fine-mapping of the candidate SNP pairs 

to screen out the pairs with the strongest signal amongst the multiples SNPs in the same 

LD block. LD-based clumping was performed via PLINK48 (v1.90b3.42) to determine 

the total number of LD independent SNPs (nSNP_indep = 4,654) resulted from step I, 

which was then used to calculate the final significance level with Bonferroni correction 

0.05 ⁄ (nSNP_indep × (nSNP_indep - 1) / 2) = 4.6178e-9. In total a set of nSNP_all =7,579 variants 

spanning across the complete block, were further investigated for fine-mapping using 

logistic regression, performed in R (ntests_of_given_model = nSNP_all × (nSNP_all - 1) / 2 = 

28,716,831). Here variants were encoded in the most significant genetic models 

resulting from Step I, and the equation was extended (Eq. (2)) to correct for population 

stratification and employing a logistic model for the dependent variable. Population 

y ~ b0 + b1 × snp1 + b2 × snp2 + bint × snp1 × snp2

y ~ b0 + b1 × snp1 + b2 × snp2 + bint × snp1 × snp2 + bc1 × cov1+ bc2 × cov2+ ...+ bc10 × cov10
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structures for each cohort were captured in the genotyped data with multidimensional 

scaling (MDS) analysis of the identity-by-state (IBS) matrix, computed via PLINK48 

(v1.90b3.42).  
In the discovery phase, the same epistasis testing was performed based on 1000G 

imputed genotypes in each of the ten CAD case-control studies separately with the 

adjustment of top 10 MDS components, and then fixed-effect meta-analysis to estimate 

the overall effect size and standard error. The final epistasis pair of interest was then 

reanalyzed in the same study with HRC imputation to enable a more complete coverage 

of the region of interest in all 10 cohorts. This gave consistent results, showing that the 

finding obtained was not dependent on the imputation panel used. Additionally, 

individual-level genotypes of two independent cohorts, GerMIFSVII and UK Biobank 

(Supplementary Table 1), were utilized as independent replications for the top lead SNP 

pair. Analysis based on GerMIFSVII was adjusted with covariates of top 5 multiple 

dimensions. Analyses based on UK Biobank data were adjusted with covariates of top 

5 principal components, age, gender and genotype platform.  

 

Prioritizing candidate SNP pairs of epistasis of CAD 

After the detection of all SNP pairs showing statistically significant epistatic 

effects on the risk of CAD, we prioritized the candidate pairs based on the following 

rules of thumb and selected the top candidate with the consideration of further functional 

investigations.  

Firstly, we picked up SNP pairs that were highly replicated, as previous statistical 

epistasis explorations have been frequently blamed for low replication3,49. Here we 

retained only SNP-pairs, which displayed statistical epistasis both significantly and 

consistently in at least 8 studies (out of 10) in the discovery data, based on both v1000G 

and vHRC imputation. 

Secondly, when our statistical interaction SNP pairs were located on the same 

chromosome (i.e., cis-epistasis), we clarified the regional LD structure to confirm the 

independence of LD between two target SNPs (snp1 and snp2). We filtered out all pairs 

with LD r2 > 0.2 between snp1 and snp2 (inter-pair criteria). Moreover, we assumed that 

if significant and true statistical epistasis effect exists between snp1 and snp2, then at 

least weak interaction signals should be detectable between all extended SNPs in high 

LD with each of the two interacting SNPs (respectively all proxies of snp1 and all 

proxies of snp2), unless either SNP itself is a LD singleton and has limited or no other 
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variants nearby linked with it. Therefore, to maximize the replication of the true positive 

discovery, we focused on those pairs with both target SNPs as non-LD-singleton. All 

singletons or SNPs with low LD (r2 between 0.2 - 0.5 with any other variants) were not 

further considered. All SNPs in LD r2 > 0.5 were grouped into the same target SNP 

group (Supplementary Fig 2a) as snp1 group or snp2 group (intra-pair criteria), and the 

SNP pair with the largest effect size for the interaction coefficient was taken as the lead 

pair (Supplementary Table 3). 

 Thirdly, to test the independence of the statistical epistasis effect against the effect 

from a third SNP in the vicinity of snp1 or snp2, or from any known CAD susceptibility 

loci reported via traditional GWAS approach, conditional analyses were performed in 

all ten studies followed by meta-analysis. Dosage model was assigned to the third SNP 

(snp3), extracting from the latest compiled list of 164 known CAD GWAS SNPs50, and 

from all available SNPs in the ±200kb flanking regions of snp1 and snp2. Logistic 

regression was utilized to estimate the effect of the bint (epistasis coefficient) but with 

snp3 as an additional covariate (Eq. (3)). 

 

           (3) 

As a result, four pairs displaying consistent effects in at least 8 studies, hit all the 

defined criteria for statistical epistasis (Supplementary Table 2), with the top pair as two 

SNPs rs1800769 and rs9458001 on chromosome 6 in dosage-dosage model.  The effect 

sizes were consistent across all studies, except for GerMIFSI due to the unavailability 

of one of the SNPs (or any proxy) in the pair based on 1000G imputation, but proxies 

(r2 ≥ 0.98) were available in our data based on HRC imputation and showed consistently 

strong interactions across all ten studies (Supplementary Fig 3). With the aim to 

statistical-to-biological translation, we annotated the genetic locations of the 8 SNPs in 

these four candidate pairs (Supplementary Table 2), and found one of the pairs with both 

SNPs located nearest to a known CAD risk gene – LPA, i.e., the pair of rs1800769 and 

rs9458001, with the former at the LPA promoter and the latter at the upstream intergenic 

region. We thereafter focused on this top epistasis SNP pair with the highest potential 

to be biologically relevant for further biological and functional analyses, and argue 

against cis-epistasis being a pure statistical artifact51. 

 

 

y ~ b0 + b1 × snp1 + b2 × snp2 + bint × snp1 × snp2 + bc1 × cov1+ bc2 × cov2+ ...+ bc10 × cov10+ b3 × snp3
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Statistical interaction analysis on intermediate factors 

 

For the lead SNP pair that displayed epistasis effect on the risk of CAD, we further 

tested for signals on a series of intermediate factors. Regression analyses were 

performed using R based on the same genetic model (Eq. (1)) but we replaced the 

dependent variable y as the corresponding intermediate factor of our interest. Covariates 

were added if necessary for each intermediate factor.  

Circulating Lp(a) were measured in KORA F3 and F4 studies42,43. Due to the 

highly skewed distribution of Lp(a), inverse normal transformation was applied to the 

Lp(a) concentration to construct the dependent variable lpa (Eq.(4)). Analysis was first 

performed for KORA F3 and F4 separately. Then meta-analysis was performed to 

estimate the effects and p-value. 

     (4) 

For a sample of 2,831 LURIC individuals, a series of cardiovascular related risk 

factors were also measured including circulating Lp(a) concentration, in addition to the 

records of CAD status. Lp(a) was measured in EDTA plasma in the scale of mg/dl. 

Logistic regression was performed for CAD status, with (Eq.(6)) and without (Eq.(5)) 

adjustment for the inverse normal transformation Lp(a) to estimate the effect change for 

the epistasis coefficient bint  

     (5) 

    (6) 

For the epistasis effect on the apo(a) expression activity we applied two 

approximate measurements: a) the effect on the hepatic LPA-mRNA expression by 

RNA-seq from STARNET44 Study (Eq. (7)); and b) the effect on the total Lp(a) level 

adjusted by the effect related due to KIV-2 CNV (Eq. (8), Supplementary Note IV). 

Lp(a) concentration was inverse normal transformed. Analysis was first performed in 

KORA F3 and F4 separately. Then meta-analysis was performed to estimate the effects 

and significance.  

     (7) 

lpa ~ b0 + b1×snp1 + b2×snp2 + bint×snp1× snp2 + bKIV×isoform   (8) 
 

 

 

lpa ~ b0 + b1 × snp1 + b2 × snp2 + bint × snp1 × snp2

cad ~ b0 + b1 × snp1 + b2 × snp2 + binta × snp1 × snp2

cad ~ b0 + b1 × snp1 + b2 × snp2 + bintb × snp1 × snp2 + bl × lpa

LPAliver ~ b0 + b1 × snp1 + b2 × snp2 + bint × snp1 × snp2
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Relative effect size analysis for genotypes and haplotypes. 

The effect of interaction term bint indicates the deviation of the observed effect compared 

to the expected combination of effect given the respective effect-allele models of the 

two SNPs, but does not tell the actual risk difference among subgroups of individuals 

divided according to the interactive SNP-pair. In order to characterize the manifestation 

of interaction as to how the genetic effect of one SNP is mutually dependent on the 

genetic context of the other SNP, we dissected the genetic effect of epistasis by 

analyzing the effect of two SNPs from two perspectives: in genotypes (e.g., biallelic-

wise in 3 * 3 = 9 genotype combinations), and in haplotypes (e.g., monoallelic-wise in 

2 * 2 = 4 haplotype) (Supplementary Fig 6). For genotypes, we set the effect for the 

majority group as the baseline for comparison, and performed multivariate regression 

with 9 genotype combination categories, to estimate the relative effect change of each 

group on multiple levels (Eq. (9)), including CAD odds ratio, total Lp(a) level, LPA 

mRNA expression in liver, and isoform-independent Lp(a) level, based on the 

corresponding data.   

     (9) 

Indeed, monoallelic-wise haplotype would be more direct reflection of the genetic 

context. Given that only genotypes, rather than haplotypes, are directly measured and 

observed in genotyping arrays, we inferred estimated haplotypes via linkage phasing of 

the SNP genotypes for ambiguous (heterozygous at both SNPs) haplotypes using R 

package hapassoc. Firstly, using the genotype data an input a list of possible haplotypes 

that are compatible with each person's genotype from the pre-processing function 

“pre.hapassoc”, which generates dummy samples for uncertain haplotypes, additionally 

generated with probabilities. Then the haplotype association analyses implemented in 

the “hapassoc” function were conducted based on generalized linear models using the 

expectation-maximization (EM) algorithm. Similarly, we set the effect for the majority 

group as the baseline for comparison, and performed multivariate regression with 4 

haplotype categories, to determine the relative effect change of each group on multiple 

levels (Eq. (10)).  

   (10) 

 

 

y ~ b0 + bg1 × geno1+ bg 2 × geno2+ ...+ bg 9 × geno9

y ~ b0 + bh1 × haplo1+ bh2 × haplo2+ bh3 × haplo3+ bh4 × haplo4
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Methylation QTL analysis 

We utilized the resource published by Gaunt et al37 containing summary statistics of 

genetic variants underlying each DNA methylation CpG islands collected at five 

different time points across the life course from individuals in ALSPAC, with on 

average about 800 samples for each time point (Supplementary Table 11). Furthermore, 

we analyzed methylation array data from a subsample of 588 LURIC participants 

(Illumina EPIC array) measured in blood cells. Raw data were processed following the 

recommendations from the CKDGen consortium. There were 487 overlapping samples 

with both genotype and methylation data available that underwent filtering for quality 

control. All 565 methylation probes in the LPA flanking region (chr6:160363532-

161643608, hg19) were extracted. Genotype-methylation associations were performed 

for rs1800769 and rs9458001, and all non-SNP-overlapping methylation probes (SNP-

probe distance >1bp) with p < 0.01 to either SNP were checked. Only rs9458001 was 

significantly associated with CpG methylation levels, and was reported (Supplementary 

Table 11).  The rs9458001[A] allele was associated with reduced methylation of a CpG 

island in the region between the two SNPs (~15kb upstream of rs1800769 and 

downstream of rs9458001), which was consistent based on the above two independent 

methylation array analyses. 

 

 

Functional annotation  

Annovar52 was utilized to annotate the genomic location, location relative to the 

nearby gene, and putative regulatory functions. Haploreg4.153 was utilized to annotate 

the genomic position, LD structure in the European population, and ENCODE52 

annotation were integrated to capture possible regulatory elements of promoter, 

enhancer, and transcriptional factor binding motifs (Supplementary Table 10). 
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